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ABSTRACT
The security of the client side of a web application relies on
browser features such as cookies, the same-origin policy and
HTTPS. As the client side grows increasingly powerful and
sophisticated, browser vendors have stepped up their offering
of security mechanisms which can be leveraged to protect
it. These are often introduced experimentally and informally
and, as adoption increases, gradually become standardised
(e.g., CSP, CORS and HSTS). Considering the diverse land-
scape of browser vendors, releases, and customised versions
for mobile and embedded devices, there is a compelling need
for a systematic assessment of browser security.

We present BrowserAudit, a tool for testing that a de-
ployed browser enforces the guarantees implied by the main
standardised and experimental security mechanisms. It in-
cludes more than 400 fully-automated tests that exercise
a broad range of security features, helping web users, ap-
plication developers and security researchers to make an
informed security assessment of a deployed browser. We
validate BrowserAudit by discovering both fresh and known
security-related bugs in major browsers.

Categories and Subject Descriptors
D.4.6 [Operating systems]: Security and Protection

Keywords
Web security, web browser testing, same-origin policy, Con-
tent Security Policy, Cross-Origin Resource Sharing, click-
jacking, cookies

1. INTRODUCTION
Personal data, business transactions, critical infrastruc-

ture and even cars, refrigerators and lightbulbs are exposed
through web interfaces to a wide variety of web browsers.
Hence, the browser plays a key role in the modern information
infrastructure, as the main gateway to access the information
and capabilities made available online.
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As such, browsers need to offer a variety of standardised
security mechanisms which can be relied upon uniformly
by the client side of web applications, in order to deliver
security guarantees to their users. For example, the same-
origin policy (SOP) [34] is effective at preventing a range
of cross-site scripting (XSS) attacks [38] against users’ web
browsers and is an integral aspect of modern web-based se-
curity. On the other hand, it is sometimes excessively strict;
for instance, it forbids the sharing of information between
different subdomains, a common requirement of large web
sites. It is also coarse-grained, and several attempts have
been made to enforce finer-grained access control [41, 39]
and origins [22, 23, 29] in the browser. A variety of contem-
porary web browsers implement the Cross-Origin Resource
Sharing (CORS) [46] standard, which may be used to control
the flow of information between server-side resources and
client-side scripts that attempt to access those resources via
APIs. However, even fully-compliant implementations of the
SOP and CORS mechanisms in some cases do not regulate
access to other resources, such as images, embedded objects
and web fonts, that can leave web applications vulnerable
to cross-site request forgery (CSRF) attacks [20], clickjack-
ing [36], framebusting [43] and CSS-based attacks [33]. The
Content Security Policy (CSP) standard [45] enables much
finer-grained control over the loading of arbitrary resources
on a web page, mitigating several of these issues. These
are just some examples of established and emerging security
mechanisms offered by modern browsers.

Such mechanisms are often introduced experimentally and
informally. As adoption increases, they gradually become
standardised, and after numerous security reviews and bug
reports they can eventually be relied upon consistently across
browsers [19, 37, 20]. Reaching that stage is not easy. For
example, correctly implementing the CSP specification is non-
trivial: it is a lengthy document with many cross-references
to other standards and RFCs, many of which have been su-
perseded by newer (and conflicting) standards and RFCs. It
is possible that a browser vendor could incorrectly implement
some part of the CSP and thus fail to provide some of its
security guarantees to their users. There is therefore a need
for an automated tool that enables browser developers to
complement low-level unit tests targeted at isolated source
code modules with high-level testing of the effectiveness of
the implementation of the security features once the browser
is deployed.

In this paper we introduce BrowserAudit, a framework
for testing whether a deployed browser correctly enforces
the security guarantees implied by the main standardised
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security mechanisms. For practical purposes, we present
BrowserAudit as a standalone web application that auto-
matically tests the browser used to access it. BrowserAudit
has been designed with different sets of users in mind. A
casual web user can run the tests to gain a simple secur-
ity assessment of their browser: critically vulnerable, non-
critically vulnerable, or okay. With the recent surge of se-
curity breaches reported in the news, people are becoming
increasingly security-conscious and we believe there is an
increasing demand for tools that inform the public about se-
curity. A security researcher can benefit even more, viewing
a detailed breakdown of each test result, and seeing which
security features passed our tests and which had problems.
We display textual descriptions for each category of tests and
the client-side source code of the tests. Browser developers
can use BrowserAudit to debug their security features and
web developers can use it as a way to ascertain the secur-
ity capability of users’ browsers (Section 2). We chose to
implement a careful selection of tests that covers both the
most important browser security mechanisms that should be
implemented in any browser, and some of the most prom-
ising experimental ones that are not yet widely implemented.
Starting from the code of individual test cases, we identified
and generalised common patterns in order to automatically
generate hundreds of tests. BrowserAudit automatically tests
over 400 behaviours where a certain action should either be
allowed or blocked according to an implied browser security
policy (Section 3).

We designed BrowserAudit to be efficient and scalable,
and we evaluated its performance and its accuracy extens-
ively by running it on a number of browsers and platforms.
Using BrowserAudit, we have discovered several previously
unknown security bugs in recent versions of Mozilla Firefox,
which we have reported to the developers (Section 4.4).

Whilst there are well-understood methodologies for gen-
erating unit tests for a given code base, there is no general
solution to the problem of testing the end-to-end security be-
haviour of a family of applications (in our case web browsers)
that must respect precise interoperability constraints (web
standards) but can widely differ in implementation architec-
tures, languages and design. Hence, we faced a significant
challenge when developing our tests, carrying out a sub-
stantial amount of practical experimentation, guided by the
official RFCs, our formal and informal models of web security,
and a substantial body of academic and practical research
on browser and web security (surveyed in Section 5.1). Al-
though we believe that BrowserAudit is unique in its focus
and breadth, we were inspired by a number of related web
applications described in Section 5.2.

Contributions. Summarising, our main contributions are:

• We analysed the specifications of HTML5, CSP, CORS
and HTTP Strict Transport Security (HSTS), identifying
the concrete security guarantees implied by the proposed
mechanisms. This allowed us to formulate precise goals
for security test cases.

• We built a suite of more than 400 browser security tests,
which brings together a wealth of explicit and implicit
knowledge of the guarantees afforded by modern browser
security mechanisms. We made the tests available to
the community by open-sourcing the BrowserAudit code
base [32].

• We implemented the first fully-automated web application
that comprehensively tests browser security features and
provides detailed information to a variety of user bases.

• We used BrowserAudit to discover previously unknown
vulnerabilities in a major web browser.

2. DESIGN OVERVIEW
The goals underlying the design of BrowserAudit are the

following:

• Wide coverage: BrowserAudit should demonstrate that a
wide range of browser security mechanisms can be tested
automatically, reliably and efficiently. Complete test cov-
erage of any such mechanism is not practically feasible,
and beyond the scope of this project.1

• Extensibility : By its very nature, BrowserAudit will always
be a work in progress. As the browser threat landscape
evolves, more tests will be needed to cover new security
mechanisms, or to extend the coverage of existing ones.
Our design should ease the task of creating, debugging
and integrating additional test cases.

• Ease of use: BrowserAudit should be easily accessible on
any modern browser connected to the Internet, without
the need to install additional software. It should require
no interaction from the user, otherwise running hundreds
of tests would be impractical. Moreover, relying on user
interaction would prevent the desired aim of running the
tests transparently in the background.

• Broad audience: Our design should support a diverse
range of users. A report on the security effectively offered
by a deployed browser should benefit browser developers,
penetration testers, security researchers and web users.

• Scalability : Our design should be scalable on the server
side. Several users may be testing their browser at the
same time, and many security tests concern features that
involve communicating with the server.

We now sketch the architecture of BrowserAudit and high-
light the main design choices. We defer further implementa-
tion details to Sections 3 and 4.1.

2.1 User Experience
BrowserAudit is accessible by simply pointing the browser

to be tested to https://browseraudit.com/. This is a land-
ing page that briefly describes the aims of the project and
contains a“Test me”button to move the user to the actual
test page, hosted at https://browseraudit.com/test. This
intermediate step avoids surprising users by actively requir-
ing their consent to begin the testing phase. Once the user
clicks to start the tests, the main testing loop initiates.2

BrowserAudit is completely automated, and the user does
not need to interact with the browser whilst it is being tested.

1For example, an exhaustive test of the same-origin policy
would also need to demonstrate that, for any domains A and
B, a page from domain A cannot access certain properties
of a page from an incompatible domain B.
2Unless JavaScript is disabled, in which case we display a
warning to the user. Automated tests cannot be run without
JavaScript, and some security features need JavaScript in
order to be exercised.
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As the tests are running, the user can see a progress bar ad-
vancing, and four test counters being incremented, as shown
in Figure 1. For the benefit of typical web users, test runs

Figure 1: The test summary box part-way through
the execution of our tests.

are categorised using a simple Okay/Warning/Critical/Skipped
traffic light indicator. Okay denotes passed tests, Warning
and Critical denote failed tests, and Skipped denotes tests that
are skipped because the feature being tested is not supported
by the browser. Failures regarding SOP, cookies, and the
Referer header, which we consider the most crucial secur-
ity features, are reported as Critical; failures regarding CSP,
CORS, HSTS and the X-Frame-Options header are reported
as Warnings. This distinction is somewhat arbitrary, and will
change as these features become more broadly supported and
new ones are introduced.

After the test suite has finished running, the grey back-
ground of the summary box assumes the colour of the worst
failed test, or green if all tests passed. This traffic light indic-
ator provides a basic level of information about the current
level of security offered by the browser.

More sophisticated users, such as security researchers or
browser developers, need more information on the tests per-
formed and on their outcomes. Clicking on the“Show/Hide
Details”button displays a summary box that shows the vari-
ous categories of tests (reflecting the security mechanisms
that have been tested), and the number of failed tests for
each of them, as shown in Figure 2.

Figure 2: BrowserAudit summary box.

Each category can be expanded and collapsed to show a
description of the corresponding security mechanism, and a
list of sub-headers that in turn can be expanded to reveal
individual tests for a specific feature, as illustrated in Figure 3.
For each individual test we show a descriptive title that can

be clicked to show the client-side source code of the test itself.
Our design uses the Bootstrap front-end framework [1], which

Figure 3: Some sub-categories of CSP tests, with
expandable test titles and result indicators.

makes it easy to produce a layout that works consistently
across browsers and devices.

2.2 Architecture
The client side and server side of BrowserAudit work to-

gether in order to run tests in the browser: the server side
exercises browser security features, and the client side tests
that these features are implemented as expected.

When multiple concurrent users access BrowserAudit, we
need to avoid congestion on the server side, as testing each
browser causes a bursty interaction with the BrowserAudit
server in the form of hundreds of requests per user per minute.
For this reason, we adopt a standard three-tier server archi-
tecture, consisting of a public-facing Nginx [11] web server,
a Go [16] application server and a PostgreSQL [13] database
backend. The Nginx server is running as a reverse proxy
in front of the Go server, which is not publicly accessible.
When the Nginx server receives HTTP(S) requests for static
resources, such as our JavaScript tests, it responds by dir-
ectly fetching the resource from the local static/ directory.
Dynamic requests are instead proxied to the Go server, and
the responses are forwarded back to the client. Nginx also
handles SSL termination, caching, gzip compression, URL
rewriting, and keeps access and error logs. This architec-
ture reduces the load on the Go server, which can focus on
serving only dynamic requests that depend on the user’s
session, and limits security risks because the Go server can
run as a non-privileged user.

Certificates. In order to ensure good coverage of various
security features that involve the use of HSTS and cross-
origin testing, BrowserAudit makes use of four domains:
browseraudit.com, test.browseraudit.com, browseraudit.
org and test.browseraudit.org. The server presents a
single SSL certificate that is valid for all of these domains.

Sessions. We use sessions to keep track of intermediate test
results and other test-related data for each user whilst their
tests are in progress. Sessions are needed because in many of
our security tests, it is the server that makes the decision as
to whether or not the browser passed the test, not the test
framework running in the browser. In these cases, the client
must send an additional request asking the server what the
test result was, so that it can be displayed to the user.

Caching. In our tests, there are many cases in which a
request is first made to store a default result on the server,
and then a second request may be sent to overwrite this
result, depending on whether or not the browser correctly
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implements a given security feature. If a user runs the tests
twice in short succession, and this second result was cached
and therefore did not reach our server, our application would
report an incorrect test result. We ensure that this cannot
happen by preventing HTTP responses from being cached.

2.3 Tests
A typical test of a security feature involves making multiple

AJAX or image requests to the server and checking if the
actual responses match the expected responses.

JavaScript and libraries. Our tests are written directly
in JavaScript, using the jQuery library [9] for convenience.
We deploy our tests using the Mocha framework for browser-
based JavaScript unit testing [10], with some custom modi-
fications to improve the output layout.

1 $.get("/del_httponly_cookie", function() {
2 expect($.cookie("httpOnlyCookie")).to.be.undefined;
3 $.get("/set_httponly_cookie", function() {
4 expect($.cookie("httpOnlyCookie")).to.be.undefined;
5 done();
6 });
7 });

Figure 4: The client side of a proof-of-concept
HttpOnly cookie test.

Figure 4 shows a proof-of-concept test to check that the
browser correctly implements HttpOnly cookies (see Sec-
tion 3.4). Line 1 loads a page to clear any leftover cookies
from previous test runs, line 2 checks that the cookie is not
defined, line 3 loads a second page that sets the cookie, and
line 4 checks that we are unable to read it via JavaScript. The
call to done() on line 5 informs Mocha that the asynchronous
test is complete. In order to make the source code of the
tests easier to understand and maintain, we also leverage the
Chai assertion library [7].

1 function ajaxSopTest(globalTestId, shouldBeBlocked,
sourcePrefix, destPrefix) {

2 // omitted code: variable initialisation
3

4 var test_template = function(done) {
5 $.get("/sop/"+defaultResult+"/"+id,
6 function() {$("<iframe>", { src: iframeSrc })
7 .css("visibility", "hidden")
8 .appendTo("body").load(function() {
9 $.get("/sop/result/"+id,function(result) {

10 expect(result).to.equal("pass");
11 done();
12 });
13 });
14 });
15 };
16

17 // omitted code: save source code for display
18

19 browserAuditTest(globalTestId, test_template);
20 }

Figure 5: Code to generate SOP tests for AJAX
calls.

Tests. In most cases, we automatically generate the Java-
Script code for tests that have a similar structure but depend
on different parameters. For example, in Figure 5 we show the
most interesting parts of the ajaxSopTest function, which

generates Mocha code for testing AJAX calls with respect
to the SOP. The choice of the right parameters for the re-
sources to load (defaultResults, iframeSrc) are crucial to
the correctness of each test instance. To favour modular-
ity and coverage, we instantiate a separate Mocha test for
each case to be tested, rather than bundling a large number
of cases in the same test. To ensure maximum portability,
we implement as much as possible on the client side using
standard, browser-independent features.

Whenever possible, we write asynchronous tests using
callback patterns rather than timeouts. We annotate the
titles of tests whose results depend on timeouts with a small
clock icon. We try to avoid using timeouts because, when
a timeout expires, it is not possible to distinguish a true
test failure from an anomalous delay in a browser event or
network connection. Moreover, it is difficult to estimate
appropriate timeout values for many events. For certain
tests, however, we cannot avoid using timeouts.

For example, to detect whether a CSP policy that denies
the use of JavaScript but allows the loading of fonts in an
iframe is enforced correctly, the BrowserAudit test framework
needs to give time for the iframe to try to load the font, and
then ask the server if the font was requested. We are not
allowed to run JavaScript in the iframe to inspect the page
and detect whether the font was loaded; likewise, we cannot
ask the user for confirmation, because our tests must run
without user interaction.

3. BROWSER SECURITY MECHANISMS
In this section, we describe the range of security mechan-

isms currently exercised by BrowserAudit. Each mechanism
induces — sometimes implicitly — a security policy. Our
emphasis is on testing representative instances of behaviours
that should be allowed or blocked according to the corres-
ponding security policy.

3.1 Same-Origin Policy
In the early days of the web, there was little incentive to

control the resources that could be included in a web page:
most web pages were static, and web developers were free to
include resources (e.g., images) from any source in their web
pages. As web sites became dynamic and interactive, thus
allowing web developers to include user-supplied content in
their pages, and requiring web browsers to execute scripts
supplied by the web server, browser vendors became more
security-aware: they recognised that permitting the execu-
tion of arbitrary code (e.g., JavaScript) from untrustworthy
sources was potentially dangerous, and began to impose re-
strictions on the execution of scripts from “foreign” locations.
In particular, “foreign” scripts were forbidden from access-
ing the Document Object Model (DOM) — the browser’s
internal hierarchical representation — of the web page in
which the script was included. These are the foundations of
the same-origin policy (SOP) [34], still implemented in con-
temporary web browsers: a script executing in the context of
a web page is only permitted to access the DOM of another
web page if the schemes, hostnames and port numbers in the
URIs of the two pages — their origins — match.

There are mechanisms for relaxing the SOP so that inform-
ation can be shared between DOMs with differing origins;
the easiest method of doing so is to set the same docu-

ment.domain property in each DOM, so that the web browser
considers the DOMs to have the same origin.
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BrowserAudit comprehensively exercises a web browser’s
implementation of the SOP and the mechanisms for relaxing
it to ensure that inter-DOM access is permitted when both
DOMs are deemed to have the same origin, and is otherwise
forbidden. Our DOM SOP tests have a common structure:
scripts running on web pages loaded in nested iframes manip-
ulate the DOM’s document.domain property, and the script
from one iframe attempts to access the DOM of the other
iframe. Each test exercises a particular combination of the
following parameters:

• The domain from which the web page loaded by the parent
iframe is served (one of browseraudit.{com/org} or test.
browseraudit.{com/org});

• The domain from which the web page loaded by the child
iframe is served (also selected from the list above, and
potentially the same domain used by the parent iframe’s
web page);

• The value of document.domain to be set by a script running
in the parent iframe;

• The value of document.domain to be set by a script running
in the child iframe; and

• The direction in which the DOM access is attempted (par-
ent iframe to child, or child iframe to parent).

The client-side test framework checks whether the web browser
satisfies the SOP by selecting combinations of these para-
meters that should be allowed or blocked by the SOP and
verifying that the correct behaviour is observed.

For example, Figure 6 shows a diagram for a test in which a
parent iframe tries to access the DOM of its child iframe. The
parent is loaded from https://browseraudit.org whereas
the child is loaded from https://test.browseraudit.org.
We expect this access to be blocked since we are not set-
ting any document.domain values in this test, and the host-
names are not the same. To communicate test results
from the server to the client whilst avoiding the restrictions
imposed by the SOP itself, we use the established tech-
nique of loading images from specially-crafted addresses (i.e.,
https://browseraudit.com/sop/[pass|fail]/TEST_ID).

In general, if a script running in either iframe is able
to access the DOM of the other, the script notifies the
BrowserAudit server that access to the other iframe’s DOM
was granted; the test framework then queries the server for
whether this notification was sent. If the notification was
sent and DOM access was expected given the chosen test
parameters, or if the notification was not sent and DOM
access was not expected given the chosen test parameters,
the test framework considers the browser to have passed that
particular test; otherwise, the browser permitted insecure
DOM access and is considered to have failed the test.

The SOP applies not only to DOM access, but also to
cookies with differing paths and HTTP requests made to
other domains via the XMLHttpRequest API; BrowserAudit
also tests a browser’s implementation of the SOP for all of
these features, providing a total of 84 SOP tests, generated
by four JavaScript templates.

3.2 Cross-Origin Resource Sharing
Cross-Origin Resource Sharing (CORS) [46] is a flexible

standard for relaxing the SOP that selectively permits re-
sources to be shared across origins; it is implemented in APIs

capable of initiating cross-origin resource requests (e.g., XML-
HttpRequest) in a range of modern web browsers. It allows
a client to include a resource from a server with a different
origin only if the resource request is explicitly authorised
by the server. This is achieved via two additional HTTP
headers: an Origin header is sent by the client as part of the
request and specifies the origin of the resource attempting to
use the cross-origin resource, and an Access-Control-Allow-

Origin header is sent by the server as part of the response
and specifies the origins from which this resource may be
used, effectively ordering the client to uphold or relax the
SOP for this resource request.

The majority of cross-origin requests made using CORS
are “simple”, defined in the CORS specification [46] as an
HTTP request with one of GET, POST or HEAD as the re-
quest method and headers from a narrowly-defined whitel-
ist (Accept, language-related headers and a small number
of acceptable Content-Types). Other requests are deemed
“non-simple”; the CORS specification requires that the cli-
ent precedes such requests with a “preflight” request that
includes further detail so that the server can more accur-
ately decide whether or not to allow the cross-origin request
(although, in reality, some browsers misclassify simple and
non-simple requests). In response to the preflight request,
the server sends additional headers: Access-Control-Allow-
Methods, a comma-delimited list of HTTP methods per-
mitted to be used to access the resource; Access-Control-
Allow-Headers, a comma-delimited list of headers that may
be sent with the main CORS request; and Access-Control-

Expose-Headers, a list of headers that should be exposed
to the requester (e.g., a script accessing a resource using
XMLHttpRequest). If the main CORS request violates either
of the restrictions imposed by the Access-Control-Allow

headers, the main request is considered a violation of the
SOP and is aborted.

BrowserAudit exercises the browser’s implementation of
CORS by sending a series of cross-origin XMLHttpRequest
requests from the browser and verifying that the client ex-
hibits CORS-compliant behaviour when the BrowserAudit
server sends a response containing a range of CORS HTTP
headers. The testing methodology is similar to that for
the SOP, described in Section 3.1: the client attempts to
retrieve a file from the BrowserAudit server, and sends a
notification to the BrowserAudit server if this retrieval was
successful. The BrowserAudit test framework then queries
the server for whether the notification was sent. If the no-
tification was sent for CORS-compliant requests and not
sent for CORS-violating requests, the browser is deemed to
correctly implement the CORS standard; if a notification
was sent for CORS-violating requests, or if one was not sent
for CORS-compliant requests, the browser is considered to
lack full compliance.

We currently test 54 different CORS scenarios, automatic-
ally generated by four JavaScript test templates.

3.3 Content Security Policy
The Content Security Policy (CSP) standard3 [45] enables

much finer-grained control over the loading of arbitrary re-

3We concern ourselves only with version 1.0 of the Content
Security Policy standard, as its successor (version 1.1) is still
in Working Draft status at the time of writing; however, the
two versions are similar, and the latter can be viewed as an
extension of the former.
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Figure 6: An example of an SOP test in which the parent frame tries to access the DOM of its child.

sources on a web page than the SOP and CORS. As with
CORS, a content security policy is delivered via an HTTP
header (or via a <meta> element in the HTML header); the
CSP specification states that the Content-Security-Policy

header should be used for this purpose.
The header allows servers to declare to CSP-compliant

clients the permitted origins of a range of resources: images,
stylesheets, scripts, web fonts, embedded objects and other
types of resource may all be controlled by a single policy.
Directives may be used to restrict the origins of these different
types of resource independently of each other, and a “default”
directive may be used to restrict the origins of all resources
that are not explicitly controlled elsewhere in the policy. For
example, a server at example.com serving web pages to CSP-
compliant browsers could restrict the loading of images to
those hosted on the same server and the loading of embedded
objects (such as Java applets) to those hosted on a trusted
server at applets.example.com (and thus forbid embedded
objects and images from being loaded from other origins)
by specifying the following value for the Content-Security-

Policy header:

image-src ‘self’; object-src http://applets.example.com

When served alongside a web page to a CSP-compliant web
browser, such policies can preempt many common web at-
tacks; e.g., using the script-src directive to control the
permissible origins of scripts mitigates the effects of CSRF,
clickjacking and framebusting (since they rely primarily on
successful JavaScript injection), and using the style-src

directive to control the permissible origins of stylesheets
defeats CSS-based attacks. Note that one cannot specify
which specific resources may be loaded from these other ori-
gins: permitting a particular Java applet to be loaded from
applets.example.com also permits any other embeddable

object to be loaded from applets.example.com, so whitelis-
ted origins should be trustworthy (particularly those granting
the power to execute arbitrary code, such as script-src).

The CSP standard also includes a mechanism for reporting
violations of a given policy via a special report-uri directive;
this directive defines a URL to which a violation report should
be sent.

BrowserAudit exercises a browser’s CSP implementation
by performing a battery of tests on each directive defined
in the CSP specification, as well as the violation-reporting
capabilities of the report-uri directive. Similarly to the
SOP tests (described in Section 3.1), each CSP test attempts
to load a resource inside an iframe using a particular com-
bination of the following parameters:

• The domain from which the web page loaded by the iframe
is served (one of browseraudit.com or test.browseraudit.
com);

• The domain from which the desired resource is requested
(also selected from the list above, and potentially the same
domain used by the iframe’s web page); and

• The CSP imposed on the iframe by the BrowserAudit
server via the Content-Security-Policy header.

We run 226 CSP tests, generated by three JavaScript tem-
plates, that in turn load approximately 280 iframes rep-
resenting particular behaviours to be tested. In each test,
the browser is expected to either allow or block access to
the given resource, and the act of requesting the resource
from the BrowserAudit server allows it to track violations of
the given policy. On the client side, the BrowserAudit test
framework queries the server after the iframe has loaded to
find whether the browser accessed the resource and there-
fore determine whether the browser exhibited the behaviour
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expected of a CSP-compliant browser: allowing a request
permitted by the given policy or blocking a request restricted
by the policy is regarded as a correct implementation of the
CSP standard and thus a test success, whilst an attempt
to access the resource when given a restrictive policy or a
failure to request the resource when given a permissive policy
is regarded as an erroneous implementation of the standard
and thus a test failure.

1 $("<iframe>", { src: "/csp/serve/206/param-html?policy=‘
sandbox allow-same-origin allow-scripts’&defaultResult=
pass" })

2 .css("visibility", "hidden").appendTo("body")
3 .load(function() {
4 $.get("/csp/result/206", function(result) {
5 expect(result).to.equal("pass");
6 done();
7 });
8 });

Figure 7: A CSP test exercising the browser’s im-
plementation of the sandbox directive.

1 <html><body>
2 <iframe src="/csp/serve/206/param-htmlb?sessid=

sessionCookie"></iframe>
3 </body></html>

Figure 8: The HTML for the outer iframe loaded by
the test script shown in Figure 7.

Figure 7 shows the client-side code for a CSP test. The
code runs on the main BrowserAudit page and loads an outer
iframe from browseraudit.com with the CSP header sand-

box allow-same-origin allow-scripts. This outer iframe
is very simple (Figure 8), and its role is simply to load an inner
iframe from browseraudit.com that is subject to the given
policy: scripts can run, and have same-origin permissions.
The inner frame, whose code is shown in Figure 9, tries to per-
form an XMLHttpRequest to test.browseraudit.com, which
should be blocked. Note that since we cannot rely on user
credentials to be sent with synchronous XMLHttpRequests,
we pass the session cookie (abstracted for readability in Fig-
ure 9 as sessionCookie) as a parameter of the request. All
of this information is also visible to the BrowserAudit user by
clicking on the corresponding test title in the user interface.

1 <html><body>
2 <script>
3 var xhr = new XMLHttpRequest();
4 xhr.open("GET", "https://test.browseraudit.com/csp/serve

/206/oktext?sessid=sessionCookie&corsOrigin=
browseraudit.com&corsMethod=GET", false);

5 xhr.send(null);
6 if (xhr.status == 200) {
7 var img = document.createElement("img")
8 img.setAttribute("src", "/csp/fail/206/png");
9 document.body.appendChild(img);

10 }
11 </script>
12 </body></html>

Figure 9: The HTML for the inner iframe corres-
ponding to the outer iframe shown in Figure 8.

3.4 Cookies
In our SOP tests (Section 3.1) we explore the security

implications of setting the cookie scope through the Domain

and Path attributes. There are two other important aspects
of cookie security: the HttpOnly and Secure attributes. We
test the browser’s treatment of these attributes, expecting
the behaviour defined in RFC 6265 [17].

The HttpOnly attribute of a cookie instructs the browser
to reveal that cookie only through an HTTP request; i.e.,
it should not be made available to client-side scripts. The
benefit of this is that, even if an XSS vulnerability is exploited,
the cookie cannot be stolen. HttpOnly cookies are supported
by all major browsers, with the notable exception of Android
2.3’s stock browser. BrowserAudit includes tests that check
that an HttpOnly cookie sent from the server cannot then be
accessed by JavaScript, and that HttpOnly cookies cannot
be created by JavaScript.

When a cookie has the Secure attribute set, a compliant
browser will include the cookie in an HTTP request only
if the request is transmitted over a secure channel (i.e., in
an HTTPS request). This keeps the cookie confidential:
an attacker would not be able to read it even if he were
able to intercept the connection between the victim and the
destination server. The Secure attribute is supported by all
major browsers. BrowserAudit includes tests checking the
browser’s treatment of the Secure attribute both when the
cookies are set by the server and set by JavaScript.

3.5 Referer Header
The Referer header should not be included in a non-secure

request if the referring page was served via a secure protocol;
this behaviour is defined in RFC 2616 [31]. This requirement
exists because the referrer might disclose an otherwise private
information source. In BrowserAudit, we test this behaviour
by loading a web page over HTTPS containing an image
loaded over HTTP and checking that the Referer header
was not sent to the server with the request for the image.

3.6 Response Headers

3.6.1 X-Frame-Options
X-Frame-Options, defined in RFC 7034 [42], is a server-

side technique that can be used to prevent clickjacking at-
tacks. X-Frame-Options is a response header that specifies
whether or not the document being served is allowed to be
rendered in a frame; more specifically, the header specifies the
origin (scheme, hostname and port number) that is allowed
to render the document in a frame. BrowserAudit tests for
correct treatment of the DENY, SAMEORIGIN and ALLOW-FROM

directives. The tests try to load iframes served with differ-
ent headers; each iframe that loads reports its success to
the server, which assesses whether the browser behaved as
expected. Our tests currently only cover the <iframe> ele-
ment, although the header also applies to <frame>, <object>,
<applet> and <embed> elements.

X-Frame-Options is supported in all modern browsers,
although the implementations across browsers differ. Some
browsers behave differently when dealing with nested frames,
so we do not test these cases as there is no defined correct
behaviour. Note also that not all browsers support the
ALLOW-FROM directive.
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3.6.2 Strict-Transport-Security
HTTP Strict Transport Security (HSTS) is a security mech-

anism that allows a server to instruct browsers only to com-
municate with it over a secure (HTTPS) connection for the
given domain. It exists primarily to defend against man-in-
the-middle attacks in which an attacker is able to intercept
his victim’s network connection [37]. The server sends this
instruction via the Strict-Transport-Security header, as
defined in RFC 6797 [35].

When HSTS is enabled on a domain, a compliant browser
must rewrite any plain HTTP requests to that domain to use
HTTPS. This includes both URLs entered into the navigation
bar by the user, and resources included on a web page. The
Strict-Transport-Security header should only be sent in
an HTTPS response. If the browser receives the header in a
response sent over plain HTTP, it should be ignored.

In BrowserAudit, we test the basic behaviour of HSTS and
its includeSubDomains directive. We also ensure that the
header is ignored when transferred via an insecure protocol,
and that the HSTS state correctly expires based on the max-

age value set in the header. All of these tests work by testing
whether a request for an image at http://browseraudit.

com/set_protocol is rewritten to use HTTPS or not.
Almost all current browsers support HSTS, with the not-

able exception of Internet Explorer 11 (the latest available
version at the time of writing).

4. EVALUATION

4.1 Performance
A primary concern of BrowserAudit is scalability, given

that a single invocation of the full test suite invokes approx-
imately 1,500 requests and transfers around 3MB of data
between the client and server. The server must handle all
of these requests quickly (ideally in under 300ms), given the
large number of tests in the BrowserAudit test suite and the
reliance of some of the tests on timeouts (see Section 2.3).

The BrowserAudit web and database servers are currently
hosted on a single virtualised server with two CPU cores
and 2GB of memory, running Ubuntu 14.04. We evalu-
ated BrowserAudit’s server-side performance by running
the BrowserAudit test suite in 15 web browsers repeatedly
and concurrently for 15 minutes. Over this period, the
BrowserAudit server handled around 225,000 requests and
served a total of 450MB of data. The 1- and 5-minute load
averages on the BrowserAudit server are shown in Figure 10;
the peak load averages over the 15-minute duration of the
performance test are 1.2 and 0.7 respectively, where a load
average of 1 indicates that a single CPU core is operating
at capacity. Based on these performance figures, we estim-
ate that a single BrowserAudit application server using this
configuration could comfortably support up to 25 concurrent
test suite executions.

As described in Section 2.2, our design is ready to be
scaled up as the BrowserAudit user base grows. Nginx can
be configured as a load balancer, passing requests to one of
many application servers. Deploying Go application server
instances is trivial thanks to Go’s ability to compile a program
to a single statically-linked binary, so there is no dependency
chain. In order to maintain session persistence, Nginx’s
ip_hash directive can be used to ensure that all requests
from the same IP address reach the same application server,
maintaining the integrity of a single suite execution.
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Figure 10: The 1- and 5-minute load averages on the
BrowserAudit server during the performance evalu-
ation.

Most client-side tests contain components that are loaded
synchronously inside dynamically-created iframes, which be-
come redundant as soon as the test result is reported in
the browser; over time, the DOM of the main BrowserAudit
window would therefore amass an overwhelming number of
iframes, slowing down the execution of tests as the browser
struggles to create and append additional iframes. We avoid
this problem by dynamically removing any iframes appended
to the DOM during each test’s tear-down phase (via Mocha’s
afterEach() routine). We ran 15 repetitions of 10 concur-
rent executions of the whole test suite on a 64-bit Windows
7 machine with a 6-core Intel i7 4930K CPU and 64GB of
memory, and Chromium 40.0.2205.0. Under these conditions,
the average execution time for the test suite is just over
a minute. By contrast, a single execution in Safari 8.0 on
an iPhone 5 with iOS 8.1 takes on average 1.35 minutes,
skipping 24 tests. The execution time varies broadly across
browsers and platforms, but we consider this an acceptable
cost for performing an in-depth browser security scan.

4.2 Correctness
Verifying the correctness of our tests is challenging, as

they need to convey in a final pass or fail result a whole
security-sensitive behaviour: a test containing a small bug
could still pass, which is generally the expected result for
browsers correctly implementing a given security mechanism.

Of course, no web browsers contain intentional security
flaws that would allow us to verify the correctness of tests.
Modifying the source code of existing open-source browsers
to break their security features in order to ensure that tests
fail when expected is possible but challenging given the
complexity of modern web browser code bases.

However, it is a matter of public record that some web
browsers either do not implement some of the security mech-
anisms tested by BrowserAudit, or only implement subsets
of those security mechanisms. We leverage the results of
browser-profiling projects such as Browserscope [3] and Can
I Use. . . [6] to broadly identify the security features im-
plemented by each web browser, and for those features we
manually verify that the BrowserAudit test suite results are
accurate.

Using BrowserStack [5], a web-based browser testing ser-
vice, we have evaluated BrowserAudit in a range of browsers
on a number of different operating systems, across both

44



desktop and mobile platforms. The full BrowserAudit test
suite runs reliably in Safari 6, Firefox 13 and Chrome 25 or
more recent versions, automatically skipping tests where a
feature is not supported. BrowserAudit also runs correctly
on Internet Explorer 11, but due to problems relating to
Mocha and IE’s limited call stack, it cannot execute the
whole test suite. In older versions of these browsers, it is
instead possible to run a subset of the test suite.

4.3 Test Coverage
We noted in Section 2 that full coverage for browser security

feature tests is unattainable. Here we discuss a number of
security features not covered by BrowserAudit, but that we
believe can be added to our framework.

We imply in Section 3 that there is no single same-origin
policy but rather a collection of related security mechanisms.
We currently test the same-origin policy for DOM access,
XMLHttpRequest and cookies. This could be expanded to
test the same-origin policies for Flash, Java, Silverlight, and
HTML5 web storage.

The postMessage API is used by many developers to com-
municate across origins [19]. Since the API allows the sender
of a message to specify the origins of the recipients that may
receive the message, there are lots of origin-related tests that
we could write for this feature in BrowserAudit.

Another security feature that could be tested is the X-

Content-Type-Options response header first introduced in
Internet Explorer 8 [40]. It is now also supported by Chro-
mium and Safari; the Firefox team is still debating its im-
plementation [26]. It is designed to prevent browser-sniffing
attacks where a resource (e.g., a HTML document) is sent
with an inappropriate MIME type (e.g., text/plain) but is
nonetheless erroneously rendered by the browser as if the
correct MIME type had been sent [18].

In Sections 3.1–3.4 we discussed how to extend coverage
of features for which we already have some tests. Summar-
ising, the main limitations are that: in many tests involving
origin mismatches, we only test origins that differ by host-
name rather than by scheme or port number; we do not
test CSP directives where a resource is loaded from a URL
that redirects; we do not test that cookies cannot be set
for top-level domains that include a country code, such as
co.uk (whereas, for example, they should be settable for
example.uk). We also do not test the Report-Only header
defined by the CSP standard, but this is not due to a lim-
itation of the BrowserAudit framework and a suitable test
could be added to the test suite.

Finally, cryptographic APIs such as the W3C WebCrypto
API and the OpenSSL library are important aspects of
browser security, but cryptographic testing is beyond the
scope of BrowserAudit and better left to dedicated projects
such as How’s My SSL? [8].

4.4 Uncovering Security Bugs
BrowserAudit’s test suite has uncovered two previously-

unknown bugs in Firefox’s implementation of the CSP stand-
ard; these bugs are present in all versions of Firefox that
implement the CSP standard up to version 32.0.3. The first
bug [24] allows the loading of same-origin stylesheets with
the policy

default-src ‘none’; style-src ‘unsafe-inline’;

similarly, the second bug [25] allows the loading of same-

origin Worker and SharedWorker objects in scripts with the
policy

default-src ‘none’; script-src ‘unsafe-inline’.

In both cases, the ‘unsafe-inline’ declaration in the policy
states that only inline stylesheets and scripts must be per-
mitted: external resources, even those from the same origin,
must be blocked. We reported both of these bugs to Mozilla
during the version 29 release cycle, and they were fixed in
version 33 of Firefox.

Firefox does not currently implement the sandbox CSP
directive; this optional feature of the CSP 1.0 specification
directs browsers to relax the given security controls on iframes
embedded in the page, as if they had been supplied in the
sandbox attribute of each <iframe> element. The sand-

box attribute is in fact a feature of the HTML5 specifica-
tion [34] and states that an iframe containing a sandbox

attribute should have all security controls enabled unless
specifically disabled by values inside the sandbox attribute.
Development work on the implementation of this directive
in Firefox is currently underway [27]. However, the current
implementation does not correctly handle the case where
an empty value is given for the sandbox CSP directive; the
CSP 1.0 specification implies that the browser should apply
a sandbox attribute with an empty value (and thus enforce
a highly-restrictive sandboxing policy — a view also taken
by developers of other browsers, such as Chromium), but
Firefox’s implementation does not apply a sandbox attribute
at all in this scenario (thus failing to enforce any sandboxing
policy). This flaw was uncovered by the current set of CSP
tests in BrowserAudit, and we are in discussions with Firefox
developers to address it before their sandbox implementation
lands in a stable version of the browser.

5. RELATED WORK
In this section we discuss some related work on browser

security, which influenced the design of our tests, and review
some web applications that perform security-relevant tests,
which served as a source of inspiration for BrowserAudit.

5.1 Browser Security
The authoritative sources of information on upcoming

browser security mechanisms are of course the W3C RFCs
and Drafts such as [34, 45, 21, 46, 35]. Most security meas-
ures are the result of a lot of practical experimentation and
academic research that led to proposals that gradually gained
adoption and became more robust through security reviews
and public scrutiny. Paradigmatic examples are the early
contributions of Barth, Jackson et al. to postMessage, the
Origin header and HTTPS [19, 37, 20].

The standards themselves provide a lot of detail about the
intended security behaviour, but additional research is needed
to interpret the consequences for deployed web applications.
For example, De Ryck et al. perform a security analysis of
some of the upcoming standards in [28], finding them to be be
of high quality but also highlighting potential security risks.
Singh et al. [44] discover potentially dangerous incoherencies
amongst different browser access control policies.

A broad, in-depth analysis of browser security can be
found in Zalewski’s Browser Security Handbook [47] and
the companion book The Tangled Web [48]; they gather
a wealth of information on browser security features, their
shortcomings and the peculiar differences in browser support.
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5.2 Web Sites
Panopticlick [12] is an experiment to investigate how

unique — and therefore trackable — modern web browsers
are, by fingerprinting their version and configuration inform-
ation. Some of this information can be gleaned directly
from browser requests, whereas other information is made
available by the presence of JavaScript and browser plugins.
Visitors click a“Test Me”button and are then provided with
their browser’s uniqueness score and a breakdown of the
measurements used to obtain the result. These data are then
anonymously stored in the project database to make future
uniqueness scores more accurate, and to allow for analysis of
the data, as discussed in [30]. Although focussed on privacy
rather than security, Panopticlick was the main inspiration
for BrowserAudit.

BrowserSpy [4] is another web site that reports how much
information can be retrieved from a browser by visiting a
test page. Its focus is on privacy, yet some of its tests are
security-related, although not presented as such; for example,
one test checks that JavaScript cannot read HttpOnly cookies.
Each of BrowserSpy ’s 75 current tests has to be run indi-
vidually, since the output is rather verbose, and the output
does not show implementation details that could be useful
for a technical audience. In contrast, our 400+ tests run
automatically, and advanced users can view the client-side
code driving each individual test.
How’s My SSL? [8] is a recent project that advises the

user on the security of their TLS client (web browsers act
as TLS clients when engaged in HTTPS communication).
It works by running a TLS server that has been modified
so that the client-server handshake is exposed to the web
application, allowing it to inspect the cipher suites that the
client supports and perform a security assessment. The
results are reported clearly, with“Learn More” links for more
technical background which also inspired our design. The
test results can be accessed via a JSON API, and could be
potentially integrated into BrowserAudit to complement our
tests. Qualys SSL Labs [14] also offers browser-based tests
for SSL clients that display a concise report of their TLS
capabilities, intended for the expert user. In BrowserAudit
we instead strived to produce reports that can be interpreted
by users at different levels of technical competence.

The Can I Use. . . test suite [15] gathers browser com-
patibility data for a wide variety of browser features such
as support for HTML5 and CSS3. Some of these tests are
automatic and others require visual confirmation or interac-
tion from the user. A few tests check for support for security
features; for example, one (interactive) test detects support
for the CSP. In contrast, BrowserAudit runs 226 automated
tests to assess the security of the CSP implementation.

The Browser DOM access checker [2] is a web page also
included in the Chromium browser source code that uses
JavaScript to test the enforcement of some domain-related
security policies such as cross-domain DOM access, Java-
Script cookie access, XMLHttpRequest calls, and event and
transition handling; for example, it runs hundreds of tests to
ensure that read or write attempts to the visible properties
of the document object are blocked cross-domain. In con-
trast, we are satisfied with testing cross-domain access for
one representative property of the document object: if such
access is blocked, we conclude that the policy is effective. We
could programmatically extend our tests to try accessing all
properties, but that goes beyond the scope of BrowserAudit:

DOM-based cross-domain access is only one of the hundreds
of qualitatively different behaviours that we consider.

Finally, Browserscope [3] is a community-driven project
for profiling web browsers; it detects the browser version
and runs tests that cover a broad range of features such
as network performance, CSS support, and JavaScript op-
timisations. Test results are aggregated and made publicly
available, making it easy for web developers to keep track of
functionality across all browsers that have been tested.

Currently, Browserscope also includes 17 tests which auto-
matically check whether the browser supports a number of
standard features relevant to security and displays a list of
which tests passed or failed. In contrast, BrowserAudit is
engineered to run hundreds of tests that ascertain whether
security features are implemented correctly, and provides an
interface that allows different types of users to access detailed
descriptions of each test case, including client-side test code.

6. CONCLUSIONS
We introduced BrowserAudit, a web application to test

the implementation of browser security features. It comple-
ments the unit testing used by browser vendors to debug
their implementations by checking that deployed browsers
effectively deliver the security behaviours entailed by the
specifications of browser security mechanisms.

All of our tests run automatically without interaction
from the user, and provide detailed information for each
test category, including the source code of each individual
test. This makes BrowserAudit useful for a broad audience,
from the casual user to the web developer and the security
researcher. No other publicly-accessible web application tests
such a breadth of browser security mechanisms as ours, either
established or experimental.

In Section 4.3 we highlighted aspects of browser secur-
ity mechanisms that are currently not covered by our tests.
BrowserAudit is designed to be modular and extensible;
adding variants of existing tests with different combinations
of parameters, or new client-side-only tests (e.g., to test
different features of the SOP) is straightforward. We are cur-
rently investigating the more challenging problem of allowing
similar extensibility of the server-side components of tests.

BrowserAudit is an open-source project [32], and we hope
that the web security community will help us extend it with
even more test cases.
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