
Behavioural Equivalences for Dynamic Web Data

Sergio Maffeis Philippa Gardner

Department of Computing, Imperial College London

{maffeis,pg}@doc.ic.ac.uk

Abstract

Peer-to-peer systems, exchanging dynamic documents through Web
services, are a simple and effective platform for data integration on the
internet. Dynamic documents can contain both data and references to
external sources in the form of links, calls to web services, or coordination
scripts. XML standards, and industrial platforms for web services, provide
the technological basis for building such systems, and process algebras are
a promising tool for studying and understanding their formal properties.

Core Xdπ is the explicitly located version of Xdπ, a process calcu-
lus designed for reasoning about dynamic Web data, based on explicit
repositories of higher-order semistructured data and π-calculus-like pro-
cesses which can communicate with each other, query and update the
local repository, or migrate to other peers to continue execution.

We study behavioural equivalences for Core Xdπ processes. To help
with the proofs, which require a costly property of closure under contexts,
we define a coinductive relation (called domain bisimilarity) which does
not quantify over contexts and which entails process equivalence. Its
definition is non-standard, because scripts are part of the values, and
process equivalences are sensitive to the set of locations constituting the
network. We apply our process equivalence to study some communication
patterns used by servers in distributed query systems, and we propose a
new pattern involving mobile code.

1 Introduction

The World Wide Web is a global network, used in daily activities to find infor-
mation, communicate ideas, conduct business and carry out distributed compu-
tations. In order to fully exploit the potential of this massive network, there
is a need for scalable mechanisms to organize and manipulate the available in-
formation. Peer-to-peer architectures help to deal with the issue of scalability,
and technologies such as XML and Web services facilitate the development of
distributed applications. XML [38] is a standardized data model, used to rep-
resent uniformly documents containing tagged information not adhering to a
fixed structure. Web services [40] are Web sites which are designed to be used
by applications rather than humans. Web service inter-operability is facilitated

1

mailto:maffeis@doc.ic.ac.uk
mailto:pg@doc.ic.ac.uk

Figure 1: Reference architecture
external host

network

peer 1
peer 2

peer 3

<xml>

 <data/>
 <links/>
</xml>

store

processes

network
interface

(a) Network. (b) Peer.

by the use of XML for data representation and of related standards for service
invocation, description and discovery (SOAP, WSDL, UDDI [41, 39, 36]).

Data integration on the Web constitutes a challenging application for these
technologies, because of the extreme heterogeneity of data sources involved, and
the complexity of communication patterns which can arise. For example, trans-
lating a declarative request for networked data into a low-level execution plan
may involve recursively invoking other declarative requests on different Web
sites. Inspired by this problem, the Xdπ calculus [11] studies peer-to-peer
architectures for exchanging Web data, schematically represented in Figure 1.
Each network is composed by a variable number of interconnected peers, all
sharing a similar internal structure, and each one identified by a unique name
(Figure 1(a)). Peers share a common messaging protocol where the name of a
peer is assumed to coincide with its network address: at this level of abstraction
there are no restrictions to connectivity due to network domains or firewalls.
Networks are open in the sense that it is always possible to add new peers or
learn dynamically about their existence, and external hosts may participate in
the data exchange too, typically playing a limited role. Each peer (schematized
in Figure 1(b)) acts both as a provider and consumer of information. It contains
a data repository, an internal working space where processes carry out local
computations, and a network interface providing remote communication and
services to other peers. Processes can communicate locally with each other,
query and update the local repository and, when the architecture supports mo-
bility, can migrate to other peers to continue execution. Repositories present
to the processes a semi-structured view of their data. Data contains enough
meta-information about its own structure to make it possible writing expressive
queries.

Typically, data is not completely static. It may contain references to other
data and services, in the form of URLs and queries, or scripts. A script is some
code describing a process which can be interpreted by the working space to
add dynamic content to documents. We refer to such data as dynamic Web

2

data. The World Wide Web itself is a very general example of architecture for
dynamic Web data. Servers use the HTTP protocol to interact with each other,
either requesting or providing information. HTML pages can contain hyperlinks,
forms and client-side scripts, which provide dynamic behaviour. Web clients
running a browser can be considered as the “external hosts” which participate
to a smaller degree in the exchange of information, by mostly consuming rather
than providing data.

A more specific example comes from the database world. The Active
XML [33, 3] system for data integration (AXML for short) is based on net-
works of peers each containing a repository of documents and a set of service
definitions. AXML service definitions typically consist of queries and updates
on the local repository, but in general can consist of arbitrary Web services,
providing an interface to hosts external to the AXML system. AXML doc-
uments are XML documents which can include special tags representing calls
to services on other peers. The parameters to these service calls can be local
queries (path expressions) or AXML data, hence service calls can be nested.
Documents containing service calls are called intensional documents, and mate-
rialization is the process of invoking a service call and pasting its results in the
original document. One interesting source of flexibility in AXML is the choice
of when to materialize service calls. It can be done periodically, or when the
data containing the call is fetched from the repository, or when it is returned to
the client. Similarly, if a service call appears as a parameter to another service
call, it can be materialized before calling the service or it can be passed on to
it as an intensional parameter.

Besides Web browsers and AXML, a large class of other Web applications
(such as file-sharing programs, personal Web portals, online bibliographic data-
bases, etc.) can be seen as instances of the reference architecture given above,
each with its own particular features and restrictions. The problems that
these architectures have to address, in order to be practically useful, are var-
ied. Firstly, it is well-known that interaction between concurrent processes is
difficult to regulate. In the case of Web services, this problem is complicated
by the difficulty in maintaining state across different Web service invocations,
and requires the study of orchestration techniques.1 Secondly, a major con-
cern for systems dealing with dynamic Web data is security. Depending on the
application domain, it may be crucial to have control for example over data in-
tegrity, confidentiality, or access control. The formal study of security properties
needs to be grounded on a rigourous model of these architectures, and process
algebraic techniques are particularly suited for the task, as they have already
been successfully used to study concurrent, distributed and mobile systems, and
analyze their formal properties.

1By Web service orchestration, we mean a coordination infrastructure which allows modular
applications to invoke different Web services and combine their results.

3

1.1 The Xdπ calculus

The Xdπ-calculus was defined with the aim of reasoning about dynamic Web
data. Xdπ terms represent networks of peers where each peer consists of an
XML data repository and a working space where π-like processes are allowed
to run. We regard processes as agents with a simple set of functionalities:
they communicate with each other, query and update the local repository, and
migrate to other peers to continue execution. Process descriptions, in the form of
scripts, can be included in documents and can be executed by other processes.
The definition of Xdπ is parametric with respect to the choice of a specific
language of query and update expressions.

Consider again the diagram of our reference architecture for dynamic Web
data given in Figure 1. Xdπ models each peer as a location with a unique
name corresponding to the peer identity (for example its IP address). A whole
peer-to-peer system is modelled by the parallel composition of the locations
corresponding to its peers, which we call a network. For example,the network
in (a) could be represented by the term

peer1 [tree1 ‖ processes1] | . . . | peern [treen ‖ processesn]

The XML data stored at each peer is represented by an ordered, edge-labelled
tree.2 The choice of using edge-labelled rather than node-labelled trees is
merely a matter of style. Following a common practice, we do not represent
attributes explicitly, but we model them as edges labelled with the attribute
name followed by a leaf containing the attribute value. We also embed pointers
and scripts as leaves. In a concrete document, we would also expect them to
be represented as attributes. Our results do not depend on these particular
representation choices. To keep the model simple, we do not represent data
values and XML-specific details such as name-spaces, ids and idrefs. The tree
structure, along with scripts and pointers, provides a sufficiently accurate model
for our purposes. Figure 2(a) shows a fragment of an XML document containing
both a hyperlink and a service call, and Figure 2(b) shows its representation in
Xdπ (the translation of the hyperlink and the service call are explained below).

Hyperlinks have been one of the main features responsible for the success
of the Web. We abstract the concept of hyperlink into that of pointer, a pair
consisting of a location name and a query to identify some data in the tree
of the named location. For example, in Figure 2 we have translated the
destination of the hyperlink “http://xdpi.net/papers/xdpi.pdf” into a pointer of
the form query@location using the host name “xdpi.net” as the location name,
and the path relative to the host “papers/xdpi.pdf” as the query. Pointers are
declarative references which can be interpreted uniformly across locations. A
pointer does not specify what to do with the data denoted by the query, but
typically a process will read the location name and the query from a pointer
in order to retrieve some data necessary to continue its execution. Clicking on

2Semi-structured data models are often unordered [1], in contrast with the ordered trees
of XML documents. In previous work [11], we considered unordered trees, but here we prefer
the ordered model, which has a straightforward correspondence to the textual syntax.

4

Figure 2: Representing XML in Core Xdπ

〈data〉
〈a href = “http://xdpi.net/papers/xdpi.pdf”〉 Download 〈/a〉
〈call〉 xdpi.net/getRefs(bibtex, l) 〈/call〉

〈/data〉

(a) A hyperlink and a service call in XHTML.

data

[

a[href[papers/xdpi.pdf@xdpi.net]pDownload[]]

call[〈go xdpi.net . getRefs〈bibtex[], l〉〉]]

(b) The translation to Xdπ.

an HTML hyperlink is a simple example, where the browser process reads the
contents of the href attribute, retrieves the referenced data, and displays it in
the browser window. We assume that the same query makes sense on different
locations because we are assuming that all the peers export their data in the
same semi-structured format.

Current Web technology is familiar with the use of scripts to provide Web
pages with dynamic behaviour. Similarly, we propose to use scripts as a gen-
eralization of embedded service calls in the context of Web data integration.
Since our scripts are used also for coordination, they are written in the same
process language used to describe processes in the working space. A script
is a static piece of code with some parameters. Scripts do not reference the
global state except for names of locations and services, which are constants
with a uniform meaning across the network. For example, the service call
“xdpi.net/getRefs(bibtex, l)” embedded in (a) in Figure 2 could be (naively)
translated to the script shown in (b), which specifies that a process should go
from the local host to the host “xdpi.net” and there invoke the service “getRefs”
with a data parameter “bibtex” and a return parameter l. We shall see a more
realistic representation of service calls in Section 2.6. Scripts are atomic and
cannot be combined together to form other scripts (for example, the parallel
composition of two scripts is not defined). 3

The working space of each peer is modelled by a parallel composition of
processes inside the corresponding location. The interface between the work-
ing space and the data store is modelled by a single operation for updating or

3Some languages such as MetaOCaml [35] and TemplateHaskell [34] provide constructs
for multi-stage programming, where pieces of code (possibly containing free variables) can be
combined together to form bigger programs, which can then executed. If desired, it is possible
to support multi-stage programming in Xdπ, defining an XML-like meta-syntax for scripts
and interpreting it explicitly using parsing processes in the working space.

5

querying the local tree. Communication between locations is modelled through
process migration, providing a flexible abstraction to model complex coordina-
tion protocols, and communication between processes is modelled by π-calculus
communication. For example,

l [Dl ‖ go xdpi . getRefs〈bibtex[], l〉] |xdpi [Dx ‖ !getRefs(x, y).[. . .]]

represents a network where a script similar to the one described above is run on
location l. In parallel, on location xdpi, there is a service (represented by the
replicated input !getRefs(x, y).[. . .]) ready to accept the request with parameters
x and y. After migration, the output getRefs〈bibtex[], l〉 will be at location xdpi,
ready to be received by the service input

l [Dl ‖0] |xdpi [Dx ‖ getRefs〈bibtex[], l〉 | !getRefs(x, y).[. . .]]

The service may perform some computation and return some data, in the form
of another output process which migrates to the location determined by the
second parameter of getRefs (in this case the original location l).

The definition of Xdπ is minimal, including only the basic operations for
asynchronous local communication based on pattern matching, execution of a
query-update expression on the local repository, migration, spawning of scripted
code and creation of fresh channels. From these, one can derive conditional
statements, nondeterministic choices, constructs for parsing and iterating on
list-like structures and remote communication in the style of Web services. Us-
ing these derived constructs in [18], we used Xdπ to give a precise semantics to
AXML-like behaviour, and propose possible extensions.

1.2 Equivalences

The combination of Web services and scripted processes provides the data en-
gineer with many alternative patterns for exchanging information. A theory
of semantic equivalence for processes is therefore useful to show, for example,
that some complex data-exchange protocol corresponds to some intuitive be-
haviour. Motivated by this consideration, we have defined network equivalences
for Xdπ [11], which dictate when two networks can be considered indistinguish-
able with respect to the properties represented by a specific set of observations,
in our case the attempts to interact with the local store.4 Network equivalences
are parametric with respect to the language used for querying and updating doc-
uments (so the generic results are not tied to a particular choice), and can be
instantiated to specific cases. Our objective is to define equivalence relations on
processes such that, when we place equivalent processes in the same context, we
obtain equivalent networks. Since we want to use the equivalences for example

4In [18] we considered as observations the shape of the data tree of a location, the presence
of output actions in a process, and the attempts to interact with the local store, and we
studied the formal relationship between the corresponding equivalences. In this paper, we
focus on the latter kind of observation because the resulting equivalence coincides or implies
the ones resulting from the other observations.

6

to optimize the interaction between different locations, we must compare several
located processes at the same time, which possibly share some private channel
names. Moreover, we want to make sure that the behaviour of the processes
is robust with respect to changes in the data stored in each location and to the
behaviour of other processes running in parallel. It is not straightforward to
carry on the kind of reasoning mentioned above directly on Xdπ terms, because
locations, processes and data are closely inter-twined. Instead, based on the
ideas presented in [19], we propose a calculus called Core Xdπ which serves as
an alternative representation of Xdπ, where we locate processes explicitly and
separate data from processes.

From Xdπ to Core Xdπ. Core Xdπ is tailored to be exactly as expressive
as Xdπ (a proof can be found in [18]), and is suitable for expressing a partial
specification of a network by means of located processes running in parallel,
possibly sharing private names. A Xdπ network consists of locations contain-
ing trees and processes. In contrast, a Core Xdπ network consists of a store,
containing all the trees indexed by their location information, plus all the pro-
cesses, augmented with explicit location information associated to every action
they perform. For example, the Xdπ network described earlier is described in
Core Xdπ as(

({l 7→ Dl}, {xdpi 7→ Dx}),
l·go xdpi . xdpi·getRefs〈bibtex[], l〉 | !xdpi·getRefs(x, y).[. . .]

)

The store ({l 7→ Dl}, {xdpi 7→ Dx}) maps each location to its data. Each
process action is prefixed by the location where the action takes place: for ex-
ample, l·go xdpi .[. . .] shows that the migration step towards location xdpi orig-
inates from location l; after migration the process is located at xdpi. Although
Core Xdπ is explicitly located, and does not necessarily require a migration op-
eration, we left that as part of the syntax to have a closer correspondence with
Xdπ, and to serve as a hook for future security-sensitive checks.

In Section 3.1, we define the correspondent of Xdπ network equivalence for
Core Xdπ, and we define process equivalence as the closure of network equiv-
alence under composition with different stores. This relation is hard to use
directly because it requires a costly property of closure under all contexts. In-
stead, we define a coinductive equivalence relation (called domain bisimilarity)
which does not quantify over contexts and which entails process equivalence.

The definition of domain bisimilarity is non-standard, due to the fact that
scripts (which can appear in data) are part of the values, and process equiv-
alences are sensitive to the set of locations constituting the network. We ad-
dress these two problems by adapting existing techniques for translating mes-
sages containing scripts into ones where each script is replaced by a first-order
value [30, 17], and by generalizing the notion of bisimulation to families of rela-
tions indexed by sets of locations.

As an application of our techniques, we use bisimilarity to study some com-
munication patterns used by servers in distributed query systems to answer
queries from clients. In Core Xdπ, distributed queries take the form of pro-
cesses which retrieve and combine data from different locations by using remote

7

communication and local requests. We show that some existing patterns [29]
can be combined together obtaining a flexible infrastructure which is provably
equivalent to an intuitive specification of the intended behaviour. By exploiting
process migration, we also propose a new communication pattern, and we show
that it is behaviourally equivalent to a naive, less efficient one.

Our work is one of the first attempts to integrate the study of mobile pro-
cesses and semi-structured data, and is characterized by its emphasis on dynamic
data. It is the first investigation of equivalence properties for (higher-order)
data-centric applications based on the Web.

1.3 Related work

Xdπ was developed independently from the AXML system of Abiteboul et
al. [33], which we have described above. The ubQL distributed query language
of Sahuguet and Tannen [27] instead, constituted a source of inspiration for the
design of Xdπ. ubQL is built by adding process manipulation primitives to any
“host” query language. These primitives, inspired by the π-calculus5, are used
in a deployment phase to set up a network of processes which, in a successive
execution phase, will query local repositories and forward their results to other
sites, thus implementing a global query execution plan. ubQL processes can
deal with streaming data, but there is no support for concurrent execution of
query-processes on the same site (so in principle the system may not be able to
execute more than one global query at a time). The main influences of ubQL on
the design of Xdπ were on the choices of separating the queries from the process
primitives, and maintaining independence from a specific query language. Also
our examples on distributed query patterns of Section 4 are inspired by ubQL.
Overall, Xdπ and ubQL have a significantly different focus and are studied using
different methodologies. For example, an important part of the work on ubQL is
the study of algorithms for query installation based on cost estimates, which we
do not address, whereas behavioural equivalences are not studied in ubQL. Both
AXML and ubQL are studied from a data-management viewpoint, which our
process algebraic techniques could complement nicely. There are many specific
issues which are important in databases, such as the use of meta-data to guide
the optimization of queries, which we do not study. Instead we give a formal
semantics to the distributed interaction between query-processes, arguing about
their equivalence and providing a framework on which to base formal studies of
security properties.

We now consider work related to the process algebraic approach. To the
best of our knowledge, the only work relating the π-calculus with XML which
pre-dates ours is the Iota concurrent XML scripting language of Bierman and
Sewell [4], used to program Home Area Networks. Iota is a strongly typed
functional language with concurrency primitives inspired by the π-calculus. Al-
though the language has a formal semantics, its behavioural theory has not been

5The influence born by the π-calculus on ubQL can be better appreciated considering the
preliminary joint work with Pierce [28].

8

studied. The programs for Home Area devices written in Iota are designed
to run on the same Home Area server, and the communication with physical
devices is modelled through input and output on special channels: distribution
is not represented explicitly. Moreover, as opposed to Xdπ, the application
domain of Home Area Network programming is more control-oriented than data-
oriented: there is no explicit representation of stores, which are central to our
approach. Brown, Laneve and Meredith [6] have recently defined an (untyped)
extension of the π-calculus with native XML datatypes called πDuce. They
compare its expressivity to that of the functional language XDuce [16], and also
consider a higher-order extension which enables dynamic content in documents.
An interesting idea underlying the design of πDuce is that processes and data
share a similar tree-like structure, and can inhabit the same semantic universe.
The authors show a very simple encoding of an evaluator for the subset of the
language without new name generation, into the language itself: the execution
of processes represented as nested document elements can be simulated in the
language. A similar approach could be taken in Xdπ to represent scripts as
semi-structured data. In the case of dynamic Web data though, it is better to
hide the internal structure of processes from the queries, so that one can replace
a process by an equivalent one whilst preserving the observable behaviour of
the system as a whole. Castagna, De Nicola and Varacca [8] propose Cπ, a
π-calculus extended with pattern matching and tuples of values (XML values
can be represented through an encoding). The language comes with a very
expressive type system featuring intersection and input-output types. The lan-
guage itself is not distributed and does not include a concept of store. Acciai
and Boreale [2] have recently proposed XPi, an extension of the asynchronous
π-calculus with code mobility and ML-like pattern matching of structured val-
ues. A combination of static and dynamic typing ensures that each channel
always exchanges values of the same types, which describe the partial structure
of documents. Pattern matching plays a lesser role in Xdπ, although it could be
easily extended to the more expressive form adopted in XPi. Query expressions
instead, which are separate entities from processes, are the primary means to
extract information from XML trees.

2 Core Xdπ

In this Section we introduce the formal definition of the syntax and semantics of
Core Xdπ. We begin with trees, data and queries, and then we pass to networks
and processes.

9

Figure 3: Syntax: trees and data

T , S ::= tree terms

E pT branch E composed with tree T

∅ empty tree

x tree variable

E, F ::= a[V] | x branch with edge label a and data V , or variable

U , V ::= data terms

T tree T

p@l pointer to location l with query p

〈A〉 script A

l ::= l | x location name or variable

p ::= p | x query (see Definition 2.1) or variable

A ::= A | x script (see Figure 5) or variable

a, b, c ∈ E (Edge Labels)

l, m ∈ L (countably infinite) (Locations Names)

p, q ∈ Q (Queries)

x, y, z ∈ V (Variables)

E, F ∈ B
def

=
{
E : fv(E) = ∅

}
(Branches)

U, V ∈ D
def

=
{
V : fv(V) = ∅

}
(Data)

T, S ∈ T
def

=
{
T : fv(T) = ∅

}
(Trees)

Function fv is defined in Figure 23.

Notation: a[]
def

= a[∅] E1 p . . . pEn
def

= E1 p . . . pEn p∅.

2.1 Trees, data and queries

We represent semi-structured data using ordered labelled trees.6 The formal
definition is given in Figure 3 (we use italic bold letters for arbitrary terms,
which can contain variables (such as T), and plain italic letters for closed terms
(such as T)).

Trees and data. We represent a tree as a ∅-terminated list of branches
E1 p . . . pEn p∅ (abbreviated with E1 p . . . pEn) which start from the root. Each
branch Ei has the form a[V] and denotes an edge labelled a leading to a node
containing the data V . A data item can be a subtree T , a pointer p@l refer-
encing the data selected at location l by query p (described below), or a script

6A hypothetical encoding of trees into processes, which could be interesting in itself, would
introduce unnecessary complexity, making it hard to reason directly on trees like we can do,
thanks to our direct representation, in the equivalences of Chapter 3.

10

Figure 4: Syntax: Core Xdπ networks and contexts

D, B ∈ S
def

= L ⇀ T (Stores)

N, M ∈ N
def

= {(D, P) : D ∈ S, P ∈ P , dom(P) ⊆ dom(D)} (Networks)

Function dom is defined in Figure 22, processes are defined in Figure 5.

〈A〉 (described in Section 2.3) which can be executed to collect data or perform
coordination tasks. We show an example of a tree containing a script and a
pointer:

a[b[c[〈A〉]pd[p@l]]pe[]]

We use the same identifiers x, y, z, . . . to range over all variables. When neces-
sary, the kind of each variable can be understood by the place where the variable
occurs.

Queries. First of all, it is important to clarify that, in this paper, we use
the word “queries” to mean expressions used to query or update a tree. Xdπ
is parametric on the choice of a particular query-update language chosen, as
long as it is a language of expressions which can be evaluated against a tree to
obtain a new tree (the result of updating the tree) and some data (the list of
trees resulting from querying the tree). The only conditions that we need to
impose on such a language are that the application of a substitution to a query
must be well-defined and yield a query. The reasons why we need to define
substitutions on queries will be clear after describing the semantics of processes
in Section 2.3. In Section 3, we will impose additional conditions required to
ensure that a query language is also compatible with our definitions of semantic
equivalences.

Definition 2.1 (Query Language) A query language consists of a triple
(Q, fv , E) where Q is a set of queries ranged over by p, q, . . ., together with a
function fv : Q → ℘(V) giving the free variables of each query, and an evaluation
function E : (Q × T) ⇀ T × lists(D), which, given a query and a tree, returns
an updated tree and a finite list of results. Additionally, Q must be closed under
substitution.

Note that in the definition above the evaluation of queries is a partial func-
tion. This generality accounts for both the cases of ill-formed queries, which
may not have a precise semantics, and Turing-equivalent query languages, which
may not terminate. In Section 2.5, we give a concrete query language which
will be used in the examples.

2.2 Networks

A Core Xdπ network represents a peer-to-peer system, where each location cor-
responds to a peer. Each peer can communicate with any other peer, and has

11

a unique name. A network is represented by a pair (D, P) where the first
component (the store) is a finite partial function from location names to trees,
and the second component is a process. The formal definition is given in Fig-
ure 4.7 For example, in the network ({l 7→ T }, P), the term {l 7→ T } says
that the store of the peer at location l is the tree T , and the term P represents
the processes running on the peer, which contain explicit location information.
Interaction between processes and data is always local, as we shall see later from
rule (CRed Request) in Figure 7. In Figure 22, we define the function dom giving
the domain of both networks, stores and processes. By definition, the domain of
a network is the domain of the store, and a network is well-formed if the domain
of the process is contained in the domain of the store.

2.3 Processes

The formal definition for Core Xdπ processes is given in Figure 5. We now
describe the technical features of each construct.

Communication. The output process l·c〈ṽ〉 denotes a vector of values ṽ
waiting to be sent via channel c at location l, the input process l·c(π̃).P waits
to receive values matching the patterns π̃ from an output process via channel
c at l, and the replicated input is standard.8 The well-formedness condition
wf (P) requires that the continuation on an input (or replicated input) process
must be located at the same location where the input is defined. Channel
names are partitioned into private and service channel names. The private
channels denote “usual” π-calculus channels, which are typically used for co-
ordination, and which can be kept secret in order to protect a protocol from
external interferences. The service channels denote those channels which are
used to implement the services which a peer offers to other peers, and which
therefore are not meant to be restricted and can be referenced inside scripts.

Pattern matching. Both trees and pointers are data terms which processes
need to parse. For this reason, we have added to π-calculus communication a
very simple form of pattern matching. Patterns π1, ... , πn are terms containing
distinct variables which are instantiated, if pattern matching succeeds, with the
values found in the corresponding position in the term to be matched. Our
patterns do not include regular or recursive expressions, and we will avoid algo-
rithmic issues by simply requiring the guessing of an appropriate substitution in
order for pattern matching to take place. Pattern matching for XML-like data
is an active research topic, which is orthogonal to our concerns. We believe
that the specialized techniques studied elsewhere can be adapted to our setting.
Our processes use patterns to parse data, and queries to query trees. This con-
ceptual separation does not exclude the possibility for the query language to be

7The creation of new peers is not an operation which can be performed from within a
system, and therefore we do not provide an operation to create new locations. Nevertheless,
we will be able to carry on compositional reasoning, hence analyze networks with respect to
arbitrary additions of peers.

8The communication constructs, which use polyadic synchronization, were inspired by the
e
π-calculus [7].

12

Figure 5: Syntax: Core Xdπ processes

P , Q, R ::= process terms

0 nil process

P |P composition of processes

(ν c)P private channel c with scope P

l·c〈ṽ〉 at l, output values ṽ on c

l·c(π̃).P at l, input on c of π̃, continue with P

(distinct(π̃), fv(π̃) ∩ fv(l) = ∅)

!l·c(π̃).P lazy replication of an input process

(distinct(π̃), fv(π̃) ∩ fv(l) = ∅)

l·gom.P at l, go to m, continue with P

A ◦ 〈l, ṽ〉 at l, run script A with parameters ṽ

l·reqp〈c〉 at l, request query p with return channel c

a, b, c ::= c | c | x private/service channel, or variable

v ::= c | l | p | A | E | T value terms

a, b, c ∈ Cp (countably infinite) (Private Channels)

a, b, c ∈ Cs (Service Channels)

v, u ∈ U
def

=
{
v : fv(v) = ∅

}
(Values)

π ∈ K
def

= V ∪ {V : cval (V) = ∅ and distinct(V)} (Patterns)

P, Q, R ∈ P
def

=
{
P : fv(P) = ∅ and wf (P)

}
(Processes)

A ∈ A
def

=

{
(x, π̃)P :

fn(P) = ∅, fv(P) ⊆ fv(x, π̃),
distinct(x, π̃), dom(P) = {x}

}
(Scripts)

We define wf , distinct , dom, cval in Figure 22 and fv, fn in Figure 23.
Well formedness ensures that the continuation of a process is properly located
(for example wf (l·c(π̃).P) and wf (m·go l.P) require that P is located at l).

Notation: l·P
def

= P if dom(P) = {l}; l·m·c〈ṽ〉
def

= l·gom.m·c〈ṽ〉.

based on pattern matching itself.

Scripts. A script (x, π̃)P represents the code of P parameterized on x, a
placeholder for the location where the script is going to be run, and π̃, other
optional parameters of P . By the side condition on the free variables of scripts,
we impose that scripts remain statically defined until they are deployed dynam-
ically by instantiation of their parameters. The application construct A ◦ 〈l, ṽ〉
passes the parameters ṽ to the script A and runs it in the working space of l.
Note that application is defined only when the first parameter passed to the

13

script is a location. Communication in Core Xdπ is higher-order, in the sense
that processes may send scripts over channels, possibly as leaves inside trees.

Migration. Process migration, which we represent explicitly, models com-
munication across locations: the process m·go l.P represents a (higher-order)
message from m addressed to l containing a request to run the (closed) code P .
When P is an output process, we use the abbreviation l·m·c〈ṽ〉 for l·gom.m·c〈ṽ〉.
The well-formedness condition wf (P) requires that the continuation process
must be correctly located at the destination location. Due to the peer-to-peer
nature of our domain, each location is ready to receive and run any incoming
code, so we do not need to provide an explicit operation to run a received pro-
cess. In some cases, it may also be desirable to give control to each location
regarding which code to accept and which to refuse. We leave that task to an
eventual superimposed security infrastructure. Using an asynchronous form of
communication offers a simple way to model failures within the system. The
success of a migration step just depends on the existence of location l. In con-
trast, the migration rules for other mobile calculi (for example dπ [14]) assume
that migration is always possible. Our choice has an important effect on the
behavioural equivalences studied in Section 3.1.

Interaction with the store. Core Xdπ processes access the local tree by
using a request operation l·reqp〈c〉 parametric in a query-update expression p
and a channel c. The effect of evaluating expression p is to modify the local tree
and to return a list of query results on the specified channel. Research on query
and update languages for XML is still very active [25], and an in-depth study
goes beyond the scope of this paper. Therefore, rather than committing to any
particular choice, we parameterize our definitions with respect to an arbitrary
query language. Our request operation is defined for any query which given a
tree returns an updated tree and a list of results.

2.4 Reduction semantics

Network contexts are pairs of process and store contexts (see Figure 6). For
example, if CN = (−⊎B, (ν c)−) then CN [(D, P)] = (D⊎B, (ν c)P). We omit
the subscripts from contexts when no ambiguity can arise. The reduction
relation −→ for Core Xdπ describes process interaction, the interaction between
processes and data, and the movement of processes across locations. The for-
mal definition is given in Table 7. It relies on a standard notion of structural
congruence for processes and networks defined in the Appendix, in Figure 21.

Rules (CRed Context) and (CRed Struct) are standard contextual rules which al-
low reduction under parallel composition, restriction and structural congruence.
There are two rules for process movement between locations: rule (CRed Stay)

describes the case where the process is already at the target location, and rule
(CRed Go) allows a process l·go m.P to move from l to m. Rule (CRed Com)

states that if an output l·a〈ṽ〉 and an input l·a(π̃).P on the same channel a are
in the same location l (part of the store), and the values ṽ match the input
patterns π̃ (there is a substitution a σ such that ṽ = π̃σ), then communication

14

Figure 6: Syntax: contexts

KP
def

= CP [−] ::= − | P |CP [−] | CP [−] |P | (ν c)CP [−] (Process Contexts)

KS
def

= CS [−] ::= − | CS [−] ⊎ D (Store Contexts)

KN
def

= CN [−,−] ::= (CS [−], CP [−]), dom(CP) ⊆ dom(CS) (Networks Contexts)

(CS [−], CP [−])[(D, P)]
def

= (CS [D], CP [P]) (Context Application)

Notation: {l 7→ T }(l)
def

= T ; (D ⊎ B)(l)
def

=

{
D(l) if l ∈ dom(D)
B(l) if l ∈ dom(B)

.

Convention: D ⊎ B is defined if and only if dom(D) ∩ dom(B) = ∅.
Function dom is defined in Figure 22.

Figure 7: Semantics: reduction relation for Core Xdπ

({l 7→ T }, l·go l.P |Q) −→ ({l 7→ T }, P |Q) (CRed Stay)

({l 7→ T } ⊎ {m 7→ S}, l·gom.P |Q) −→ ({l 7→ T } ⊎ {m 7→ S}, P |Q)(CRed Go)

({l 7→ T }, l·c〈π̃σ〉 | l·c(π̃).P |Q) −→ ({l 7→ T }, Pσ |Q) (CRed Com)

({l 7→ T }, l·c〈π̃σ〉 | !l·c(π̃).P |Q) −→ ({l 7→ T }, !l·c(π̃).P |Pσ |Q) (CRed Com!)

({l 7→ T }, (x, π̃)P ◦ 〈l, π̃σ〉 |Q) −→ ({l 7→ T }, P{l/x}σ |Q) (CRed Run)

E(p, T) = (T ′, U1 p...pUn p∅)

({l 7→ T }, l·reqp〈c〉 |Q) −→ ({l 7→ T ′}, l·c〈r[U1]p . . . pr[Un]p∅〉 |Q)
(CRed Request)

(CRed Context)

N −→ N ′

CN [N] −→ CN [N ′]

(CRed Struct)

N ≡ M −→ M ′ ≡ N ′

N −→ N ′

Convention: in this table c ranges over Cp ∪ Cs.

takes place and execution proceeds with Pσ. Rule (CRed Com!) is similar, but
leaves the replicated input process !l·a(π̃).P in place for further use. We show
an example of the communication of a private channel over a service channel
below. The reduction step involves the use of structural congruence to extend
the scope of the restricted name before communication (scope extrusion):

({l 7→ T }, (ν c)(l·a〈c, b[]〉) | l·a(x, b[y]).(l·x〈y〉 |P))

−→({l 7→ T }, (ν c)(l·c〈∅〉 |P {c/x, ∅/y}))

Rule (CRed Run) runs a script, passing as the first parameter the name of the
location where it is going to run. Rule (CRed Request) applies the query denoted

15

Figure 8: Syntax: Sam queries

p̂, q̂ ::= path expressions

ε empty path

A/p̂ follow an edge with label in set A, then p̂

2p̂ follow occurrences of p̂ anywhere

p, q ::= p̂(π)V queries: follow p̂, match π and insert V

A, B ∈ ℘(E) (Label Sets)

p, q ∈ Q (Queries)

Notation: copybp(π)
def

= p̂(π)π; cutbp(π)
def

= p̂(π)∅; pastebp〈E〉
def

= p̂(x)E px;

∗/p̂
def

= E/p̂; a/p̂
def

= {a} /p̂.
Convention: we omit a trailing ε from a path, for example we write A/ for A/ε.

by p on the local tree T , obtaining an updated tree T ′ which replaces T , and
a list of results U1 p...pUn p∅ which is turned into a tree of results labelled with
r (a reserved label used to denote results) sent on channel c at l. We show a
simple example of update, supposing that p is a query which extracts from a
tree the data found by following the path a/b:

({l 7→ a[b[V1]pb[V2]pa[U]]}, l·reqp〈c〉 |P)

−→ −→ ({l 7→ a[b[]pb[]pa[U]]}, l·c〈r[V1]pr[V2]〉 |P)

Note that the subtrees Vi removed from the store are returned as results by the
output on c.

2.5 A sample query and update language

In this section, we define a particular query and update language inspired by
XPath [37] which will be used in the examples later on. The result of evaluating
a query against a piece of data (when defined) is a pair consisting of a new piece
of data, intended to replace the original one, and a list of results, intended to
be used by the continuation of the process that executed the query.

The syntax for queries is given in Figure 8. A query p̂(π)V is formed by a
path expression p̂ followed by an update expression (π)V . A path expression
A/p applied to a tree a[V]pT evaluates p on V if a is in the set A, and evaluates
itself on the rest of the tree T . A recursive expression 2p applied to a tree
a[V]pT evaluates p on any node in the tree in a bottom up fashion.9 First
it evaluates 2p on V and T , obtaining the updated items V ′ and T ′, then it

9Suppose we chose a top-down strategy instead. A simple query like “add a subtree a[]
inside any branch labelled a” on the tree a[] should be ruled out, because its evaluation
diverges: each time a new subtree is added there is a new branch to update. Inconsistencies

16

Figure 9: Semantics: query evaluation for Sam

E((π)V , πσ) = (V σ, πσ p∅) (Eval Match)

E((π)V , U) = (U, ∅) if U 6= πσ (Eval Mismatch)

a ∈ A E(p, V) = (V ′, L) E(A/p, T) = (T ′, L′)

E(A/p, a[V]pT) = (a[V ′]pT ′, LqL′)
(Eval Edge Follow)

a 6∈ A E(A/p, T) = (T ′, L′)

E(A/p, a[V]pT) = (a[V]pT ′, L′)
(Eval Edge Discard)

E(A/p, U) = (U, ∅) if U 6= a[V]pT (Eval Not Edge)

E(2p, V) = (V ′, L)
E(2p, T) = (T ′, L′)

E(p, a[V ′]pT ′) = (T ′′, L′′)

E(2p, a[V]pT) = (T ′′, LqL′qL′′)
(Eval Anywhere Tree)

E(2p, U) = E(p, U) where U 6= a[V]pT (Eval Anywhere Else)

The infix operator on lists q appends its second argument to its first argument.
Query evaluation E is a partial function from Q×D to D × lists(D).

evaluates p on a[V ′]pT ′, combining the results together. The update expression
(π)V is a binding pattern π followed by a data term V . When (π)V is applied
to each data item U selected by p̂, such that U = πσ for a closing substitution
σ, the expression returns the new data item V σ and the result U . If there is
no such substitution, the expression returns the original data U and the empty
result ∅. The formal definition of query evaluation is given in Figure 9.

Definition 2.2 (Sample Query Language) The sample query language Sam

is the triple (Q, fv , E) where Q is defined in Figure 8, E is defined in Figure 9
and fv is defined as fv(p̂(π)V) = fv(V) \ fv(π).

We show now how Sam is capable of expressing some intuitive tree manipu-
lations, using the macros defined in Figure 8. The query q = copyb/(y@x) reads
the query and the location of any pointer contained in branches labelled b at
the top level. For example,

E(q, b[T]pb[p@l]pb[p′@l′]) = (b[T]pb[p@l]pb[p′@l′], p@lpp′@l′)

The query q = cuta/2b/(x) removes the contents of any branch labelled b found
after an initial branch a, and returns the removed data as the results. For

of this kind are well-known in languages for updating trees, and there is no general agreement
on which strategy should be preferred. Our results do not depend on the strategy chosen for
our query language.

17

example,
E(q, b[V]pa[c[b[U]]]) = (b[V]pa[c[b[]]], U)

The query q = pastea/∗/〈e[]〉 adds a branch e[] to any child of a, by reading the
the contents of each child and pasting them back with prefixed the new branch
e[]. For example,

E(q, a[b[]pc[d[]]]) = (a[b[e[]]pc[e[]pd[]]], ∅p(d[]))

where the results are the list ∅p(d[]) where the first element is the empty tree
(the contents of b) and the second element is tree d[] (the contents of c). Note
that the query for pasting data is defined only if each selected node (each child
of a) contains a tree10, since otherwise the resulting tree would be ill-formed.
The query 2(π)V where π = b[〈x〉]py and V = c[〈x〉]py relabels each branch b

containing a script to c:

E(2(π)V , a[b[〈A〉]pb[T]pb[〈A′〉]]) = (a[c[〈A〉]pb[T]pc[〈A′〉]], L)

where the results L = (b[〈A〉]pb[T]pc[〈A′〉])p(b[〈A′〉]) correspond to the two
trees to which the pattern was applied successfully. Note that in the first result,
which is the last computed, the last branch has already been relabelled.

On the other hand, our sample query language is not sophisticated enough to
express (atomically) a query like “delete each branch labelled a which contains
a branch labelled b”, because if we do not know in advance where a branch
labelled b occurs in the contents of a, we cannot write a pattern to select only
the nodes containing b. This limitation can be easily overcome by adopting a
richer pattern language or by enriching the path expressions with conditions on
the contents of nodes.

2.6 Example: Web services

We now describe a simple implementation of macros for defining and calling
services in Core Xdπ.

Service definition and service call. A service definition is characterized
by the invoking location l, the name of the service a, its input pattern π̃, its
body (x)P and its output pattern ω̃. The service at location l receives on
channel a the input parameters π̃, a location name y and a channel name z (the
latter parameters are used to return the result). The body (x)P takes a fresh
channel name c (bound to x) in input, performs some arbitrary computation,
and outputs the result on channel c. Note that the variables in π̃ may bind
in P . A forwarding process inputs the result from channel c according to the
output pattern ω̃, and forwards it to location y on channel z.

(Service Definition) l·Define a(π̃) as (x)P output 〈ω̃〉
def

= !l·a(π̃, y, z).(ν c)((x)P ◦ 〈c〉 | l·c(ω̃).l·y·z〈ω̃〉)

10A type system regulating the contents of trees could prevent processes from getting stuck
because of undefined queries.

18

The service call is dual. It specifies the location l from which the service is
invoked (and to which it is returned), the location m and the name a of the
service, its parameters ṽ, and a continuation process Q with patterns π̃ for
parsing the results.

(Service Call) l·Call m·a〈ṽ〉 return (π̃)Q
def

= (ν c)(l·m·a〈ṽ, l, c〉 | l·c(π̃).Q)

The parameters l and c sent on a are used by the forwarding process in the
service definition to return the result to the continuation process Q. For
example, a service providing querying capabilities on its local store, and the
corresponding service call, could be defined respectively as

m·Define query(x1) as (x)reqx1
〈x〉 output 〈x2〉

l·Call m·query〈p〉 return (x)Q

The service takes as input a query x1 and executes the corresponding request
on the local store. The forwarding part of the service definition will intercept
the request result and send it on c at l, where it is passed on to Q on variable
x.

Subscriptions. We can easily generalize service definitions to cover the case
of push services, which send a stream of results to a client in reply to a single
service call. The only difference between the code below and (Service Definition)

is the presence of a replicated input in the forwarding process

(Push Service) l·Push a(π̃) as (x)P output 〈ω̃〉
def

= !l·a(π̃, y, z).(ν c)((x)P ◦ 〈c〉 | !l·c(ω̃).l·y·z〈ω̃〉)

The corresponding service subscription waits for multiple results on channel c:

(Subscription) l·Subscribe m·a〈ṽ〉 return (π̃)Q
def

= (ν c)(l·m·a〈ṽ, l, c〉 | !l·c(π̃).Q)

If desired, the streamed results received by the client can be combined together
using a loop.

Result forwarding. In order to have complete control on the return pa-
rameters, in certain cases we will bypass the service call code, and use only a
migration step followed by a service invocation. For example, let

Service = m·Define query(x1) as (x)reqx1
〈x〉 output 〈x2〉

and consider the network

N = (D, (ν c)

l·m·query〈(w)w, n, c〉
| Service
| n·c(x).req(w)x〈c〉

)

19

where D = {l 7→ T0, m 7→ S, n 7→ ∅}. The service invocation migrates to m
and triggers the service, passing as return parameters n and c. The local request
at m copies the whole tree S and forwards it to c on n:

N −→∗ (D, (ν c)(Service |m·n·c〈S〉 |n·c(x).req(w)x〈c〉)

−→∗ ({l 7→ T0, m 7→ S, n 7→ S} ,Service | (ν c)(n·c〈∅〉)

At n the code listening on c receives the result and replaces the local tree. We
will follow this strategy in several examples, redirecting the results of a service
to a location different from the one that issued the service call.

3 Behavioural Equivalences

We investigate behavioural equivalences for Core Xdπ. First we define net-
work equivalence, which dictates when two networks can be considered indis-
tinguishable with respect to an externally defined comparison. Our network
equivalence is parametric with respect to the language used for querying and
updating documents.

We also define a process equivalence, which establishes when two processes
can replace each other in a network without affecting network equivalence. We
would like to reason about the equivalence of groups of processes, possibly inter-
acting across several locations, and obtain results which are robust with respect
to changes in the data stored in the local repositories and the behaviour of other
parallel processes. Even if we decided to restrict our optimizations to the pro-
cesses running in a single local peer, we must be ready to reason about partial
network specifications in the case where parts of the local process migrate to
other locations in order to interact with remote data or services, reinforcing the
case for global reasoning. The structure of Core Xdπ networks, where pro-
cesses are located explicitly and are separated from the data store, facilitates
this process. For example, we can express a partial specification of a network by
means of located processes running in parallel, possibly sharing private names.
Located processes are equivalent if the networks obtained by composing them
with arbitrary stores are equivalent. However, process equivalence is hard
to use directly because it requires a costly property of closure under contexts.
Instead, we use a labelled transition system to define a coinductive equivalence
relation (called domain bisimilarity), which does not quantify over contexts and
which entails process equivalence.

The definition of domain bisimilarity is non-standard, due to the fact that
scripts (which can appear in data) are part of the values, and process equiv-
alences are sensitive to the set of locations constituting the network. We ad-
dress these two problems by adapting existing techniques for translating mes-
sages containing scripts into ones where each script is replaced by a first-order
value [30, 17], and by generalizing the notion of bisimulation to families of rela-
tions indexed by sets of locations.

20

3.1 Reduction and Domain Congruence

Reduction Congruence. Network equivalence for Core Xdπ is a stan-
dard reduction-closed, contextual equivalence which preserves some observation
predicates. In [18] we consider different choices of observation predicates (in par-
ticular the shape of the data tree of a location and the presence of output actions
in a process), and we study the formal relationship between the corresponding
reduction congruences. Here, we focus on request observations because it seems
natural to observe the effect processes have on data. In addition, the resulting
reduction congruence coincides with the one resulting from output observation
and implies the one resulting from tree-shape observations.

Definition 3.1 (Request observation predicate) We define the request ob-
servation predicate ↓l·p as (D, P) ↓l·p ⇐⇒ ∃C, c, Q. P ≡ C[l·reqp〈c〉 |Q] and

the weak observation predicate ⇓l·p as N ⇓l·p ⇐⇒ ∃N ′.N
∗

−→ N ′ and N ′ ↓l·p.

Definition 3.2 (Reduction Congruence) Reduction congruence ≃ on
Core Xdπ networks is the largest symmetric relation ≃̇ which is

• observation preserving: N ≃̇M =⇒ ∀l, p.N ⇓l·p=⇒ M ⇓l·p

• reduction closed: N ≃̇M =⇒ ∀N ′.N
∗

−→ N ′ =⇒ ∃M ′.M
∗

−→ M ′ and N ′ ≃̇M ′

• contextual: N ≃̇M =⇒ ∀C.C[N]≃̇C[M].

For example, we have

({l 7→ T }, l·a〈c〉) 6≃ ({l 7→ T }, l·a〈b〉)

because the context K = (−,− | l·a(x).l·x | l·c.l·reqp〈a〉) can tell a difference
between the two processes.

In order to use equational reasoning, it is important to remark that reduction
congruence is an equivalence relation (the proof is completely standard).

Observation 3.3 (Equivalence) Reduction congruence ≃ is an equivalence
relation.

Since reduction congruence is based on contexts which do not inhibit reduction,
a simple test for equivalence consists in checking if two terms can reduce to each
other.

Lemma 3.4 (Mutual Reduction) If N
∗

−→ M and M
∗

−→ N then N ≃ M .

Proof. We show that the relation

≃̇ =
{
(C[N], C[M]) : N

∗
−→ M, M

∗
−→ N

}

is contained in ≃ . The proof is symmetric. Consider an arbitrary pair (N, M) ∈

≃̇ . Suppose N ⇓l·p. It must be the case that N
∗

−→ N ′ ↓l·p. By hypothesis

21

M
∗

−→ N , hence M ⇓l·p. Suppose N
∗

−→ N ′. By hypothesis M
∗

−→ N , hence

M
∗

−→ N ′. By definition of
∗

−→, N ′ ≃̇N ′. We need to show that for an arbitrary
C[−], C[N]≃̇C[M]. Since C[−] is a reduction context, N

∗
−→ M =⇒ C[N]

∗
−→

C[M] and M
∗

−→ N =⇒ C[M]
∗

−→ C[N]. By definition, C[N]≃̇C[M]. 2

Domain Congruence. We now define process equivalence for Core Xdπ.
This equivalence depends on the locations present in the network, but not on
the actual contents of the stores. Consider replacing the definition of a service
at location l, which uses only local data, with one located at m (where there
is a cached copy of the same data) and providing an equivalent functionality.
If location m is connected, then the behaviour of the services is the same. On
the other hand, if location m is not connected, the behaviour of the services
is different. With network equivalence, the connected locations are those in
the domain of the store. With process equivalence, we must state explicitly the
locations which we assume to be part of the network. As a consequence, process
equivalence is indexed by a domain (a set of locations) Λ.

A Core Xdπ process can be seen as a partial specification of a network,
describing only some of the processes running in some of the locations. This
point of view is useful for reasoning about replacing components which are part
of some distributed data-exchange protocol. Accordingly, we say that two
processes P and Q are equivalent with respect to a domain Λ if all the networks
containing at least the locations in Λ and either P or Q, are equivalent.

Besides comparing partial network specifications, process equivalences can
be useful for example to replace optimized pieces of code inside a specific process.
For that purpose, we need a more general class of process contexts which include
prefixes.

Definition 3.5 (Extended Contexts) Extended process contexts Kf are the
terms generated by

C ::= − | C |P | P |C | (ν c)C | l·a(π̃).C | !l·a(π̃).C | l·gom.C

Unless we specify otherwise, from now on we use C[−] to denote extended
contexts.

Definition 3.6 (Domain Congruence) Given a set of location names Λ, we
define the induced domain congruence ∼Λ on processes by

∼Λ = {(P , Q) : ∀D, C[−]. Λ ⊆ dom(D) =⇒ (D, C[P])≃ (D, C[Q])}

where each C[−] is closing for both P and Q.

Domain congruence is monotonic: the larger the set of locations which we as-
sume to be part of the network, the larger the number of processes which we
can equate.

Observation 3.7 (Monotonicity) If Λ ⊆ Λ′ then ∼Λ ⊆ ∼Λ′

.

22

Figure 10: Notation for asynchronous processes

(Forwarder) l·FW(a, b, π̃)
def

= l·a(π̃).l·b〈π̃〉

(Equator) l·EQ(a, b, π̃)
def

= !l·FW(a, b, π̃) | !l·FW(b, a, π̃)

(Distributed Forwarder) l·dFW(a, m, b, π̃)
def

= l·a(π̃).l·m·b〈π̃〉

(Distributed Equator) dEQ(l, a, m, b, π̃)
def

= !l·dFW(a, m, b, π̃) | !m·dFW(b, l, a, π̃)

Proof. Follows easily by Definition 3.6. 2

Due to the several explicit (and implicit) universal quantifications involved
in Definition 3.6, it is very difficult to show directly that two processes are
domain congruent. For this reason, in Section 3.2 we will introduce a proof
method which does not require closure under contexts and which entails domain
congruence.

Asynchronous Laws. Core Xdπ is an extension of the asynchronous π-
calculus, so we consider some equational laws inspired by the latter. Consider
the process definitions given in Figure 10. The asynchrony law, stating
that the presence of a communication buffer cannot be observed, holds also in
Core Xdπ(see Section 3.2.2 for a proof):

!l·FW(a, a, π̃)∼Λ
r 0

The law stating that two channels a and b cannot be distinguished if they are
part of the same equator does not hold. For example,

l·EQ(a, b, π̃) | l·c〈a〉 6∼Λ
r l·EQ(a, b, π̃) | l·c〈b〉

because a context could intercept the channel name a and use it in some fresh
location m where a and b are not equated. We have instead a new law about
equating located channels across different locations:

dEQ(l, a, m, b, π̃) | l·a〈π̃σ〉∼
{l,m}
r dEQ(l, a, m, b, π̃) |m·b〈π̃σ〉

This law could be useful to show that we can replicate Web services (improving
efficiency) without the clients needing to be aware of the change.

3.2 Bisimilarity

In this Section, we define a coinductive equivalence relation (bisimilarity), which
does not quantify over contexts and which entails domain congruence.

3.2.1 Labelled transition system

A typical proof that processes are bisimilar involves a universal quantification
over labelled transitions. Since Core Xdπ values include scripts, and labels

23

Figure 11: Syntax: configurations

K ::= configuration terms

P process terms (built as for Core Xdπ)

K |K parallel composition

(ν c)K restriction

〈k ⇐ A〉 definition for trigger name k with script A

A ::= A | x | k script or variable or trigger name

h, i, j, k ∈ Y (Y ∩ Cp = ∅, Y countably infinite) (Trigger Names)

K, L ∈ W
def

=
{
K : fv(K) = ∅, unique(K)

}
(Configurations)

A ∈ AW
def

=
{
A : A ∈ A, triggers(A) = ∅

}
(Scripts)

CW [−] ::= − | CW [−] |K | K |CW [−] | (ν c)CW [−](Configuration Contexts)

The function triggers and the predicate unique are defined in Figure 12.
Apart from the redefinition of A, A and p (see below), the grammars for trees,
processes and values are the same as for Core Xdπ.

For trigger definitions, we adopt the following notation:

Θ
ek def

= 〈k1 ⇐ A1〉 | . . . | 〈kn ⇐ An〉, where all ki are distinct, n ≥ 0;

Θ
ekxej def

= Θ
ek{ej/ek}, when {ej/ek} is defined;

Θ
def

= Θ
ek, when k̃ is not important.

t〈k⇐A〉 def

= t{A/k}, for any term t, and similarly for tΘ
ek

.

typically include values, we risk falling back to quantifying over processes. Fol-
lowing the approach of [30, 17], we avoid this problem by translating messages
containing scripts into ones where each script is replaced by a trigger name
(a first-order value), and by placing in parallel to the process being analyzed
some definitions associating to each trigger name the code of the corresponding
script. By including these definitions in the code, we are able to analyze also
the interaction between scripts and their contexts.

Configurations. We introduce configurations, which are processes extended
with the trigger names and definitions mentioned above. The formal syntax
is given in Figure 11. Note that A denotes now a script, a variable or a
trigger name, hence processes can syntactically contain triggers. Nonetheless,
scripts and queries are not allowed to contain triggers. In fact, trigger names
and definitions are merely intermediate terms arising during the analysis of the
transition of a process, and are not meant to be part of the user syntax. For a
configuration K to be well-formed, no two definitions in K can have the same
trigger name (predicate unique(K), defined in Figure 12). As a convention, we

24

Figure 12: Function triggers and predicate unique.

triggers(t) = fn(t) ∩ Y

unique(K) unique(K′)
dfs(K) ∩ dfs(K′) = ∅

unique(K |K′)

unique(K)

unique((ν c)K)
unique(〈k ⇐ A〉)

The function dfs, returning the triggers defined by a configuration, is given by

dfs(K |K′) = dfs(K) ∪ dfs(K ′) dfs((ν c)K) = dfs(K) dfs(〈k ⇐ A〉) = {k}

let Θ, Ω and Φ range on groups of definitions. Note also that two groups of

definitions Θ
ek and Θ

ej identified by the same name but by different vectors of
triggers can in principle be arbitrarily different: it is an important syntactic
convention which helps to simplify the notation, and is often used in the rest of
the section. In the Appendix, in Figure 21 and Figure 23, we extend ≡, fv

and fn to configurations. In Figure 24 we extend the function dom of Figure 22
to configurations, and we define a function scripts returning the scripts present
in a piece of data.

Queries. Queries used for updating can mention constant data, which may
contain scripts. We assume two functions, scripts and triggers, which given a
query return respectively the set of scripts and triggers it contains. The only
condition that we need to impose on query evaluation consists of it not being
dependent on the particular structure of scripts. In other words, if we replace
a script in a query with a trigger name, then the result of the query should be
equivalent up to substitution of the script for the trigger. Moreover, any script
returned by the query must occur in the input tree or in the query itself. The
condition is formalized below.

Definition 3.8 (Script Independence) Let L = (Q, fv , E) be an arbitrary
query language, let p, T be such that E(p, T) = (S, L), and let p0, T0 be their

first-order versions, such that scripts(p0) = scripts(T0) = ∅ and p = pΘ
ej

0 , T = T Ω
ek

0

for some Θ
ej, Ω

ek.

The query language L is script independent if for all Θ
ej, Ω

ek there exist Θ
eh

and Ω
ei such that

• query evaluation does not depend on the structure of scripts: there are

S0, L0 with scripts(S0) = scripts(L0) = ∅ such that E(pΘ
ej

0 , T Ω
ek

0) = (SΘ
eh

0 , LΩ
ei

0)

• no new scripts are introduced: for any definition 〈k ⇐ A〉 occurring in Θ
eh

or Ω
ei there must be a definition 〈k′ ⇐ A〉 occurring in Θ

ej or Ω
ek.

25

Figure 13: Extraction relation

X(l) = (l;0)
X(p) = (p′; Θ)

X(p@l) = (p′@l; Θ)

X(p) = XQ(p) X(∅) = (∅;0)

X(A) = (k; 〈k ⇐ A〉) X(x) = (x;0)

X(c) = (c;0) X(k) = (k;0)

X(E) = (E′; Θ
ek) X(T) = (T ′; Ω

eh)

(
{
k̃, h̃
}
∩ fn(E pT)) ∪ (

{
k̃
}
∩
{
h̃
}
) = ∅

X(E pT) = (E′ pT ′; Θek |Ωeh)

X(A) = (v; Θ)

X(〈A〉) = (〈v〉; Θ)

X(v) = (v′; Θ
ek) X(ṽ) = (ṽ′; Ω

eh)

(
{
k̃, h̃
}
∩ fn(v, ṽ)) ∪ (

{
k̃
}
∩
{
h̃
}
) = ∅

X(v, ṽ) = (v′, ṽ′; Θek |Ωeh)

X(V) = (V ′; Θ)

X(a[V]) = (a[V ′]; Θ)

X(T) = (T ′; Θ
ek) X(D) = (D′; Ω

eh)

(
{
k̃, h̃
}
∩ fn(T, D)) ∪ (

{
k̃
}
∩
{
h̃
}
) = ∅

X({l 7→ T } ⊎ D) = ({l 7→ T ′} ⊎ D′; Θek |Ωeh)
X(∅) = (∅;0)

Notation: in this table c ranges over Cp ∪ Cs.
The relation XQ is specified in Definition 3.9.

Extracting scripts from values. Our strategy consists of translating
values containing scripts into values containing trigger names only, extracting
at the same time the corresponding definitions. For that purpose, we define in
Figure 13 an extraction relation X which applies to Core Xdπ data and stores,
and returns the corresponding first-order terms and the definitions extracted.

The definition of X is straightforward. The only points worth noting are
that the premises of the rules for tuples, tree and store composition make sure
that the trigger names remain disjoint, and that the rule for scripts replaces a
script with a trigger and records the corresponding definition. The rule for
queries invokes a specialized extraction relation XQ which depends on the query
language. XQ can behave similarly to X, relating each query with its first-order
version and the corresponding definitions, or can behave differently (for example
being the identity function on queries and the constant 0 on configurations), as
long as it satisfies the basic properties requested by the definition given below.

Definition 3.9 (Query Extraction) The relation XQ can be any subset of
QC ×QC ×W satisfying the condition that if XQ(p) = (p′; K) then

1. K are well-formed definitions: K = Θ
ek;

26

Figure 14: Labels for the transition system

αl ::= transition labels

(ã, k̃)l·c〈ṽ〉 output of ṽ on c at l, extruding ã, k̃

l·c(ṽ) input of ṽ on c at l

l·τ internal reduction at l

(k̃)l·req〈p〉(T) request p at l extruding k̃, obtaining result T

l·k(ṽ) run the script defined by k with parameters l, ṽ

(ã, k̃)l·j〈ṽ〉 assume running the script defined by trigger j

with parameters l, ṽ, extruding ã, k̃

Convention: in the syntax above, c ranges over Cp ∪ Cs, and t over Cp ∪ Cs ∪ Y.

labels αl names n bound names bn

(ã, k̃)l·t〈ṽ〉
{
ã
}
∪
{
k̃
}
∪ {t} ∪ fn(ṽ)

{
ã
}
∪
{
k̃
}

l·t(ṽ) {t} ∪ fn(ṽ) ∅

l·τ ∅ ∅

(k̃)l·req〈p〉(T)
{
k̃
}
∪ triggers(p) ∪ fn(T)

{
k̃
}

fn(αl) = n(αl) \ bn(αl)

2. trigger names can be extended as long as there are no clashes: triggers(p′) =

triggers(p) ∪
{
k̃
}

and triggers(p) ∩
{
k̃
}

= ∅;

3. the new trigger names are defined up-to renaming: for all j̃ distinct from

triggers(p), XQ(p) = (p′{ej/ek}; Θ
ekxej);

4. substitution is the inverse of extraction: if XQ(p) = (p′; Θ) then p = p′Θ.

Under the assumption (that we adopt henceforth) that XQ respects Defini-
tion 3.9, the effects of relation X can be reversed by replacing, in the extracted
first-order term, the new trigger names by the corresponding definitions.

Observation 3.10 (Extraction) For any given term t, if X(t) = (t′; Θ) then
t = t′Θ.

Proof. By induction on the derivation of X(t) = (t′; Θ). 2

Labelled transition system. Our labelled transition system incorporates
ideas on asynchronous transitions from [15], and on translating higher-order
actions into first order actions from [30, 17].

27

Figure 15: Labelled transition system

(Lts Com)

l·c〈π̃σ〉 | l·c(π̃).P
l·τ
−−→ Pσ

(Lts !Com)

l·c〈π̃σ〉 | !l·c(π̃).P
l·τ
−−→ Pσ | !l·c(π̃).P

(Lts Run)

(x, π̃)P ◦ 〈l, π̃σ〉
l·τ
−−→ P {l/x}σ

(Lts In)

scripts(ṽ) = ∅

0
l·c(ṽ)
−−−−→ l·c〈ṽ〉

(Lts Out)

X(ṽ) = (ṽ′; Θ
ek)

l·c〈ṽ〉
(ek)l·c〈ṽ′〉
−−−−−−→ Θ

ek

(Lts Trigger)

X(ṽ) = (ṽ′; Θ
ek) j 6∈

{
k̃
}

j ◦ 〈l, ṽ〉
(ek)l·j〈ṽ′〉
−−−−−−→ Θ

ek

(Lts Open)

a ∈ fn(ṽ) \ {ã, c}

K
(ã, k̃)l·c〈ṽ〉
−−−−−−−−→ K ′

(ν a)K
(a, ã, k̃)l·c〈ṽ〉
−−−−−−−−−−→ K ′

(Lts Req)

XQ(p) = (p′, Θ
ek)

scripts(T) = ∅ T = r[U1]p . . . r[Un]p∅

l·reqp〈c〉
(k̃)l·req〈p′〉(T)
−−−−−−−−−−→ l·c〈T 〉 |Θ

ek

(Lts Def)

scripts(σ) = ∅

〈k ⇐ (x, π̃)P 〉
l·k(π̃σ)
−−−−−→ 〈k ⇐ (x, π̃)P 〉 |P {l/x}σ

(Lts Go)

l·gom.P
m·τ
−−→ P

(Lts Res)

K
αl−→ K ′ a 6∈ n(αl)

(ν a)K
αl−→ (ν a)K ′

(Lts Par)

K
αl−→ K ′ rel (αl, L)

K |L
αl−→ K ′ |L

(Lts Struct)

K ≡ L
αl−→ L′ ≡ K ′

K
αl−→ K ′

Notation: rel (αl, K)
def

= bn(αl) ∩ fn(K) = ∅.
Convention: in this table c ranges over Cp ∪ Cs, and t over Cp ∪ Cs ∪ Y.

The labels of the transition system record what kind of interaction with the
external environment is necessary for a configuration to evolve into another.
Labels, along with the notions of their names, free names and bound names,
are defined in Figure 14. Each label, including the one for internal reduction,
shows explicitly the location where interaction takes place. By using appro-
priate conditions on the function scripts in the rules of the labelled transition
system (lts for short), we will guarantee that labels are first-order, as planned.
The formal definition of the lts is given in Figure 15. We discuss the more inter-
esting transition rules. Rules (Lts Com), (Lts !Com) and (Lts Run) closely mimic the
corresponding reduction rules. These transitions do not require interaction with
the external environment, so the label l·τ requires only the existence of loca-

28

tion l. Rule (Lts In) provides a first-order output message from the environment
which can be used to analyze the continuation of an input process by deriving
a further transition using the communication rules. Rule (Lts Out) states that
a potentially higher-order output l·c〈ṽ〉 evolves to the definitions that are ex-
tracted from ṽ to obtain ṽ′, and carries in the label the first-order version of the
process. The intuition is that a bisimilar process will be required to perform the
same first-order transition, and a potential incompatibility between the original
higher-order messages will be detected by analyzing the resulting configurations

(Θ
ek for the first process). Rule (Lts Trigger) states that the application of a trig-

ger name to the potentially higher-order parameters ṽ evolves to the definitions
that are extracted from ṽ to obtain ṽ′, and carries in the label the first-order
version of the process, similarly to the case for output. Rule (Lts Open) is stan-
dard. Not that it applies to transitions originated using (Lts Out) or (Lts Trigger).
Rule (Lts Req) can be interpreted as the combination of an output of p and an
input of T on a special name req. Rule (Lts Def) analyzes the script of a definition
for all its possible (first-order) input parameters.11 It is akin to performing an
asynchronous input transition to receive the parameters for the script from the
context, and a communication step to instantiate the script.

The sample query and update language. We conclude this section by
extending Sam (Definition 2.2) to deal with trigger names, and showing that it
respects our assumptions (Observation 3.12).

Definition 3.11 (Sam#) The query language Sam# is defined as Sam, with
the exception that trees can contain also trigger names in the same position as
scripts (i.e. within 〈−〉). The extraction relation XQ, and the functions scripts

and triggers are defined on Sam# by

X(V) = (U ; Θ)

XQ(p̂(π)V) = (p̂(π)U ; Θ)

scripts(p̂(π)V) = scripts(V) triggers(p̂(π)V) = triggers(V)

Observation 3.12 (Properties of Sam#) (i) Sam# is script independent, and
(ii) XQ for Sam# respects Definition 3.9.

Proof. Point (i) follows by induction on the derivation of E. The idea is
that query evaluation does not depend on the structure of scripts, and by rule
(Eval Match) only scripts coming from the query and the input tree can occur in
the result and the output tree. Point (ii) follows by induction on the derivation
of XQ. 2

11Both in (Lts Def) and (Lts In) we do not need to consider higher-order values. This is
due to the fact that the bisimilarity relation that we will consider turns out to be closed with
respect to parallel composition with definitions (Theorem B.15), and hence already takes into
account the effects of scripts received from the environment.

29

3.2.2 Domain bisimilarity

We introduce our bisimulation equivalence. The intuition is that, when two
bisimilar processes are running in a location domain Λ, if a process makes an
action αl with l ∈ Λ then the other one must be able to mimic it, possibly
relying on the existence of other locations in Λ. Since the location domain can
be extended to Λ ∪ Λ′ by composing networks, we need to make sure that also
the actions mentioning locations in Λ′ are matched, this time within a larger
relation parameterized by Λ ∪ Λ′.

The definition of bisimilarity relies on the following derived transition rela-
tions.

Definition 3.13 (Derived Transition Relations) Consider the lts defined
in Figure 15. Given l ∈ Λ, we use the notation

τ
−→Λ

def

=
l·τ
−−→;

l·τ
−−→→Λ

def

=
τ ∗

−→Λ;
αl−→→Λ

def

=
τ ∗

−→Λ ◦
αl−→ ◦

τ ∗
−→Λ when αl 6= l·τ.

Definition 3.14 (Domain Bisimilarity) A family of symmetric relations on
configurations (indexed with sets of locations) ≈̇ = {≈̇Λ : Λ ⊆ L} is a domain

bisimulation if K≈̇ΛL and K
αl−→ K ′ implies:

1. if l ∈ Λ with rel (αl, L) then L
αl

։Λ L′ and K ′≈̇ΛL′;

2. if l 6∈ Λ then K≈̇Λ∪{l}L.

Domain bisimilarity ≈= {≈Λ : Λ ⊆ L} is the (point-wise) largest domain bisim-
ulation: if ≈̇ is a domain bisimulation, then ≈̇Λ ⊆≈Λ for all Λ. Two open
processes P , Q are Λ-bisimilar if and only if for all closing substitutions σ,
Pσ ≈Λ Qσ.

Remark 3.15 (Initial Elements) To show K ≈Λ L for a specific Λ, we can
exhibit a domain bisimulation ≈̇ = {≈̇∆ : ∆ ⊆ L} such that K≈̇ΛL and ≈̇∆

is the empty set for all ∆ smaller than Λ.

A proof that the largest domain bisimulation indeed exists in our non-
standard setting can be found in [18]. Domain bisimilarity is a coinduc-
tive relation, preserved by structural congruence and monotonic in the domain
Λ. Under the mild assumption that the query language does not depend on
scripts (Definition 3.8), domain bisimilarity enjoys two important properties
which make it a useful proof method for domain congruence:

• domain bisimilarity is a congruence, that is embedding open processes in
extended contexts preserves bisimilarity;

• domain bisimilarity is a sound approximation of the domain congruence
induced by request observables, that is if two processes are bisimilar then
they are request-congruent.

These important properties are summarized by the theorem below.

30

Theorem 3.16 (Properties of Domain Bisimilarity) Assuming a script-
independent query language:

1. If K ≈Λ L, K ≡ K ′ and L ≡ L′, then K ′ ≈Λ L′.

2. For all sets of locations Λ, Λ′, if Λ (Λ′ then ≈Λ(≈Λ′ .

3. For all full process contexts C ∈ Kf (Definition 3.5), if P ≈Λ Q then
C[P] ≈Λ C[Q].

4. For all Λ, P , Q (where P and Q have no free trigger names), if P ≈Λ Q

then P ∼Λ Q.

Proof. The proofs for (1) and (2) are in Appendix B.1. The proofs for (3) and
(4) are respectively in Appendix B.2 and Appendix B.3. 2

We now give a first example of the proof method. Larger examples are given
in Chapter 4.

Example 3.17 (Proof Method) Recall the asynchrony law of Section 3.1.
It states that a communication buffer cannot be distinguished from the empty
process. By definition, !l·FW(a, a, π̃) ≈Λ 0 if for any closing substitution σ,
(!l·FW(a, a, π̃))σ ≈Λ 0σ. Given an arbitrary σ we have that (!l·FW(a, a, π̃))σ =
!l·FW(a, a, π̃) for some a, l. To show that !l·FW(a, a, π̃) ≈Λ 0, we need to give
a domain bisimulation ≈̇ = {≈̇∆} such that ≈̇Λ contains the two processes.
Since structural congruence preserves bisimilarity (Point 1 of Theorem 3.16),
we reason up-to ≡.

For each ∆, we begin with a relation R0
∆ = {(!l·FW(a, a, π̃),0)} contain-

ing the pair that we want to prove bisimilar. By definition of bisimilarity,
we must close the relation under transitions. Due to (Lts In) we must close
the relation under parallel compositions with arbitrary output processes: R1

∆ =

{(M | !l·FW(a, a, π̃), M)} where M =
∏

0≤i≤n

li·ci〈ṽi〉, dom(M) ⊆ ∆ and scripts(ṽi) =

∅ (note that R1
∆ = R0

∆ if n = 0). The possible tau transitions arising from
the interaction of !l·FW(a, a, π̃) and an output l·a〈ṽ〉 where ṽ = π̃σ are al-

ready covered because by (Lts !Com) and (Lts Struct), l·a〈ṽ〉 | !l·FW(a, a, π̃)
l·τ
−−→

l·a〈ṽ〉 | !l·FW(a, a, π̃). Again by definition of bisimilarity, we must make the

relation symmetric, hence we conclude with ≈̇∆ = R1
∆ ∪ (R1

∆)
−1

.

Incompleteness. In general, domain bisimilarity is a more restrictive equiv-
alence than domain congruence. The property is intrinsic to our choice of giving
a proof method parametric in the chosen query and update language. In fact,
without specializing the labelled transition system to a particular language, we
are forced to distinguish request transitions as soon as queries are syntactically
different. On the other hand, equivalences dependent on specific knowledge of

31

the semantics of queries would lead to optimizations which are no longer correct
when the query language changes.12

Example 3.18 (Incompleteness) Consider the query language Sam# and the
process definition

X(a, b)
def

= (ν c)(l·c | !l·c.(ν e)

(
l·req(x)a[]〈e〉 |

l·e(x).(ν e′)(l·req(x)b[]〈e
′〉 | l·e′(x).l·c)

)
)

The process loops, replacing at each iteration whatever tree is at l first with a[]

and then with b[]. We have X(a, b)∼{l} X(b, a), because once the two processes
are inserted in the same store, they can always reduce to each other. On the
other hand, we have that X(a, b) 6≈{l} X(b, a) because the request transitions
cannot be matched.

4 Distributed Query Patterns

In this Section, we use bisimilarity to study some communication patterns used
by servers in distributed query systems to answer queries from clients. In
Core Xdπ, distributed queries take the form of processes which retrieve and
combine data from different locations by using remote communication and local
requests. We show that some existing patterns [29] can be combined together
obtaining a flexible infrastructure which is provably equivalent to an intuitive
specification of the intended behaviour. By exploiting process migration, we
also propose a new communication pattern, and we show that it is behaviourally
equivalent to a naive, less efficient one.

4.1 Chaining, recruiting and referral

We now consider chaining, recruiting and referral, three distributed query pat-
terns studied by Sahuguet et al. in [29, 27] and described below. These patterns
are interesting because, as will soon be apparent, they are simple yet can express
ways of answering requests which are non-trivial, and display different levels of
cooperation between the parties involved.

The usage of these patterns presupposes an architecture of servers sharing a
common communication protocol for answering cooperatively the queries issued
by clients. The protocol consists of alternative actions which depend on the
contents of a query and on the local data, and is implemented by dedicated
services running on each peer. The distributed querying infrastructure obtained

12Even if, for the sake of argument, we fixed a concrete query-update language and knew
everything about its semantic equivalences, it would still be unclear how to deal with the
case of Example 3.18. There, the initial updates that two processes can perform are by
no means equivalent, yet by an “idempotence” argument the overall behaviours turn out to
be equivalent. A complete bisimilarity would need to be able to consider is some way the
cumulative effect of request transitions, also when interleaved with communication steps, in
order to equate sequences of updates with the same global effect on the data-store.

32

Figure 16: Chaining, recruiting and referral

3

2

1

5
4

6

3
2

1
4

3

1

4

2 5

6

(a) Chaining. (b) Recruiting. (c) Referral.

by combining the three query patterns is very flexible and can provide location
independence to the clients. In fact, a client simply needs to invoke a service
on a peer acting as the “entry point” to the network in order to get access to
data which may reside on some other server unknown to the client itself.

We now describe the three patterns. In each case, a server receiving a query
will try to execute it locally, and if that is not possible, will take alternative
action.

Chaining (Figure 16.(A)): if a server cannot deal directly with the call, it
re-issues it to an alternative server, waits for the answer, and then returns
the answer to the client.

Recruiting (Figure 16.(B)): if a server cannot deal directly with the call, it
forwards it to another server (without noticing the client), so that the
result will eventually return to the client without further intervention of
the first server. To implement this pattern the address for returning the
result must be a parameter of the call, and the client must be willing to
accept asynchronous connections.

Referral (Figure 16.(C)): if a server cannot deal directly with the call, it
suggests to the client an alternative server which might be able to. This
strategy requires active collaboration from the client, which must be ready
to contact the alternative server.

When each server involved in answering a request is able to use any of the
patterns above, the flow of the data from the initial service call to the final
answer can become complex and involve arbitrary combinations of the patterns,
as in the example shown in Figure 17.

33

Figure 17: Combining the query patterns

3

2

1

5

4

13

11
12

10
7

8

9

6

recruiting

referral

chaining

request

response

4.1.1 Implementing the patterns

We now describe, step by step, some Core Xdπ code which implements a system
where a client request can be answered by servers using an arbitrary combination
of chaining, recruiting and referral. The code is based on services which retrieve
and combine data from different locations by exploiting remote communication
and local requests. In Section 2.6, we have seen how to represent service calls
in Core Xdπ:

(ν c)(l·m·a〈ṽ, l, c〉 | l·c(π̃).P)

where a is the name of the service to be invoked at location m with parameters
ṽ yielding a result to be passed on the channel c local to l, and P is the code for
handling the results, which are expected to match pattern π̃. In this section, a
service call will carry four parameters: a tree T used to represent a condition,
checked using pattern matching, that a server must satisfy in order to provide
the right service (for example specifying the kind of result expected), a query
p which is meant to be run on the store of the service matching tag T , and
the return parameters m and c stating the location and the channel where the
result should be returned. This approach can be easily applied also to service
call having more parameters.

A client must be able to deal with the referral query pattern, therefore its
code consists essentially of a loop. The loop consists of calling a first server
(which could in principle provide the final result, terminating the loop), and
then repeating the same call at the alternative addresses received in unsuccessful
replies, until a reply containing the final result is received. The context defined
below implements the loop at location m:

m·Ref(n,l,s,T,p,z)[−]
def

= (ν c)

(
m·c(OK[], z). − |
m·c〈REF[], l〉 | !m·c(REF[], x).m·x·s〈T, p, n, c〉

)

It is parametric in the location n where the result must be returned, the location
l of the first server to be interrogated, and the parameters of the call: the service

34

Figure 18: Syntax: abbreviations

(Internal Choice)

⊕

i∈1..n

lP i
def

= (ν c)(l·c |
∏

i∈1..n

l·c.P i) c 6∈ fn(P i)

Notation:
∏

i∈1..n

P i
def

= P 1 | . . . |P n; P 1 ⊕
l . . . ⊕l P n

def

=
⊕

i∈1..n

lP i.

name s and condition T , the actual query p and the variable z for binding the
result in the continuation. The context uses a private channel c to implement
the referral loop and uses the tags OK[] and REF[] as guards to exit or continue
the loop. Any process built using this context always starts the referral loop
by invoking s at l and then waiting for two possible answers: either a referral
message with the tag REF[] and the name of an alternative location (bound to
x), which starts another iteration of the loop against the corresponding server,
or a result message with the tag OK[] and the result of the service call (bound
to z), which terminates the loop and passes the result on to the process which
replaces the context hole “−”.

The server filters calls based on the parameter T in order to decide whether
they can be served locally or not. Its code, which uses the conventions of
Figure 18, consists of the following two processes, run in parallel:

l·Local(s,T)
def

= !l·s(T, x, y, z).(ν c)(l·reqx〈c〉 | l·c(w).l·y·z〈OK[], w〉)

l·Remote(s,∆)
def

=
∏

(m,Sm)∈∆

!l·s(Sm, x, y, z).

l·m·s〈Sm, x, y, z〉
⊕l l·y·z〈REF[], m〉

⊕l l·Ref(l,m,s,Sm,x,w)[l·y·z〈OK[], w〉].

If the first parameter matches T , the server runs the query (bound to x) on
the local data and sends the result back to the client on channel z at y. If
the first parameter does not match T , the server selects another server more
appropriate for that request out of the set ∆ relating servers to tags specifying
their services (the outermost parallel composition of the remote process). It
then invokes s on the chosen server using either chaining (third branch of the
choice), or recruiting (first branch), or referral (second branch). In the case of
chaining, the server runs the same code as the client with different parameters.
Notice that the code handling the result forwards the result to the client instead
of using it locally.

Installation. In order to use these patterns, the code implementing the
services must be installed somehow on each participating server. We can assume
that it is pre-installed on each peer, or we can install it “on demand” using either
process migration or a specialized service which runs scripts. For example,
consider the code of a service P parametric in the location x where the service
is run and some other initialization pattern π. If we assume that an arbitrary
location l exists then, given an arbitrary initialization parameter v = πσ, it is
easy to see that running the code at m is equivalent to installing the service

35

code from l
P {m/x}σ ∼{l} l·gom.(x, π)P ◦ 〈m, v〉.

Alternatively, one could use a dedicated installation service Inst at location m
which receives an abstraction and some parameters, and runs the abstraction
locally

P {m/x}σ ∼{l} (ν Inst)(l·m·Inst〈(x, π)P , v〉 | !m·Inst(y, z).y ◦ 〈m, z〉).

4.1.2 Relating the patterns to a specification

We use a simple system with a client and two servers as an example of how to
reason using our equivalences. The reasoning is analogous in the case of multiple
servers. The client is on peer m, and runs the code

m·Client(l,s,a[])
def

= m·Ref(m,l,s,a[],p,z)[m·P]

where the service is requested to match the tag a[], and the continuation process
P is an arbitrary process located at m which does not contain free occurrences
of channel c mentioned in the definition of Ref(−). A server is composed by the
parallel composition of the branches dealing with local and remote processing,
as described in Section 4.1.1:

l1·Server(s,T,l2,S)
def

= l1·Remote(s,{(l2,S)}) | l1·Local(s,T).

We consider two processes P1 and P2, where a client requests from the server
at l1 the data specified by a[] (served locally) or b[] (served remotely at l2).

Servers
def

= l1·Server(s,a[],l2,b[]) | l2·Server(s,b[],l1,a[])

P1
def

= m·Client(l1,s,a[]) | Servers

P2
def

= m·Client(l1,s,b[]) | Servers

We compare P1 and P2 with Q1 and Q2 defined below, which provide a speci-
fication of the expected behaviour respectively of P1 and P2. Each process goes
directly from m to the relevant location, fetches the data returned by query p,
and goes back to paste it as the new data tree of m:

m·Spec(l)
def

= m·go l.(ν c)(l·reqp〈c〉 | l·c(z).l·gom.m·P)

Q1
def

= m·Spec(l1) | Servers

Q2
def

= m·Spec(l2) | Servers.

An important difference between the client and the specification is that the
client sends an output message to a service which can in principle be intercepted
by some process external to the protocol which performs an input on the same
service channel. To rule out this undesired interference, we restrict the name

36

of the service s both in each Pi and Qi, with the side effect of preventing also
the unharmful case in which several clients use the services at the same time.13

We can show, in a domain containing both l1 and l2, the following equiva-
lences:

(ν s)P1 ∼
{l1,l2} (ν s)Q1 (ν s)P2 ∼

{l1,l2} (ν s)Q2

Hence, by definition, we can replace (ν s)Pi by (ν s)Qi in any network, and
preserve network equivalence.

Proof of equivalence. By virtue of Theorem B.21, a formal proof of
each equivalence above would involve showing the existence of an appropriate
domain bisimulation containing the relevant pair, along the lines of the examples
of Section 3.2.2.

We show here a sketch for the case for P2 and Q2. In order to make the
proof more manageable, we adopt the simplifying assumption that the query p
does not contain scripts. The proof of the general case follows a similar struc-
ture. Moreover, we use implicitly the closure of bisimilarity under structural
congruence.

We start by analyzing the non-input transitions of the two processes, and
then we indicate how to build a domain bisimulation by pairing compatible
states and dealing with input transitions. Consider S0 = (ν s)Q2. By struc-
tural congruence, S0 ≡ m·Spec(l2) | (ν s)Servers, which makes it easy to see that
Servers does not have transitions, because of the restriction on s . Hence, we
concentrate on m·Spec(l2). All it can do is a tau transition at l2 corresponding
to a migration step to reach a state S1, followed by a request transition at l2 to
become

S2 = (ν s)((ν c)(l2·c〈V 〉 | l2·c(z).l2·gom.m·P) | Servers)

where V stands for a generic result obtained by the request. In turn, this
process can only do a local communication followed by a migration (both tau
transitions, respectively at l2 and m) to become

SV
3 = (ν s)((ν c)(m·P {V /z}) | Servers).

Using the hypothesis c 6∈ fn(P), we obtain

(ν s)((ν c)(m·P {V /z}) | Servers) ≡ (ν s)(m·P {V /z} | Servers).

Hence, we have shown that the transition for S0 that we need to match is

S0
l2·req〈p〉(V)
−−−−−−−−→→SV

3 = S0
τ
−→ S1

l2·req〈p〉(V)
−−−−−−−−→ SV

2
τ
−→→SV

3 .

All we need to show now is that also starting from (ν s)P2, for each possible
execution path, we can only do an analogous weak request transitions, and
reach a state equivalent either to S3 above. We now analyze the transitions of
S′

0 = (ν s)P2. First the client m·Client(l1,s,b[]) performs a tau transition at m

13In future, we plan to consider less restrictive ways to rule out this kind of interference
using the type based techniques for linearity of Yoshida et al. [42].

37

corresponding to the initialization of the loop and then one at l1 corresponding
to the migration of the service call. The whole process becomes

S′
1 = (ν s, c)(C0 | l1·s〈b[], p, m, c〉 | Servers)

where
C0 = m·s(OK[], z).m·P | !m·s(REF[], x).m·x·s〈b[], p, n, c〉.

Because of b[], l1·Server(s,a[],l2,b[]) receives the call in the remote branch (the

one for l2 with tag b[]). Nondeterministically, the process at l1 evolves to either

(recruiting) S′
2 = l1·Server(s,a[],l2,b[]) | l1·l2·s〈b[], p, m, c〉

(referral) S′
3 = l1·Server(s,a[],l2,b[]) | l1·m·c〈REF[], l2〉

(chaining) S′
4 = l1·Server(s,a[],l2,b[]) | l1·Ref(l1,l2,s,b[],p,w)[l1·m·c〈OK[], w〉].

Both the communication for receiving the call and the choice of the branch to
execute are two tau transitions at l1, so S′

1
τ
−→→S′

i for i ∈ 2..4. We now consider
the transitions of each choice branch.

Recruiting. If recruiting is chosen, the server at l1 performs a tau transition
at l2 corresponding to the forwarding of the client request, becoming

S′
2,1 = (ν s, c)(C0 |R1 | l1·Server(s,a[],l2,b[]) | l2·s〈b[], p, m, c〉 | l2·Server(s,b[],l1,a[]))

where R1 is a deadlocked process containing the code for the two discarded
choice branches. Due to the parameter b[], server l2 receives the call in
the local branch, performing another tau transition at l2:

S′
2,2(ν s, c)(. . . | l2·Server(s,b[],l1,a[]) | (ν c′)(l2·reqp〈c

′〉 | l·c′(w).l2·m·c〈OK[], w〉)).

This process can only do a request transition (say obtaining data V) to
SV

2,3, followed by a tau transition (corresponding to local communication)
at l2, becoming

S′
2,4 = (ν s, c)(C0 |R1 | Servers | l2·m·c〈OK[], V 〉),

where V stands for a generic result obtained by the request. After two
tau transitions at m, corresponding to migration and local communication
between C0 and m·c〈OK[], V 〉, we obtain

SV
2,5 = (ν s)(m·P {V /x} | (ν c)(!m·s(REF[], x).m·x·s〈b[], p, n, c〉) |R1 | Servers),

where we stop, with

S′
2

τ
−→→S′

2,2

l2·req〈p〉(V)
−−−−−−−−→ SV

2,3
τ
−→→S2,5V.

38

Referral. In the case of referral, the server performs two tau transitions at m
which correspond to the forwarding of the message referring location l2,
and to a second iteration of the referral loop of the client. The client then
sends a new call to l2 (a tau transition at l2) and becomes

S′
3,1 = (ν s, c)(C0 |R2 | l1·Server(s,a[],l2,b[]) | l2·s〈b[], p, m, c〉 | l2·Server(s,b[],l1,a[]))

where R2 is a deadlocked process containing the code for the two discarded
choice branches. From now on, the transitions are the same as in the case
for recruiting until we obtain the process

SV
3,4 = (ν s)(m·P {V /x} | (ν c)(!m·s(REF[], x).m·x·s〈b[], p, n, c〉) |R2 | Servers),

where we stop, with

S′
3

τ
−→→S′

3,2

l2·req〈p〉(V)
−−−−−−−−→ SV

3,3
τ
−→→SV

3,4.

Chaining. In the case of chaining, the reasoning is similar. The first transitions
correspond to a local communication at l1 starting the referral loop of the
server and a migration followed by communication at l2 to start the local
branch of that service. At this point, the process performs a request
transition analogous to the one in the previous cases, and tau transitions
corresponding to a local communication to get the result at l2, a migration
to l1, and a local communication to terminate the referral loop of the
server. The continuation process performs the transitions corresponding
to the migration of the final result to m and to the communication to
terminate the referral loop of the client, reaching

SV
4,3 = (ν s)(m·P {V /x} | (ν c)(!m·s(REF[], x).m·x·s〈b[], p, n, c〉) |R3 | Servers),

where R3 is a deadlocked process containing the code for the two discarded
choice branches and the residual of the referral loop at l1, and we stop,
with

S′
4

τ
−→→S′

4,1

l2·req〈p〉(V)
−−−−−−−−→ SV

4,2
τ
−→→SV

4,3.

Intuitively, S0, S
′
2, S

′
3 and S′

4 are all equivalent states, because they are struc-
turally equivalent to a process of the form

(ν s)(m·P {V /z} | Servers | δ).

The bisimulation relation we are looking for is obtained in three steps. First,
we pair each of the states S0, S1 preceding the request transition in the lts of
(ν s)Q2 with each S′

0, . . . , S
′
2,1, S

′
2,2, . . . , S

′
4,1 preceding a request transition in

the lts of (ν s)P2 (and vice versa). Second, we pair each of the states SV
2 , SV

3

following the request transition giving a particular result V in the lts of (ν s)Q2

with each SV
i,j following a request transition giving the same result in the lts

of (ν s)P2 (and vice versa). Third, we close the relation obtained so far under
parallel composition with the output messages derived by input transitions (as
shown explicitly in Example 3.17). The relation defined above can be shown
to be a domain bisimulation by formally checking the definition.

39

Figure 19: Rendez-vous

3

2

1

4

1

2

2

1

3

1

2

1

(a) Query-shipping. (b) Rendez-vous.

4.2 Rendez-vous and shipping

In the previous example, the infrastructure of servers implementing the dis-
tributed query patterns was fixed in advance, while the actual interactions be-
tween them were determined at run-time. The messages exchanged between
different locations were always service calls or their results. Now, we consider
a more flexible scenario which exploits code mobility.

Data-shipping and query-shipping are two traditional database techniques
for distributed query evaluation: the first consists of evaluating locally a query
on remote data by asking for the relevant data to be sent from the remote
sources; the second consists of delegating the evaluation of a query to one of
the remote sources in order to reduce the bandwidth used by data transfers.
In the next section, we propose a distributed query pattern, called rendez-vous,
which combines data and query shipping by using code mobility and private
channels. The idea is to give a client the ability to ship result-handling code
to another location, and to redirect the results of arbitrary service calls towards
the location containing the result-handler. Within an infrastructure of services
such as the one used above for chaining, recruiting and referral, this pattern can
help to save bandwidth by eliminating unnecessary data transfers.

4.2.1 The rendez-vous query pattern

We now compare the query-shipping and rendez-vous patterns by giving a con-
crete example where a client calls a remote service using as parameters two large
sets of data obtained by other remote service calls.

Suppose that on location l there is a specialized service l·Join(x1, x2, y, z)

which returns on channel z at location y the result of joining the data bound
to x1 with the data bound to x2. Suppose moreover that a client running
on location m wants to join some data obtained by query p at location l1 with
other data obtained by query q at location l2. We assume that l1 and l2 run

40

the services described in Section 4.1.2, that l1 (respectively l2) serves locally the
requests tagged by a[] (respectively b[]).

Query shipping. The client can use query shipping: it first invokes the
query services at locations l1 and l2, then passes on the results as inputs to the
join service on location l (see Figure 19(a)). Below we give the code of a client
implementing this approach:

m·ClientQ
def

= (ν c, c1, c2)

m·l1·s〈a[], p, m, c1〉

| m·l2·s〈b[], q, m, c2〉

| m·c1(OK[], x1).m·c2(OK[], x2).m·l·Join〈x1, x2, m, c〉
| m·c(z).m·P

It starts sending off the two service calls to l1 and l2 and then waits for the
results respectively on c1 and c2 to bind them to x1 and x2. The remaining
code is a standard service call for the join service at l with parameters x1 and
x2, binding the final result to z in the continuation m·P , which can be an
arbitrary process.

Rendez-vous. In order to save bandwidth, a better strategy is to request
the query services at l1 and l2 to forward their results to location l, and to
install at l a process which collects the two results and invokes the join service
locally, asking for the final result to be returned at location m (see Figure 19(b)).
Below we give a context implementing the general pattern, with two holes for
inserting the code to handle the intermediate results at l and the final result at
m. The code is parametric in the tags Ti and the queries pi used to determine
the partial results, the variables xi for binding them in the intermediate code
at “−1”, and the variable z for binding the final result in the continuation code
at “−2”:

m·RzV(T1,p1,x1,T2,p2,x2,z)[−]1[−]2
def

=

(ν c, c1, c2)

m·l1·s〈T1, p1, l, c1〉

| m·l2·s〈T2, p2, l, c2〉

| m·go l.l·c1(OK[], x1).l·c2(OK[], x2).−1

| m·c(z).−2

The code given above can be easily parameterized also on the number, the
names and the locations of the services involved, and can be adapted to return
the final results at an arbitrary location on an arbitrary channel.

We give below the code for a client, equivalent to ClientQ, which uses the
rendez-vous strategy:

m·ClientR
def

= m·RzV(a[],p,x1,b[],q,x2,z)[l·Join〈x1, x2, m, c〉][m·P]

The code for handling the intermediate results consists in a local call to the join
service, whereas the continuation is the same generic process used for ClientQ.

41

4.2.2 Equivalence of the patterns

Consider the process Servers defined in Section 4.1 consisting in the parallel
compositions of the servers for implementing chaining, recruiting and referral
at locations l1 and l2. The clients given above, each in parallel with Servers,
are equivalent in any network regardless of what locations are present.

(ν s)(m·ClientQ | Servers)∼∅ (ν s)(m·ClientR | Servers)

In order to make the proof more manageable, we adopt once again the sim-
plifying assumption that p and q do not contain scripts, and we use implicitly
the closure of bisimilarity under structural congruence.

First of all, we simplify the problem further by studying an equation relating
only the parts of the client processes above which are different from each other
and which play a significant role in the proof. The full result follows by exploiting
the closure of bisimilarity under parallel composition, restriction and structural
congruence (Theorem B.15 and Proposition B.1) to recover the processes of the
original statement.

Consider the definitions

m·ClientQ′ def

= (ν c1, c2)

m·l1·s〈a[], p, m, c1〉

| m·l2·s〈b[], q, m, c2〉

| m·c1(OK[], x1).m·c2(OK[], x2).m·l·Join〈x1, x2, m, c〉

m·ClientR′ def

= (ν c1, c2)

m·l1·s〈a[], p, l, c1〉

| m·l2·s〈b[], q, l, c2〉

| m·go l.l·c1(OK[], x1).l·c2(OK[], x2).l·Join〈x1, x2, m, c〉

Our goal is to build a domain bisimulation containing the pair

(
(ν s)(m·ClientQ′ | Servers) , (ν s)(m·ClientR′ | Servers)

)
.

The construction of the proof is summarized by the diagrams in Figure 20.
We represent the transitions of the two processes above in the form of lattices
of states related by the lts (to be read in the direction of the arrows). Like in
Section 4.1.2, we do not consider input transitions at this stage. The dotted
arcs indicate the states from the two diagrams which will be paired in the
bisimulation.

Building the transition diagrams. We describe the steps leading to the
transitions. Later, we will explain how to build the bisimulation relation.

We begin with (ν s)(m·ClientQ′ | Servers), corresponding to the top diagram
of Figure 20. The starting state is the one pointed to by an arrow on the left
of the diagram. We follow the top-left border of the diagram. Consider the
sub-processes m·l1·s〈a[], p, m, c1〉 and

l1·Local(s,a[])
def

= !l1·s(a[], x, y, z).(ν c′)(l1·reqx〈c
′〉 | l1·c

′(w).l1·y·z〈OK[], w〉).

Together they can perform, in order:

42

Figure 20: Bisimulation Diagrams

(ν s)(m·ClientQ′ | Servers)

l2·τ

l2·req〈q〉(V2)

l2·τ

m·τ

l2·τ

l1·τ

l1·req〈p〉(V1)
l1·τ

m·τ
m·τ

l1·τ

(ν s)(m·ClientR′ | Servers)

l·τ

m·τ

l2·τ

l2·req〈q〉(V2)

l2·τ

l·τ

l2·τ

l·τ

l·τ

l1·τ

l1·req〈p〉(V1)
l1·τ

l·τ
l·τ

l1·τ

1. a migration step from m to l1;

2. an internal communication on s at l1;

3. a request transition generating an output l1·c′〈V1〉, where V1 is the data
obtained by query p;

4. an internal communication on c′;

43

5. a migration to m.

We are left with the processes l1·Local(s,a[]) and m·c1〈Ok[], V1〉. The second

process can communicate with

m·c1(OK[], x1).m·c2(OK[], x2).m·l·Join〈x1, x2, m, c〉,

and we are left with

m·c2(OK[], x2).m·l·Join〈V1, x2, m, c〉.

Independently, m·l2·s〈b[], q, m, c2〉 and l2·Local(s,b[]) can mimic the 5 steps

above (represented in the diagram by the bottom-left border), becoming l2·Local(s,b[])
and m·c2〈Ok[], V2〉. These two independent groups of respectively 6 and 5 or-
dered transitions give a lattice of 42 processes related by the lts, where the
bottom element is the initial process, and the top element (at the intersection
between the top and bottom-right borders) is the process

(ν s)

m·c2〈Ok[], V2〉

| m·c2(OK[], x2).m·l·Join〈V1, x2, m, c〉
| Servers

This process can only perform a communication on channel c2 and a migration
from m to l, becoming the point on the right with the outgoing arrow

(ν s)(l·Join〈V1, V2, m, c〉 | Servers)

By a similar reasoning, we can derive for the process (ν s)(m·ClientQ′ | Servers)
the lattice of 36+42+1 processes reported in the bottom diagram of Figure 20.
The vertical transition possible from each of the 36 states in the lower layer of
the diagram is the initial migration step from m to l of the result handling code,
where

m·go l.l·c1(OK[], x1).l·c2(OK[], x2).l·Join〈x1, x2, m, c〉

becomes process

l·c1(OK[], x1).l·c2(OK[], x2).l·Join〈x1, x2, m, c〉.

Only when this transition has occurred, can communication on c1 at l happen
(hence the additional 7 states appearing only in the upper layer). The final
state, after communication on c2 at l has happened, is once again

(ν s)(l·Join〈V1, V2, m, c〉 | Servers).

Building the bisimulation relation. We now describe how to pair-up the
processes (states) of Figure 20 to build a suitable bisimulation. First, we relate
each of the 25 processes in the top diagram reachable from the initial one after
at most 4 transitions along each axis, with the two corresponding processes in
the bottom diagram (as shown by the left-most dotted arc in Figure 20). Then,

44

we relate each of the 10 processes obtained in the top diagram after 5 transitions
along one axis and at most 4 on the other axis with the corresponding 4 processes
in the bottom diagram (as shown by the second dotted arc in Figure 20). Next,
we relate each of the 5 processes obtained in the top diagram after 6 transitions
along the first axis and at most 4 along the second axis, with the corresponding 5
processes in the bottom diagram (as shown by the third dotted arc in Figure 20).
Then, we relate the two processes reachable after 11 and 12 transitions in the
top diagram with the 10 processes of the bottom diagram to which they are
joined by the fourth arc in Figure 20. We also relate the process obtained in
the top diagram after 5 transitions along each axis with the 8 processes at the
vertices of the corresponding cube in the bottom diagram. Finally, we associate
the final process in the top diagram with the final process in the bottom diagram
(the fifth dotted arc in Figure 20).

We take the symmetric closure of this relation, and we close it under parallel
composition with output messages like in Example 3.17. Note that in the dia-
gram we have shown the transitions for one possible choice of the data items V1

and V2 obtained as results of the request transition. To be completely formal,
the reasoning above must be quantified on all possible result values, by pairing
the corresponding states as in the example of Section 4.1.2.

Following a simulation step. We consider now an example to explain the
rationale behind the pairing of states in the relation. We focus on the simulation
of (ν s)(m·ClientQ′ | Servers) by (ν s)(m·ClientR′ | Servers) which is subtle. The
other direction is straightforward.

In the top diagram, the process connected to the leftmost dotted arc can

perform a weak transition
l1·req〈p〉(V1)
−−−−−−−−−→→{l1,m} to become the process connected

to the third dotted arc. In the bottom diagram, the top process connected to

the arc can simulate the step by performing a weak transition
l1·req〈p〉(V1)
−−−−−−−−−→→{l1}

to become the top-left process of those connected to the bottom end of the third
arc. The bottom process connected to the first arc cannot simulate the tran-
sition by reaching the same process, because that would involve using location

l. Instead, it performs a transition
l1·req〈p〉(V1)
−−−−−−−−−→→{l1} to become the bottom-left

process of those connected to the bottom end of the third arc, which is also
in the relation. Also the states reached by the process on the top diagram by
performing one or two transitions the less are related to the two states of the
bottom diagram mentioned above. The idea is that the last two tau transitions
at m cannot be matched by tau transitions at l, in fact they do not need to be
matched at all, so the processes in the bottom diagram stay the same.

The association between the states of the two diagrams above is not com-
pletely straightforward because we are showing the most general result in which
domain congruence holds for the empty domain (∼∅). In this case, we had to
make sure that for each transition between processes in the top diagram there
was a corresponding transition in the second diagram (possibly null) which re-
lated two processes bisimilar to the original ones involving only locations used
also by the original transition. The problems are due to the additional transi-

45

tions at l which are possible in the second diagram. If we tried to prove ∼{l}

instead, the association between processes would have been straightforward.

5 Conclusions

We previously introduced Xdπ [11], a calculus for describing the interaction be-
tween processes and active data across distributed locations. In this paper, we
have concentrated on Core Xdπ, the explicitly-located version of Xdπ, in order
to study process equivalences. Both calculi, and their formal relationship, are
studied in detail in [18]. In Section 3.1, we defined two contextual equivalences
for Core Xdπ networks and processes. Network equivalence dictates when two
networks can be considered indistinguishable by an observer looking at the in-
terface between processes and local stores. Process equivalence is such that,
when we place equivalent processes in equivalent network contexts, we obtain
equivalent networks. Both equivalences are parametric with respect to the lan-
guage used for querying and updating documents, and can be instantiated to
specific cases. Contextual equivalences are difficult to use directly. In Section 3.2
we defined domain bisimilarity, a coinductive equivalence relation which entails
process equivalence. Its non-standard definition, due to the fact that scripts
(which can appear in data) are part of the values, and process equivalences are
sensitive to the set of locations constituting the network. Our investigations
required new reasoning techniques, as well as well-established ones. Domain
bisimilarity is intrinsically incomplete, due to its being parametric on a query
and update language.

An important design choice, enabling us to study how properties of data can
be affected by process interaction, was to model data and processes at the same
level of abstraction, rather than encoding data into processes, as customary
in the π-calculus [20, 21, 22, 32]. Whilst such an encoding makes sense when
using the π-calculus as a low level concurrency modelling language, it becomes
a burden when reasoning about the coordination of higher-level processes. Our
choice also gave us the opportunity to keep our language modular with respect
to the choice of a query language, which can be easily adapted from the existing
literature on XML [5].

We delegate migration control to external security checks that can be su-
perimposed on the language. It would be interesting to include an explicit
construct to constrain process migration at the location level, perhaps based
on types, along the lines of [13]. We have indeed already considered such an
extension, which is not included in the present work because it is of limited in-
terest in the untyped setting. Migration has been included in Core Xdπ only to
maintain a closer correspondence with Xdπ, but is not necessary. In fact, each
located action already contains information about where it is to be executed.
For example, in the process below we can imagine that each input on ai at li is
followed by an implicit migration step li·go li+1 to the next location:

l1·a1(x).l2·a2(y).l3·a3〈x, y〉,

46

intuitively corresponds to

l1·a1(x).l1·go l2.l2·a2(y).l2·go l3.l3·a3〈x, y〉.

Overall, if explicit migration were to be discarded, the presentation of our model
would be slightly simpler. Nevertheless, we have decided to remain with our
original presentation because the encoding of Xdπ in Core Xdπ and its full ab-
straction (reported in [18]) are interesting results in their own right, confirming
the informal thesis of [7] that locations can be encoded, without divergence, in
the π-calculus with polyadic synchronization.

Using domain bisimilarity, in Section 4 we studied some communication pat-
terns employed by servers in distributed query systems to answer queries from
clients. Queries took the form of processes which retrieve and combine data from
different locations by using remote communication and local requests. In par-
ticular, we considered chaining, recruiting and referral, three distributed query
patterns studied in [29, 27] which are interesting because, despite their sim-
plicity, they can express ways of answering requests which are non-trivial and
display different levels of cooperation between the parties involved. By exploit-
ing process migration, we have proposed the rendez-vous query pattern which
can help to save bandwidth in certain applications. A challenging application
for future work, is to extend the distributed query pattern examples to model a
robust system where the servers return streams of results which can dry out or
be restarted, and show its equivalence to a simpler, non-streaming specification.
We believe that our techniques are suitable for this task, but we need automated
tools and symbolic techniques (such as the open bisimulation of Sangiorgi [31],
or up-to techniques [23] such as “up to confluent reduction”), to help produc-
ing manageable bisimilarity proofs. For example, already in the example given
in Section 4.2.2, the bisimulation relation was difficult to represent succinctly
because each state of one process could be related to several states of the other
process.

Studying types for Core Xdπ is ongoing work. A type system would be useful
to guarantee the absence of run-time errors, refine the behavioural equivalences,
guarantee the conformance of data trees to schemas, and study security prop-
erties. Given the use of mobile code in our systems, in the absence of trust, we
face the problem of protecting a host from a potentially malicious agent. This
problem could be tackled by type-checking each agent dynamically entering a
location [13] (possibly relying on the ability of a location to infer the type of the
agent), or by using the Proof Carrying Code [24] approach (to send a migrating
process along with its type), or by a combination of both techniques. A type
system usually restricts the number of terms that are admissible in a calculus.
Hence, the behavioural equivalences can become easier to verify (since there
can be less-counter-examples), and some laws that do not hold in the untyped
calculus become valid for the typed fragment. An obvious theoretical question
arising from the definition of a type system for Core Xdπ, is to understand how
the behavioural equivalences are affected by typing, for example along the lines
of [26, 12].

47

References

[1] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web: from
relations to semistructured data and XML. Morgan Kaufmann, 2000.

[2] Lucia Acciai and Michele Boreale. XPi: A typed process calculus for XML
messaging. In Proc. of FMOODS’05, 2005.

[3] Omar Benjelloun. Active XML: A data-centric perspective on Web services.
Ph.D. Thesis, Universtity of Paris XI, 2002.

[4] Gavin Bierman and Peter Sewell. Iota: a concurrent XML scripting lan-
guage with application to Home Area Networks. University of Cambridge
Technical Report 557, 2003.

[5] Angela Bonifati and Stefano Ceri. Comparative analysis of five XML query
languages. SIGMOD Record, 29(1):68–91, 2000.

[6] Allen Brown, Cosimo Laneve, and Greg Meredith. PiDuce: a process cal-
culus with native XML datatypes. In Proc. of WSFM’05. LNCS, 2005.

[7] Marco Carbone and Sergio Maffeis. On the expressive power of polyadic
synchronisation in π-calculus. Nordic Journal of Computing, 10(2):70–98,
2003.

[8] Giuseppe Castagna, Rocco De Nicola, and Daniele Varacca. Semantic sub-
typing for the pi-calculus. In Proc. of LICS’05, pages 92–101. IEEE Com-
puter Society Press, 2005.

[9] Murdoch J. Gabbay. The π-calculus in FM. In Thirty-five years of Au-
tomath, volume 28, pages 71–123. Kluwer Academic Press, 2003.

[10] Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract
syntax with variable binding. Formal Aspects of Computing, 13:341–363,
2002. Special issue in honour of Rod Burstall.

[11] Philippa Gardner and Sergio Maffeis. Modelling dynamic Web data. The-
oretical Computer Science, 342:104–131, 2005.

[12] Matthew Hennessy, Massimo Merro, and Julian Rathke. Towards a be-
havioural theory of access and mobility control in distributed systems.
Theoretical Computer Science, 322(3):615–669, 2004.

[13] Matthew Hennessy, Julian Rathke, and Nobuko Yoshida. safeDpi: A lan-
guage for controlling mobile code. In Proc. of FoSSaCS 2004, volume 2987
of LNCS, pages 241–256. Springer Verlag, 2004.

[14] Matthew Hennessy and James Riely. Resource access control in systems of
mobile agents. In HLCL ’98, volume 16.3 of ENTCS, pages 3–17. Elsevier
Science Publishers, 1998.

48

[15] Kohei Honda and Nobuko Yoshida. On reduction-based process semantics.
Theoretical Computer Science, 151(2):437–486, 1995.

[16] Haruo Hosoya and Benjamin C. Pierce. Xduce: A statically typed xml
processing language. ACM Transactions on Internet Technology, 3(2):117–
148, 2003.

[17] Alan Jeffrey and Julian Rathke. Contextual equivalence for higher-order
pi-calculus revisited. Logical Methods in Computer Science, 1(1:4), 2005.

[18] Sergio Maffeis. Dynamic Web Data: A Process Algebraic Approach. PhD
thesis, Imperial College London, September 2005.

[19] Sergio Maffeis and Philippa Gardner. Behavioural equivalences for dynamic
Web data. In Proc. of Ifip WCC-TCS’04, Kluwer Academic Press, pages
535–548, August 2004.

[20] Robin Milner. Communication and concurrency. Prentice-Hall, Inc., 1989.

[21] Robin Milner. Communicating and Mobile Systems: the π-Calculus. Cam-
bridge University Press, May 1999.

[22] Robin Milner, Joachim Parrow, and David Walker. A calculus of mo-
bile processes, I and II. Information and Computation, 100(1):1–40,41–77,
September 1992.

[23] Robin Milner and Davide Sangiorgi. Techniques of weak bisimulation up-to.
In Proc. of CONCUR ’92, volume 2987 of LNCS, pages 41–77. Springer-
Verlag, 1992.

[24] George Necula and Peter Lee. Safe, untrusted agents using proof-carrying
code. In Mobile Agents and Security, pages 61–91. Springer Verlag, 1998.

[25] David Neven, Thomas Schwentick, and Dan Suciu. Foundations of
semistructured data. Dagstuhl Seminar Proceedings 05061. Available on-
line from http://drops.dagstuhl.de/portals/05061/, 2005.

[26] Benjamin C. Pierce and Davide Sangiorgi. Behavioral equivalence in the
polymorphic pi-calculus. In Proc. of POPL ’97, pages 242–255. ACM Press,
1997.

[27] Arnaud Sahuguet. ubQL: A Distributed Query Language to Program Dis-
tributed Query Systems. PhD thesis, University of Pennsylvania, 2002.

[28] Arnaud Sahuguet, Benjamin Pierce, and Val Tannen. Distributed Query
Optimization: Can Mobile Agents Help? Unpublished draft, 2000.

[29] Arnaud Sahuguet and Val Tannen. ubql, a language for programming
distributed query systems. In Proc. of webDB’01, pages 37–42, 2001.

49

http://drops.dagstuhl.de/portals/05061/

[30] Davide Sangiorgi. Expressing mobility in process algebras: First-order and
higher-order paradigms. PhD thesis, University of Edinburgh, 1992.

[31] Davide Sangiorgi. A theory of bisimulation for the pi-calculus. In Proc. of
CONCUR ’93, pages 127–142, Springer Verlag, 1993.

[32] Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile
Processes. Cambridge University Press, 2001.

[33] Serge Abiteboul, et al. Active XML primer. INRIA Futurs, GEMO Report
number 275, 2003.

[34] Tim Sheard and Simon Peyton Jones. Template meta-programming for
haskell. In Proc. of Haskell ’02, pages 1–16. ACM Press, 2002.

[35] Walid Taha. Metaocaml: A compiled, type-safe multi-
stage programming language. Available online from
http://www.cs.rice.edu/taha/MetaOCaml/, 2001.

[36] UDDI. Universal Description, Discovery, and Integration of Business for
the Web (UDDI) 3.0. http://www.uddi.org, 2005.

[37] W3C. XML Path Language (XPath) Version 1.0.
http://w3.org/TR/xpath, 1999.

[38] W3C. Extensible Markup Language (XML) 1.0 (2nd edition).
http://www.w3.org/TR/REC-xml.html, 2000.

[39] W3C. Web Services Description Language (WSDL) 1.1.
http://w3.org/TR/wsdl, 2001.

[40] W3C. Web Services Activity. http://www.w3.org/2002/ws, 2002.

[41] W3C. Simple Object Acess Protocol (SOAP) Version 1.2.
http://w3.org/TR/SOAP, 2003.

[42] Nobuko Yoshida, Martin Berger, and Kohei Honda. Strong normalisation
in the π-calculus. Information and Computation, 191(2):145–202, 2004.

50

http://www.cs.rice.edu/taha/MetaOCaml/
http://www.uddi.org
http://w3.org/TR/xpath
http://www.w3.org/TR/REC-xml.html
http://w3.org/TR/wsdl
http://www.w3.org/2002/ws
http://w3.org/TR/SOAP

A Figures

Figure 21: Full structural congruence

(ν c)0 ≡ 0 (CStruct Res PNil)

c 6∈ fn(P) =⇒ P | (ν c)Q ≡ (ν c)(P |Q) (CStruct Res PPar)

(ν c)(ν d)P ≡ (ν d)(ν c)P (CStruct Res PRes)

P | (Q |Q′) ≡ (P |Q) |Q′
(CStruct Par Assoc)

P ≡ Q =⇒ Q ≡ P (CStruct Par Comm)

P |0 ≡ P (CStruct Par Zero)

P ≡ Q =⇒ (ν c)P ≡ (ν c)Q (CStruct Cong Res)

P ≡ P ′ =⇒ P |Q ≡ P ′ |Q (CStruct Cong Par)

P ≡ Q =⇒ l·a(π̃).P ≡ l·a(π̃).Q (CStruct Cong In)

P ≡ Q =⇒!l·a(π̃).P ≡!l·a(π̃).Q (CStruct Cong !In)

P ≡ Q =⇒ l·gom.P ≡ l·gom.Q (CStruct Cong Go)

P ≡ Q =⇒ (D, P) ≡ (D, Q) (CStruct Proc)

(ν c)0 ≡ 0 (Struct Res CNil)

c 6∈ fn(K) =⇒ K | (ν c)K ′ ≡ (ν c)(K |K ′) (Struct Res CPar)

(ν c)(ν d)K ≡ (ν d)(ν c)K (Struct Res CRes)

K | (K ′ |L) ≡ (K |K ′) |L (Struct Par CAssoc)

K ≡ K ′ =⇒ K ′ ≡ K (Struct Par CComm)

K |0 ≡ K (Struct Par CZero)

K ≡ K ′ =⇒ (ν c)K ≡ (ν c)K ′
(Struct Cong CRes)

K ≡ L =⇒ K |K ′ ≡ L |K ′
(Struct Cong CPar)

t ≡ t (CStruct Refl)

t ≡ t′ =⇒ t′ ≡ t (CStruct Symm)

t ≡ t′′ and t′′ ≡ t′ =⇒ t ≡ t′ (CStruct Trans)

Notation: t ranges over P or K.

51

Figure 22: Predicates wf , distinct and functions dom, cval

wf (0) wf (l·c〈ṽ〉)
wf (P) wf (Q)

wf (P |Q)

wf (P)

wf ((ν c)P)

dom(P) = {l} wf (P)

wf (l·c(π̃).P)

dom(P) = {l} wf (P)

wf (!l·c(π̃).P)

dom(P) = {m} wf (P)

wf (l·go m.m·P)
wf (A ◦ 〈l, ṽ〉) wf (l·reqp〈c〉)

distinct(π) distinct(π̃) fv(π) ∩ fv(π̃) = ∅

distinct(π, π̃)

distinct(A)

distinct(〈A〉)

distinct(E) distinct(T) fv(E) ∩ fv(T) = ∅

distinct(E pT)

distinct(V)

distinct(a[V])

distinct(∅) distinct(x)
fv(l) ∩ fv(p) = ∅

distinct(p@l)

dom(D) = domain of D dom(0) = ∅

dom(P |Q) = dom(P) ∪ dom(Q) dom((ν c)P) = dom(P)

dom(l·c〈ṽ〉) = {l} dom(l·c(π̃).P) = {l}

dom(!l·c(π̃).P) = {l} dom(l·go m.m·P) = {l}

dom(A ◦ 〈l, ṽ〉) = {l} dom(l·reqp〈c〉) = {l}

dom(−) = ∅ dom(CS [−] ⊎ D) = dom(D) ∪ dom(CS [−])

dom(P |CP [−])
dom(CP [−] |P)

}
= dom(P) ∪ dom(CP [−]) dom((ν c)CP [−]) = dom(CP [−])

t ∈ A ∪Q

cval (t) = {t}
cval (E pT) = cval (E) ∪ cval (T)

cval (a[V]) = cval (V) cval (〈A〉) = cval (A)

cval (p@l) = cval (p) cval (∅) = cval (l) = cval (x) = ∅

52

Figure 23: Free variables and free names for Core Xdπ

fv((x, π̃)P) = fv(P) \ fv(x, π̃) fv(0) = ∅

fv(P |Q) = fv(P) ∪ fv(Q) fv((ν c)P) = fv(P)

fv(l·c(π̃).l·P) = fv(l) ∪ fv(c) ∪ (fv(P) \ fv(π̃)) fv(l·c〈ṽ〉) = fv(l) ∪ fv(c) ∪ fv(ṽ)

fv(!l·c(π̃).l·P) = fv(l) ∪ fv(c) ∪ (fv(P) \ fv(π̃)) fv(l·go m.m·P) = fv(l) ∪ fv(m) ∪ fv(P)

fv(A ◦ 〈l, ṽ〉) = fv(A) ∪ fv(l) ∪ fv(ṽ) fv(l·reqp〈c〉) = fv(l) ∪ fv(p) ∪ fv(c)

fn(0) = ∅ fn(P |Q) = fn(P) ∪ fn(Q)

fn((ν c)P) = fn(P) \ {c} fn(l·c〈ṽ〉) = fn(c) ∪ fn(ṽ)

fn(l·c(π̃).P) = fn(c) ∪ fn(P) fn(!l·c(π̃).P) = fn(c) ∪ fn(P)

fn(l·go m.m·P) = fn(P) fn(A ◦ 〈l, ṽ〉) = fn(ṽ)

fn(l·reqp〈c〉) = fn(c) fn((D, P)) = fn(P)

fv(K |K ′) = fv(K) ∪ fv(K ′) fv((ν c)K) = fv(K)

fv(〈k ⇐ A〉) = ∅ fv(k) = ∅

fn(K |K ′) = fn(K) ∪ fn(K′) fn((ν c)K) = fn(K)

fn(〈k ⇐ A〉) = {k} fn(k) = {k}

Figure 24: Functions dom and scripts for configurations

dom(K |K′) = dom(K) ∪ dom(K ′) dom((ν c)K) = dom(K) dom(〈k ⇐ A〉) = ∅

scripts(v, ṽ) = scripts(v) ∪ scripts(ṽ) scripts({v/x}) = scripts(v)

scripts(E pT) = scripts(E) ∪ scripts(T) scripts(∅) = ∅

scripts(a[V]) = scripts(V) scripts(〈A〉) = {A}

scripts(A) = {A} scripts(c) = scripts(c) = ∅

scripts(p@l) = scripts(p) scripts(l) = ∅

Assumption: scripts on queries is given as part of the query language definition.

53

B Results and proofs

This section gives the formal proofs of the properties of domain bisimilarity.
To follow more easily certain common steps in the proofs, it may be helpful

to keep in mind that: private and service channel names are distinct; a script is
well-formed only if it has no free private channel or trigger names; configurations
are well-formed if for any trigger name there is at most one definition.

B.1 Basic properties

We study some basic properties of domain bisimilarity which will be useful to
prove the main results of congruence and soundness. A first property is that
structural congruence preserves bisimilarity. We will use this implicitly in the
rest of the section.

Proposition B.1 (Bisimilarity Up-To Structural Congruence) If K ≈Λ

L, K ≡ K ′ and L ≡ L′, then K ′ ≈Λ L′.

Proof. The family of relations ≈̇ with generic element

≈̇∆ = {(K ′, L′) : K ′ ≡ K ≈∆ L ≡ L′}

is a domain bisimulation. Follows by using rule (Lts Struct). 2

By definition of bisimilarity, the smaller the domain Λ, the less likely that
two processes are bisimilar. In fact, we need to check for matching actions first
in Λ, then in any Λ′ containing Λ. The underlying intuition is that if we can
rely on a larger set of locations to be connected to the network, then we can
perform more optimizations.

Proposition B.2 (Monotonicity) Domain bisimilarity is monotonic: for all
sets of locations Λ, Λ′, if Λ (Λ′ then ≈Λ(≈Λ′ .

Proof.

(⊆) Follows by Definition 3.14, noticing that using rule (Lts In) it is always
possible to make an input action at location l, for any l not in Λ.

(() If Λ (Λ′ then there exists an m such that m ∈ Λ′ \ Λ. Consider the two
processes P = l·a and Q = l·gom.m·l·a, where l 6= m. Clearly, P 6≈ΛQ

because P
l·a
−−→ 0 but there is no Q′ such that Q

l·a
։Λ Q′. To show that

P ≈Λ′ Q, let R∆ be the set containing the pairs

(M |P, M |Q), (M |P, M |m·l·a), (M, M)

for any M of the form
∏

0≤i≤n

li·ci〈ṽi〉, dom(M) ⊆ ∆

54

where scripts(ṽi) = ∅ for all i. The family ≈̇, where ≈̇∆ = R∆ ∪ (R∆)
−1

for each ∆ containing Λ′ and ≈̇∆ = ∅ otherwise, is a domain bisimulation
containing (P, Q), hence P ≈Λ′ Q.

2

The lemma given below is a standard technical lemma relating the transi-
tions in the lts with the syntactic structure of configurations, up-to structural
congruence. It is used in many proofs, sometimes implicitly.

Lemma B.3 (Transition Correspondence) The transitions of the lts are in
close correspondence with the structure of configurations.

1. K
(ea,ek)l·c〈ṽ〉
−−−−−−−→ K ′ if and only if K ≡ (ν ã)(L | l·c〈ṽ′〉) where c 6∈

{
ã
}
,{

ã
}
⊆ fn(ṽ′) and K ′ ≡ L |Θ

ek where X(ṽ′) = (ṽ; Θ
ek).

2. K
l·c(ṽ)
−−−−→ K ′ if and only if K ′ ≡ K | l·c〈ṽ〉, scripts(ṽ) = ∅ and rel (l·c(ṽ), K).

3. K
l·τ
−−→ K ′ if and only if

• K ≡ (ν ã)(L | l·c(π̃).P | l·c〈π̃σ〉) and K ′ ≡ (ν ã)(L |Pσ), or

• K ≡ (ν ã)(L | !l·c(π̃).P | l·c〈π̃σ〉) and K ′ ≡ (ν ã)(L | !l·c(π̃).P |Pσ),
or

• K ≡ (ν ã)(L | (x, π̃)P ◦ 〈l, π̃σ〉) and K ′ ≡ (ν ã)(L |P{l/x}σ), or

• K ≡ (ν ã)(L |m·go l.P) and K ′ ≡ (ν ã)(L |P).

4. K
(k̃)l·req〈p〉(T)
−−−−−−−−−−→ K ′ if and only if K ≡ (ν a)(L | l·reqp′〈c〉) and K ′ ≡

(ν a)(L | l·c〈T 〉 |Θ
ek) for some p′ such that XQ(p′) = (p, Θ

ek) and some T
such that scripts(T) = ∅ and T has the form r[U1]p . . . r[Un]p∅.

5. K
l·k(π̃σ)
−−−−−→ K ′ if and only if K ≡ L | 〈k ⇐ (x, π̃)P 〉 and K ′ ≡ K | 〈k ⇐

(x, π̃)P 〉 |P {l/x}σ and scripts(σ) = ∅.

6. K
(ea,ek)l·j〈ṽ〉
−−−−−−−→ K ′ if and only if K ≡ (ν ã)(L | j ◦ 〈l, ṽ′〉) where j 6∈

{
k̃
}
,{

ã
}
⊆ fn(ṽ′) and K ′ ≡ L |Θ

ek where X(ṽ′) = (ṽ; Θ
ek).

Proof.

(⇐=) Follows easily by definition of lts.

(=⇒) By induction on the depth n of the derivation tree in the premise for
the labelled transition. We give the case for bound output as an example
(point 1).

55

(n = 0) Suppose K
(ã, k̃)l·c〈ṽ〉
−−−−−−−−→ K ′ is derived by directly applying (Lts Out).

It must be the case that K = l·c〈ṽ′〉, where X(ṽ′) = (ṽ; Θ
ek) and

K ′ = Θ
ek.

(n = m + 1) A derivation of depth m + 1 for K
(ã, k̃)l·c〈ṽ〉
−−−−−−−−→ K ′ must be

obtained by applying one of the rules (Lts Res), (Lts Par), (Lts Struct) or
(Lts Open) to a derivation of depth m. The case for (Struct) is trivial.

If rule (Res) is applied then we must have that (ν d)K1
(ã, k̃)l·c〈ṽ〉
−−−−−−−−→

(ν d)K ′
1, where d 6∈ n((ã, k̃)l·c〈ṽ〉), follows from the premise

K1
(ã, k̃)l·c〈ṽ〉
−−−−−−−−→ K ′

1. By inductive hypothesis, K1 ≡ (ν ã)(L | l·c〈ṽ′〉)

where c 6∈
{
ã
}
,
{
ã
}
⊆ fn(ṽ′) and K ′

1 ≡ L |Θ
ek where X(ṽ′) = (ṽ; Θ

ek).

Since X does not affect session channels, d 6∈ fn(ṽ′) \
{
ã
}
. By struc-

tural congruence, (ν d)K1 ≡ (ν ã)((ν d)(L) | l·c〈ṽ′〉), and (ν d)K ′
1 ≡

(ν d)(L) |Θ
ek. The cases for (Par) and (Open) are similar.

2

The next step towards the main proofs consists of generalizing the variant
lemma of [15] to bijective substitutions (here called switchings) on channel and
trigger names.14 By using switchings rather than generic substitutions we obtain
a purely coinductive proof. Below we let a, b, c range over channel or trigger
names, and we consider only well-sorted substitutions (replacing channels for
channels and triggers for triggers).

Definition B.4 (Switching) Given a term t with a function fn returning its
free names, a switching a⌢b is a bijective substitution {c/a, a/b}{b/c} such that

c 6∈ fn(t) ∪ {a, b}. We denote by ea⌢eb the switching a1⌢b1 . . .an⌢bn where both ã

and b̃ are vectors of distinct names.

Observation B.5 (Switching Properties) Switching is self-dual K =
(Ka⌢b)a⌢b and symmetric Ka⌢b = Kb⌢a.

Proof. Follows from the definition of switching and substitution. 2

We note below that both the extraction and the transition relations do not
depend on specific names, hence they are fully compatible with switching, and
α-conversion.

Lemma B.6 (Switching Extraction) Extraction preserves switching:

if X(ṽ) = (ṽ′, Θ
ek) then X(ṽa⌢b) = (ṽ′

a⌢b
; (Θ

ek)a⌢b).

14Our approach is reminiscent of the permutation-based approach to abstract syntax devel-
oped by Gabbay and Pitts [10]. In particular, it may be interesting in future work to compare
our use of switchings with the work of Gabbay [9] on the π-calculus.

56

Proof. By a simple induction on the derivation of X(ṽ) = (ṽ′, Θ
ek), where the

base case for queries uses Definition 3.9. 2

Lemma B.7 (Switching Transitions) If K
αl−→ K ′ then Ka⌢b αa⌢b

l−−−→ K ′a⌢b
,

provided that bn(αl) ∩ fn(Ka⌢b) ∩ {a, b} = ∅.

Proof. By case analysis on αl, using Lemma B.3. We show the case for
the bound output when the name of the channel used for output occurs in the
switching; the other cases are simpler. Let ρ =a⌢b. Without loss of generality,
suppose that K

αl−→ K ′ where αl = (b, b̃)l·a〈ṽ′〉 and b does not occur in b̃.

By Lemma B.3, K ≡ (ν b, b̃)(L | l·a〈ṽ〉) where a 6∈
{
b, b̃
}

,
{
b, b̃
}

⊆ fn(ṽ) and

K ′ ≡ L |Θ
ek where X(ṽ) = (ṽ′; Θ

ek). Let c be a fresh name. By α-conversion

and Observation B.5, we have K ≡ (ν c, b̃)(L{c/b} | l·a〈ṽ{c/b}〉)ρρ. Applying the

inner switching, we obtain K ≡ (ν c, b̃)(L{c/b}ρ | l·b〈ṽ{c/b}ρ〉)ρ. Since {c/b} has
replaced b with c,

K ≡ (ν c, b̃)(L{c/b}{b/a} | l·b〈ṽ{c/b}{b/a}〉)ρ

Since a does not appear free anymore, we can alpha-convert c with a in the term
above, obtaining

K ≡ (ν a, b̃)(L{c/b}{b/a}{a/c} | l·b〈ṽ{c/b}{b/a}{a/c}〉)ρ

By definition of switching, K ≡ (ν a, b̃)(Lρ | l·b〈ṽρ〉)ρ. By Observation B.5,

Kρ ≡ (ν a, b̃)(Lρ | l·b〈ṽ〉ρ). By Lemma B.6, X(ṽρ) = (ṽ′ρ; Θ
ekρ). By (Lts Out),

Kρ
αlρ−−→ K ′ρ. 2

The lemma below shows that bisimilarity is closed with respect to switchings,
a property needed to show that it is transitive.

Lemma B.8 (Variant) (i) If K ≈Λ L then Ka⌢b ≈Λ La⌢b. (ii) If b 6∈
fn(K, L) then K ≈Λ L =⇒ K{b/a} ≈Λ L{b/a}.

Proof. (i) Let ρ =a⌢b. We show that the family ≈̇ with generic element
≈̇∆ = {(Kρ, Lρ) : K ≈∆ L} is a domain bisimulation. Assume K ≈∆ L for

some ∆. Suppose Kρ
αl−→ K ′ and l 6∈ ∆. By K ≈∆ L, K ≈∆∪{l} L, hence

(Kρ, Lρ) ∈ ≈̇∆∪{l}. Suppose instead l ∈ ∆ and rel (αl, Lρ). By Lemma B.7,

K
αlρ−−→ K ′ρ with rel (αlρ, L). By bisimilarity, L

αlρ−−→→∆L′ with K ′ρ ≈∆ L′. By

Lemma B.7, Lρ
αl−→→∆L′ρ. By definition, (K ′ρρ, L′ρ) ∈ ≈̇∆. We conclude be-

cause, by Observation B.5, K ′ρρ = K ′. (ii) Follows from (i) by definition of
switching. 2

Domain bisimilarity is an equivalence relation. This property is very im-
portant, because in the rest of the proofs in this section we will often rely on
symmetry and transitivity.

57

Proposition B.9 (Equivalence) Domain bisimilarity is an equivalence rela-
tion.

Proof. Reflexivity and symmetry are immediate. Transitivity states that if
K ≈Λ M and M ≈Λ L then K ≈Λ L. We show that the family ≈̇ with generic
element

≈̇∆ = {(K, L) : K ≈∆ M, M ≈∆ L}

is a domain bisimulation. Let ∆ be arbitrary and suppose K
αl−→ K ′ with l 6∈ ∆.

By Definition 3.14, K ≈∆∪{l} M and M ≈∆∪{l} L, hence (K, L) ∈ ≈̇∆∪{l}. If
l ∈ ∆ and rel (αl, L) then there are two cases, determined by the relevance
of αl to M . If rel (αl, M), the proof is straightforward. If αl is not relevant
to M , the action αl must necessarily have some bound names c̃ such that{
c̃
}

⊆ fn(M). By the second premise of (Lts Par) used to derive the bound

transition,
{
c̃
}
∩ fn(K) = ∅. Let ã have the same length as c̃, and be such that{

ã
}
∩fn(K, L, M) = ∅. By Lemma B.8, K = K{ea/ec} ≈∆ M{ea/ec} = M ′. By the

same argument, M ′ ≈∆ L. Since now rel (αl, M
′), the proof is straightforward.

2

B.2 Congruence

Our next objective is to show that domain bisimilarity is a congruence. We
already know that it is an equivalence relation (Proposition B.9), and that it
preserves switchings (Lemma B.8). We also know how to relate labelled transi-
tions with the syntactic structure of configurations (Lemma B.3). Using these
tools, it is pretty easy to show that bisimilarity is closed under the restriction
operator and, for processes, under prefixes. Most of the work in this section
is dedicated to show directly closure under parallel composition. In contrast,
Jeffrey and Rathke [17] for example show the soundness of their bisimilarity
with respect to barbed congruence by using an auxiliary reduction-closed re-
lation, which is closed under parallel composition. Showing the corresponding
completeness result, they derive that also bisimilarity is closed under parallel
composition. We cannot use their approach due to the inherent incompleteness
of domain bisimilarity (see Section 3.2.2).

Lemma B.10 (Restriction) Bisimilarity is closed under restriction: K ≈Λ

L =⇒ (ν c̃)K ≈Λ (ν c̃)L.

Proof. The family ≈̇ with generic element

≈̇∆ = {(K1, L1) : K1 ≡ (ν c̃)K, L1 ≡ (ν c̃)L, K ≈∆ L}

is a domain bisimulation. Suppose K1
αl−→ K ′

1. The proof is by cases on αl using
Lemma B.3. We show the case for αl = l·c(ṽ) which is the most interesting. If
l 6∈ ∆, the proof is easy. Suppose l ∈ ∆. By Lemma B.3, K ′

1 ≡ K1 | l·c〈ṽ〉. By
hypothesis, K1 ≡ (ν c̃)K, K ≈∆ L and L1 ≡ (ν c̃)L. By α-conversion, K1 ≡

58

Figure 25: Merge operator for configurations

〈〈P 〉〉 = P (Merge Proc)

〈〈(ν c)K〉〉 = (νc)〈〈K〉〉 (Merge Res)

〈〈K | 〈k ⇐ A〉〉〉 = 〈〈K〈k⇐A〉〉〉 (Merge Def)

(ν c̃′)K{ec′/ec} for a fresh tuple of names c̃′. By (Lts Struct), (Lts Par) and (Lts In),

(ν c̃′)K{ec′/ec}
l·c(ṽ)
−−−−→ (ν c̃′)(K{ec′/ec}) | l·c〈ṽ〉 and K{ec′/ec}

l·c(ṽ)
−−−−→ K{ec′/ec} | l·c〈ṽ〉.

By Lemma B.8, K{ec′/ec} ≈∆ L{ec′/ec}, hence L{ec′/ec}
l·c(ṽ)
−−−−→→∆L′ ≈∆ K{ec′/ec} | l·c〈ṽ〉.

By (Lts Res) and freshness of c̃′,

(ν c̃′)(L{ec′/ec})
l·c(ṽ)
−−−−→→∆(ν c̃′)L′. By (Lts Struct), (ν c̃)L

l·c(ṽ)
−−−−→→∆L′

1 ≡ (ν c̃′)L′.

By α-conversion and freshness of c̃′, K ′
1 ≡ (ν c′)(K{c′/c} | l·c〈ṽ〉), hence K ′

1≈̇∆L′
1.

2

Following Jeffrey and Rathke [17], we define in Figure 25 a merge operator
〈〈−〉〉 to reconstruct processes from configurations. The merge operator of [17]
though is partial, due to a potential circularity of references between trigger
names and definitions. Since scripted processes in definitions cannot contain
triggers, our merge operator is total. This operator plays a substantial rôle in
showing that ≈Λ is closed under parallel composition.

Before showing the properties of the merge operator, we illustrate three
simple properties of the extraction function: it does not remove trigger names;
it associates a definition to each trigger name it introduces; and we can recover
the initial term by substituting the new definitions in the result term.

Lemma B.11 (Extraction Properties) Suppose X(ṽ) = (ṽ′; Θ
ek), The fol-

lowing properties hold:

1. if k ∈ fn(ṽ) then k ∈ fn(ṽ′);

2. if k ∈ fn(ṽ′) \
{
k̃
}

then k ∈ fn(ṽ);

3. ṽ = ṽ′
Θ

ek

.

Proof. By induction on the structure of ṽ, using Definition 3.9. 2

Since definitions can appear only at the top level and scripts cannot contain
free private channel names, we can always use structural equivalence to factor
any configuration into the parallel composition of a process and a group of
definitions. We will make substantial use of this property to show closure under
parallel composition of ≈Λ. Merging a configuration corresponds to substituting
the script in each definition for the corresponding trigger names in the process

59

term of the configuration. Hence, the merge operator preserves the transitions
that do not involve triggers names for which there is a corresponding definition.
Moreover, if two configurations are bisimilar, then they must define the same
trigger names.

Lemma B.12 (Merge Properties) The merge operator satisfies the follow-
ing properties:

1. factorization: for any well-formed K, there exist a process P and a con-

figuration Θ
ek such that K ≡ P |Θ

ek and 〈〈K〉〉 ≡ PΘ
ek

;

2. transition preservation: for any Θ
ek, Θ

ej, if P
αl−→ P ′ and

{
k̃, j̃
}
∩n(αl) = ∅

then 〈〈P |Θ
ek〉〉 |Θ

ej αl−→ 〈〈P ′ |Θ
ek〉〉 |Θ

ej;

3. If K ≈Λ L then K ≡ P |Θ
ek and L ≡ Q |Ω

ek, and each pair of cor-
responding definitions contains scripts with the same patterns: that is,

〈k ⇐ (π̃)Pk〉 in Θ
ek implies 〈k ⇐ (π̃)Qk〉 in Ω

ek, and viceversa.

Proof.

1. By induction on the structure of K.

2. Follows from syntactic reasoning using Lemma B.3. We show the case for

request transitions, the other ones are similar. If P
(h̃)l·req〈p〉(T)
−−−−−−−−−−→ P ′, by

point(4) of Lemma B.3, P ≡ (ν a)(Q | l·reqp′〈c〉) and P ′ ≡ (ν a)(Q | l·c〈T 〉 |Θ
eh)

for some p′ such that XQ(p′) = (p, Θ
eh) and some appropriate T . By hy-

pothesis,
{
k̃, j̃
}
∩ n(αl) = ∅, hence

{
k̃, j̃
}
∩ fn(p) = ∅. By point (1) of

Lemma B.11,
{

k̃, j̃
}
∩ fn(p′) = ∅. Since definitions do not contain free

trigger names,
{
k̃, j̃
}
∩ fn(Θ

eh) = ∅. By definition of merge, 〈〈P |Θ
ek〉〉 ≡

(ν a)(〈〈Q |Θ
ek〉〉 | l·reqp′〈c〉) and 〈〈P ′ |Θ

ek〉〉 ≡ (ν a)(〈〈Q |Θ
ek〉〉 | l·c〈T 〉 |Θ

eh). By

definition of lts, 〈〈P |Θ
ek〉〉

(h̃)l·req〈p〉(T)
−−−−−−−−−−→ 〈〈P ′ |Θ

ek〉〉 and 〈〈P |Θ
ek〉〉 |Θ

ej (h̃)l·req〈p〉(T)
−−−−−−−−−−→

〈〈P ′ |Θ
ek〉〉 |Θ

ej .

3. By point (1) above, K ≡ P |Θ
ek and L ≡ Q |Θ

ej. The argument is by

contradiction. Suppose that Θ
ek ≡ Θ

eh | 〈k ⇐ (π̃)Pk〉 and k /∈ j̃. By

definition of lts, K
l·k(π̃σ)
−−−−−→ K ′ but, since k /∈ j̃, it is not possible to derive

a corresponding (weak) transition for L, which contradicts K ≈Λ L. The
case for a different pattern π is analogous.

2

The lemma below analyzes the relationship between bisimilarity and def-
initions. We start noting that if we remove from the two configurations the

60

definitions for the same set of names, bisimilarity is preserved. Then, we note
that the configurations obtained by duplicating existing definitions, using arbi-
trary fresh trigger names, remain bisimilar. These properties will be useful for
showing that bisimilarity is closed under parallel composition.

Lemma B.13 (Bisimilarity and Definitions) Let K and L be well-formed
configurations.

1. If K |Θ
ek ≈Λ L |Ω

ek then K ≈Λ L.

2. If K |Θ
ek ≈Λ L |Ω

ek then K |Θ
ek |Θ

ekxej ≈Λ L |Ω
ek |Ω

ekxej.

Proof.

1. The family ≈̇ with generic element

≈̇∆ =
{
(K, L) : K |Θ

ek ≈∆ L |Ω
ek
}

is a domain bisimulation. Follows by analyzing the transitions of K. The

intuition is every transition by K |Θ
ek originating from K must be matched

by L |Ω
ek using a (weak) transition originating from L alone, since Θ

ek

and Ω
ek can perform only (Lts Def) transitions. We show the most inter-

esting case, for (Lts Req). Suppose K
(h̃)l·req〈p〉(T)
−−−−−−−−−−→ K ′. By hypothesis,

K |Θ
ek ≈Λ L |Ω

ek for some k̃ such that
{
h̃
}
∩
{
k̃
}

= ∅. By definition of lts,

K |Θ
ek (h̃)l·req〈p〉(T)
−−−−−−−−−−→ K ′ |Θ

ek. By bisimilarity, L |Ω
ek τ
−→→L′ (h̃)l·req〈p〉(T)

−−−−−−−−−−→

L′′ τ
−→→L′′′ and K ′ |Θ

ek ≈Λ L′′′. By definition of lts and by induction on

the number of tau transitions, we have that L
τ
−→→L1 where L′ = L1 |Ω

ek.

The transition L1 |Ω
ek (h̃)l·req〈p〉(T)
−−−−−−−−−−→ L′′ must follow by repeatedly ap-

plying (Lts Par), starting from the premise L1
(h̃)l·req〈p〉(T)
−−−−−−−−−−→ L2, hence

L′′ = L2 |Ω
ek. Again, by definition of lts and by induction on the number

of tau transitions, we have that L2
τ
−→→L3 where L′′′ = L3 |Ω

ek. By com-

posing the transitions, we obtain L
(h̃)l·req〈p〉(T)
−−−−−−−−−−→→L3, and we conclude

because K ′ |Θ
ek ≈Λ L3 |Ω

ek.

2. The family ≈̇ with generic element

≈̇∆ =
{

(K |Θ
ek |Θ

ekxej , L |Ω
ek |Ω

ekxej) : K |Θ
ek ≈∆ L |Ω

ek
}

is a domain bisimulation. Follows by analysis of the transitions of

K |Θ
ek |Θ

ekxej , by syntactic reasoning using Lemma B.7. The transitions
by K and by L are treated like in point (1) above. The intuition for the

(Lts Def) transitions originated from Θ
ekxej is that since Θ

ek and Θ
ekxej have

61

the same transitions up-to renaming of triggers, every process generated

by trigger transitions from Θ
ekxej could also be generated by Θ

ek alone. All

that is needed is to match the transition of Θ
ekxej with a corresponding

one by Ω
ekxej , which exists because K |Θ

ek ≈Λ L |Ω
ek and Ω

ek can match

Θ
ek.

2

Lemma B.14 (Parallel Composition) Bisimilarity is closed under parallel
composition: K ≈Λ L =⇒ K |M ≈Λ L |M .

Proof. In order to show closure under parallel composition, we will identify a
domain bisimulation ≈̇ containing all the pairs of the form (K |M, L |M) such
that K is bisimilar to L, plus any other pair of terms generated by the labelled
transition system. In particular, we must handle with care the terms generated
by a communication steps between K (or L) and M involving scripts. The idea
is that we represent explicitly, using the merge operators, the definitions corre-
sponding to the communicated scripts. More in detail, by point 3 of Lemma B.12

we know that, since K ≈Λ L, then K ≡ Θ
ek |P ′ and L ≡ Ω

ek |Q′ for some appro-

priate P ′, Θ
ek, Q′, Ω

ek. Moreover, using point 1 of Lemma B.12 we can rewrite
P ′ ≡ 〈〈P |Θ em〉〉 and Q′ ≡ 〈〈Q |Ω em〉〉 for some appropriate P, Θ em, Q, Ω em. That is,

K ≡ Θ
ek | 〈〈P |Θ em〉〉 and L ≡ Ω

ek | 〈〈Q |Ω em〉〉. Again by point 1 of Lemma B.12,

we also know that M ≡ 〈〈Φen |R〉〉 |Φ
ei for some R, Φ

ei, Φen. The terms Θ em, Ω em

and Φen represent definitions corresponding to the scripts that respectively K, L
or M may communicate in a future transition.

Our candidate bisimulation is the family ≈̇ with generic element ≈̇∆ defined
(up to ≡) by the pairs

(
(ν c̃)(Θ

ek | 〈〈P |Θ em |Φ
eh〉〉 | 〈〈Θ

ej |Φen |R〉〉 |Φ
ei), (ν c̃)(Ω

ek | 〈〈Q |Ω em |Φ
eh〉〉 | 〈〈Ω

ej |Φen |R〉〉 |Φ
ei)
)

(where all the h̃, ĩ, j̃, k̃, m̃, m̃ are distinct) such that

Θ
ek |Θ em |Θ

ej |P ≈∆ Ω
ek |Ω em |Ω

ej |Q

The extra terms Φ
eh, Θ

ej, Ω
ej represent the definitions corresponding to the scripts

that respectively M, K or L may have communicated using a labelled transition
to either K or L, or to M . Note that {(K |M, L |M) : K ≈∆ L} is contained

in ≈̇∆ (up to ≡), by choosing Φ
eh = Θ

ej = Φ
ej = 0 and c̃ empty.

We now proceed to show that ≈̇ is a domain bisimulation. For readability,
we omit the subscript ∆ on weak transitions

a
−→→∆, and we use the abbreviations

K∗ = (ν c̃)(Θ
ek | 〈〈P |Θ em |Φ

eh〉〉 | 〈〈Θ
ej |Φen |R〉〉 |Φ

ei)

L∗ = (ν c̃)(Ω
ek | 〈〈Q |Ω em |Φ

eh〉〉 | 〈〈Ω
ej |Φen |R〉〉 |Φ

ei)

K1 = Θ
ek |Θ em |Θ

ej |P

L1 = Ω
ek |Ω em |Ω

ej |Q

62

Suppose K∗
αl−→ K ′. The proof is by cases on αl, where we only consider

the subcases with l ∈ ∆ as the others follow from the definition of domain
bisimulation.

For each case we use Lemma B.3, and pattern matching between the syntax
of the terms above and of the terms in the lemma. We start with the case for
input transitions, which is the easiest.

• (K∗
l·k(π̃σ)
−−−−−→ K ′): We aim to bring the script instantiated by the transition

inside the leftmost merge operator in K∗. In order to do so, we need to
avoid both the capture of private channel names in σ by c̃, and clashes
between trigger names in sigma and the vectors h̃, m̃. We split the proof
in two cases, depending on whether k ∈ k̃ or k ∈ ĩ.

– Θ
ek l·k(π̃σ)
−−−−−→ Θ

ek |P kσ, where 〈k ⇐ (π̃)P k〉 is in Θ
ek. To avoid clashes

between trigger names, we choose for some fresh h̃′, m̃′ and, using
standard properties of substitution, rewrite

〈〈P |Θ em |Φ
eh〉〉 = 〈〈P{fm′/ em}{eh′/eh} |Θ

emx
fm′

|Φ
ehx

eh′

〉〉

Let ρ = {fm′/ em}{eh′/eh}{
ec′/ec} for a fresh c̃′, and recall that the private

channel names c̃ cannot appear free in definitions (by well-formedness
of scripts). By α-conversion,

K ′ ≡ (ν c̃′)(Θ
ek | 〈〈P kσ |Pρ |Θ emx

fm′

|Φ
ehx

eh′

〉〉 | 〈〈Θ
ej |Φen |R{ec′/ec}〉〉 |Φ

ei)

By K1 ≈∆ L1 and Lemma B.8, K2 = K1ρ ≈∆ L1ρ = L2. Since

Θ
ek occurs in K2, K2

l·k(π̃σ)
−−−−−→ K2 |P kσ = K ′

2. By K2 ≈∆ L2,

L2
τ
−→→

l·k(π̃σ)
−−−−−→

τ
−→→Ω

ek |Ω emx
fm′

|Ω
ej |Q′ = L′

2 with L′
2 ≈∆ K ′

2. We
will now use the transition between L2 and L′

2 to derive an appro-

priate one between L∗ and L′. Since the action
l·k(π̃σ)
−−−−−→ necessarily

originated by Ω
ek, which contains the definition 〈k ⇐ (π̃)Qk〉, we can

reorder the reduction obtaining

L2
l·k(π̃σ)
−−−−−→ Ω

ek |Ω emx
fm′

|Ω
ej |Qρ |Qkσ

τ
−→→Ω

ek |Ω emx
fm′

|Ω
ej |Q′

By α-conversion, properties of substitutions and definition of lts,

L∗
l·k(π̃σ)
−−−−−→ L′′

L′′ = (ν c̃′)(Ω
ek | 〈〈Qkσ |Qρ |Ω emx

fm′

|Φ
ehx

eh′

〉〉 | 〈〈Ω
ej |Φen |R{ec′/ec}〉〉 |Φ

ei)

where we have brought Qk inside the leftmost merge operator, in
order to preserve the general structure that we have imposed on

63

terms in ≈̇∆. By syntactical reasoning, it must be the case that
Qkσ |Qρ

τ
−→→Q′. By point 2 of Lemma B.12,

L′′ τ
−→→ (ν c̃′)(Ω

ek | 〈〈Q′ |Ω emx
fm′

|Φ
ehx

eh′

〉〉 | 〈〈Ω
ej |Φen |R{ec′/ec}〉〉 |Φ

ei) = L′

and we conclude because, since K ′
2 ≈Λ L′

2, we have (K ′, L′) ∈ ≈̇∆.

– Φ
ei l·k(π̃σ)
−−−−−→ Φ

ei |Rkσ: similar to the previous case but simpler, since,
instead of using the hypothesis K1 ≈∆ L1, it is enough to use syn-
tactical reasoning.

• (K∗
l·a(ṽ)
−−−−→ K ′): Similar to the previous case.

• (K∗
(eb∗,fk∗)l·a〈ṽ〉
−−−−−−−−→ K ′): We distinguish two cases, depending on whether

the output transition is originated by R or P .

– Suppose 〈〈Θ
ej |Φen |R〉〉

(eb′, ek′,ei′)l·a〈ṽ〉
−−−−−−−−−→ K0, where c̃ = c̃′, b̃ and b̃∗ =

b̃, b̃′. We assume that the trigger names k̃′ come from Θ
ej, whereas

the ĩ′ come from Φen or R. Unfolding the definition of merge, by

Lemma B.3 we have that 〈〈Θ
ej |Φen |R〉〉 = RΘ

ejΦen

≡ (ν b̃′)(l·a〈ṽ1
Θ

ej

〉 |RΘ
ejΦen

1)

with
{
b̃′
}
⊆ fn(ṽ1), where ṽ1 = ṽ∗

Φen

for some appropriate ṽ∗. More-

over, we have K0 ≡ RΘ
ejΦen

1 |Θ
ek′

|Φ
ei′ , where X(ṽ1

Θ
ej

) = (ṽ; Θ
ek′

|Φ
ei′).

To find out how to split the definitions produced by the extraction

into Θ
ek′

and Φ
ei′ , we assume to have first applied the extraction

X(ṽ1) = (ṽ′; Φ
ei′), which ensures that the definitions in Φ

ei′ come from

R or Φen. Then, applying X(ṽ1
Θ

ej

) = (ṽ; Θ
ek′

|Φ
ei′) we can infer that

for each 〈k′ ⇐ P0〉 in Θ
ek′

there is 〈j ⇐ P0〉 in Θ
ej, since, by points 1

and 2 of Lemma B.11, we have that ṽ{ek′/ej′} = ṽ′, where j̃′ are the

triggers in j̃ occurring also in v1. With this information, by definition
of lts, we can rearrange K ′ to respect our general pattern

K ′ ≡ (ν c̃′)(Θ
ek |Θ

ek′

| 〈〈P |Θ em |Φ
eh〉〉 | 〈〈Θ

ej |Φen |R1〉〉 |Φ
ei |Φ

ei′)

By applying the same argument to L∗, 〈〈Ω
ej |Φen |R〉〉 = RΩ

ejΦen

and

RΩ
ejΦen

≡ (ν b̃′)(l·a〈ṽ1
Ω

ej

〉 |RΩ
ejΦen

1)
(eb′, ek′,ei′)l·a〈ṽ〉
−−−−−−−−−→ RΩ

ejΦen

1 |Ω
ek′

|Φ
ei′

for X(ṽ1
Ω

ej

) = (ṽ; Ω
ek′

|Φ
ei′), where for each 〈k′ ⇐ Q0〉 in Ω

ek′

there is

a 〈j ⇐ Q0〉 in Ω
ej . By definition of lts,

L∗
(eb,eb′, ek′,ei′)l·a〈ṽ〉
−−−−−−−−−−→ L′ ≡ (ν c̃′)(Ω

ek |Ω
ek′

| 〈〈Q |Ω em |Φ
eh〉〉 | 〈〈Ω

ej |Φen |R1〉〉 |Φ
ei |Φ

ei′)

64

By K1 ≈∆ L1 and point 2 of Lemma B.13,

Θ
ek |Θ

ek′

|Θ em |Θ
ej |P ≈∆ Ω

ek |Ω
ek′

|Ω em |Ω
ej |Q

and we conclude because (K ′, L′) ∈ ≈̇∆.

– Suppose 〈〈P |Θ em |Φ
eh〉〉

(eb′, ek′,fm′,ei′)l·a〈ṽ〉
−−−−−−−−−−−→ K0, where c̃ = c̃′, b̃ and b̃∗ =

b̃, b̃′. We assume ĩ′ are the new trigger names from Φ
eh, m̃′ the ones

from Θ em and k̃′ the ones from P . Differently from the previous case,
we need to keep track explicitly of the triggers coming from Θ em,
which will correspond in L∗ to triggers coming from Ω em. We have
that

〈〈P |Θ em |Φ
eh〉〉 = PΘfmΦ

eh

≡ (ν b̃′)(l·a〈ṽ1
ΘfmΦ

eh

〉 |PΘfmΦ
eh

1)

with
{
b̃′
}

⊆ fn(ṽ), and K0 ≡ PΘfmΦ
eh

1 |Θ
ek′

|Θ
fm′

|Φ
ei′ , where we as-

sume that k̃′, m̃′ and ĩ′ are disjoint from k̃, m̃ and ĩ. Moreover, we
have

X(ṽ1
ΘfmΦ

eh

) = (ṽ; Θ
ek′

|Θ
fm′

|Φ
ei′)

X(ṽ1
Θfm

) = (ṽ′′; Θ
ek′

|Θ
fm′

)

X(ṽ1) = (ṽ′; Θ
ek′

)

Hence, by Lemma B.11, for each 〈i′ ⇐ R0〉 in Φ
ei′ there is 〈h ⇐ R0〉

in Φ
eh, and for each 〈m′ ⇐ P0〉 in Θ

fm′

there is 〈m ⇐ P0〉 in Θ em. By
definition of lts,

K ′ ≡ (ν c̃′)(Θ
ek |Θ

ek′

|Θ
fm′

| 〈〈P1 |Θ
em |Φ

eh〉〉 | 〈〈Θ
ej |Φen |R〉〉 |Φ

ei |Φ
ei′)

where we have used the information gathered above on Θ
ek′

, Θ
fm′

and

Φ
ei′ to decide how to rearrange K ′, in order to fit our general pattern.

By definition of lts,

K1
(eb′, ek′)l·a〈ṽ′〉
−−−−−−−−→ P1 |Θ

ek |Θ
ek′

|Θ em |Θ
ej = K ′

1

where
{
b̃′
}
⊆ fn(ṽ′) and X(ṽ1) = (ṽ′; Θ

ek′

). By K1 ≈∆ L1 and point
3 of Lemma B.12,

L1
(eb′, ek′)l·a〈ṽ′〉
−−−−−−−−→→Q1 |Ω

ek |Ω
ek′

|Ω em |Ω
ej = L′

1

and K ′
1 ≈∆ L′

1. We now derive a corresponding transition for L∗.
Since none of the transitions above can be generated by a definition,
we can deduce

Q
τ
−→→ (ν b̃′)(l·a〈ṽ2〉 |Q2) = Q3, Q3

(eb′, ek′)l·a〈ṽ′〉
−−−−−−−−→ Q2 |Ω

ek′ τ
−→→Q1 |Ω

ek′

65

where X(ṽ2) = (ṽ′; Ω
ek′

). By Lemma B.11, ṽ2 has exactly the same

occurrences of trigger names in h̃ as ṽ′, which are the same of ṽ1. By

point 2 of Lemma B.12, 〈〈Q |Ω em |Φ
eh〉〉

τ
−→→〈〈Q3 |Ω em |Φ

eh〉〉. By syntac-
tical reasoning

〈〈Q3 |Ω
em |Φ

eh〉〉
(eb′, ek′,fm′,ei′)l·a〈ṽ〉
−−−−−−−−−−−→ 〈〈Q2 |Ω

em |Φ
eh〉〉 |Ω

ek′

|Ω
fm′

|Φ
ei′

where X(ṽ2
ΩfmΦ

eh

) = (ṽ; Ω
ek′

|Ω
fm′

|Φ
ei′). By point 2 of Lemma B.12

and by definition of lts,

〈〈Q2 |Ω
em |Φ

eh〉〉 |Ω
ek′

|Ω
fm′

|Φ
ei′ τ
−→→〈〈Q1 |Ω

em |Φ
eh〉〉 |Ω

ek′

|Ω
fm′

|Φ
ei′

By definition of lts, L∗
(eb,eb′, ek′,fm′,ei′)l·a〈ṽ〉
−−−−−−−−−−−−→→L′ and

L′ ≡ (ν c̃′)(Ω
ek |Ω

ek′

|Ω
fm′

| 〈〈Q1 |Ω
em |Φ

eh〉〉 | 〈〈Ω
ej |Φen |R〉〉 |Φ

ei |Φ
ei′)

By K ′
1 ≈∆ L′

1 and point 2 of Lemma B.13,

Θ
ek |Θ

ek′

|Θ
fm′

|Θ em |Θ
ej |P1 ≈∆ Ω

ek |Ω
ek′

|Ω
fm′

|Ω em |Ω
ej |Q1

and we conclude because (K ′, L′) ∈ ≈̇∆.

• (K∗
(eb∗,fk∗)l·j〈ṽ〉
−−−−−−−−→ K ′): Analogous to the case for output.

• (K∗
(k̃)l·req〈p〉(T)
−−−−−−−−−−→ K ′): By combining the argument for input and output.

• (K∗
l·τ
−−→ K ′): First we analyze the case where the transition is determined

by the interaction of R and P , then the case where the transition is derived
by R or P in isolation.

Interaction. We analyze the transitions resulting from an interaction
between R and P . We must distinguish four cases depending on whether
R or P receives the value, and whether the value is received by a replicated

input. Suppose 〈〈P |Θ em |Φ
eh〉〉 | 〈〈Θ

ej |Φen |R〉〉
τ
−→ K0.

Replicated input by R: By Lemma B.3, we have that

RΘ
ejΦen

≡ (ν b̃)(RΘ
ejΦen

1 | !l·a(π̃).RΘ
ejΦen

2)

where b̃ is fresh with respect to P and c̃, and a 6∈
{
b̃
}
. We also

have that PΘfmΦ
eh

≡ (ν c̃′)(l·a〈ṽΘfmΦ
eh

〉 |PΘfmΦ
eh

1), where c̃′ is fresh with

respect to R and c̃,
{
c̃′
}
⊆ fn(vΘfmΦ

eh

), and ṽΘfmΦ
eh

= π̃σ′. Moreover,

K0 ≡ (ν c̃′)(PΘfmΦ
eh

1 | (ν b̃)(RΘ
ejΦen

1 | !l·a(π̃).RΘ
ejΦen

2 |RΘ
ejΦen

2 σ′))

66

Since scripts cannot contain free private names,
{
c̃′
}
⊆ fn(vΘfmΦ

eh

)

implies
{
c̃′
}
⊆ fn(v). Since patterns cannot contain scripts (or trigger

names), there exists σ such that ṽ = π̃σ and σΘfmΦ
eh

= σ′. We want
to derive a configuration K ′ of the right form. By definition of merge,

PΘfmΦ
eh

1 = 〈〈P1 |Θ em |Φ
eh〉〉. Before rewriting

R∗ = (ν b̃)(RΘ
ejΦen

1 | !l·a(π̃).RΘ
ejΦen

2 |RΘ
ejΦen

2 σΘfmΦ
eh

)

in terms of the merge operator, we want to to be explicit about

the scripts occurring in ṽ. Suppose X(ṽ) = (ṽ′; Θ
ek′

) for fresh k̃′.

Since ṽ = π̃σ and ṽ′ differs from ṽ only for having triggers replac-
ing scripts, there exists ρ such that ṽ′ = π̃ρ. By Lemma B.11,

ṽ = ṽ′
Θ

fk′

. Since ṽ = π̃σ, ṽ′ = π̃ρ and π̃ cannot contain trigger

names, we have that σ = ρΘ
fk′

, and both ṽ and ṽ′ have the same
occurrences of triggers in h̃ and m̃. Without loss of generality, we as-

sume that
{

j̃, ñ
}
∩fn(ρ) = ∅. By standard properties of substitution,

RΘ
ejΦen

2 σΘfmΦ
eh

= (R2ρ{
fm′/ em}Θfmx

gm′

Φ
ehΘ

fk′

)Θ
ejΦen

, where the vector m̃′

is fresh. By definition of merge,

R∗ = 〈〈Θ
ej |Θ

ek′

|Θ emx
fm′

|Φen | (ν b̃)(R1 | !l·a(π̃).R2 |R2ρ{
fm′/ em}Φ

eh

)〉〉

By definition of lts,

K ′ ≡ (ν c̃, c̃′)(Θ
ek | 〈〈P1 |Θ

em |Φ
eh〉〉 |R∗ |Φ

ei)

By definition of lts,

K1
(ec′, ek′)l·a〈ṽ′〉
−−−−−−−−→ P1 |Θ

ej |Θ em |Θ
ek |Θ

ek′

= K ′
1

where, as noted above, X(ṽ) = (ṽ′; Θ
ek′

). By K1 ≈Λ L1,

L1
τ
−→→ (ν c̃′)(Q1 | l·a〈ṽ2〉) |Ω

ej |Ω em |Ω
ek = L2

L2
(ec′, ek′)l·a〈ṽ′〉
−−−−−−−−→ Q1 |Ω

ej |Ω em |Ω
ek |Ω

ek′

= L3

where X(ṽ2) = (ṽ′; Ω
ek′

), and

L3
τ
−→→Q′ |Ω

ej |Ω em |Ω
ek |Ω

ek′

= L′
1

with K ′
1 ≈Λ L′

1. By point 2 of Lemma B.12, since Q
τ
−→→ (ν c̃′)(Q1 | l·a〈ṽ2〉),

〈〈Q |Ω em |Φ
eh〉〉

τ
−→→〈〈(ν c̃′)(Q1 | l·a〈ṽ2〉) |Ω

em |Φ
eh〉〉 = (ν c̃′)(QΦ

eh

1 | l·a〈ṽ2
ΩfmΦ

eh

〉)

67

By syntactical reasoning, L∗
τ
−→→

τ
−→ L′′, where

L′′ = (ν c̃, c̃′)(Ω
ek | 〈〈Q1 |Ω

em |Φ
eh〉〉 |R′

∗ |Φ
ei)

where, using an argument similar to that used for R∗,

R′
∗ = 〈〈Ω

ej |Ω
ek′

|Ω emx
fm′

|Φen | (ν b̃)(R1 | !l·a(π̃).R2 |R2ρ{
fm′/ em}Φ

eh

)〉〉

Note that R′
∗ is essentially R∗ where each Θ is replaced by an Ω. By

point 2 of Lemma B.12, since Q1
τ
−→→Q′ we have that L′′ τ

−→→L′, where

L′ ≡ (ν c̃, c̃′)(Ω
ek | 〈〈Q′ |Ω em |Φ

eh〉〉 |R′
∗ |Φ

ei)

By K ′
1 ≈∆ L′

1 and point 2 of Lemma B.13,

Θ
ek |Θ

ek′

|Θ emx
fm′

|Θ em |Θ
ej |P1 ≈∆ Ω

ek |Ω
ek′

|Ω emx
fm′

|Ω em |Ω
ej |Q1

and we conclude because (K ′, L′) ∈ ≈̇∆.

Input by R: analogous to the previous case.

Input by P : By Lemma B.3, we have RΦenΘ
ej

≡ (ν c̃′)(RΦenΘ
ej

1 | l·a〈ṽΘ
ej

〉),

where c̃′ is fresh and
{
c̃′
}
⊆ fn(ṽ). Moreover, PΘfmΦ

eh

≡ (ν b̃)(PΘfmΦ
eh

1 | l·a(π̃).PΘfmΦ
eh

2),

where b̃ is fresh and ṽ = π̃σ (since scripts and trigger names cannot

appear in patterns). Additionally, K0 ≡ (ν c̃′)((ν b̃)(PΘfmΦ
eh

1 |PΘfmΦ
eh

2 σΘ
ej

) |RΦenΘ
ej

1).
In order to derive a K ′ of a suitable form, we follow a strategy similar

to the one used in the case of replicated input by R. Let ṽ′ = ṽ{ej′/ej}

for some vector of fresh triggers j̃′. Since ṽ = π̃σ and π̃ cannot con-

tain triggers, ṽ′ = π̃σ{ej′/ej}. By standard properties of substitution,

ṽΘ
ej

= ṽ′
Θ

ejx
fj′

. Suppose X(ṽ′) = (ṽ1; Φ
eh′

) for some fresh h̃′ such

that ṽ1 = π̃ρ. By Lemma B.11 and by freshness of j̃′, h̃′, we have

ṽ′ = ṽ1
Φ

fh′

, ρ = σ{ej′/ej}
Φ

fh′

and PΘfmΦ
eh

2 σΘ
ej

= P2ρ
Θ

ejx
fj′Φ

fh′

ΘfmΦ
eh

. By
definition of lts,

K ′ ≡ (ν c̃, c̃′)(Θ
ek | 〈〈(ν b̃)(P1 |P2ρ) |Θ em |Θ

ejx
ej′ |Φ

eh |Φ
eh′

〉〉 | 〈〈Θ
ej |Φen |R1〉〉 |Φ

ei)

By definition of lts,

K1
l·a(ṽ1)
−−−−−→

τ
−→ (ν b̃)(P1 |P2ρ) |Ω

ej |Θ em |Θ
ek = K ′

1

By K1 ≈Λ L1 and composing the weak actions of L1,

L1
l·a(ṽ1)
−−−−−→→Q′ |Ω

ej |Ω em |Ω
ek = L′

1

and K ′
1 ≈Λ L′

1. By syntactical reasoning,

Q
τ
−→→Q1

l·a(ṽ1)
−−−−−→ Q1 | l·a〈ṽ1〉

τ
−→→Q′

68

By syntactical reasoning and by point 2 of Lemma B.12,

L∗
τ
−→→ (ν c̃)(Ω

ek | 〈〈Q1 |Ω
em |Φ

eh〉〉 | 〈〈Ω
ej |Φen |R〉〉 |Φ

ei) = L′′

By structural congruence, by ṽ′ = ṽ1
Φ

fh′

and ṽΩ
ej

= ṽ′
Ω

ejx
fj′

, and since

RΦenΩ
ej

≡ (ν c̃′)(RΦenΩ
ej

1 | l·a〈ṽΩ
ej

〉),

L′′ ≡ (ν c̃, c̃′)(Ω
ek | 〈〈Q1 | l·a〈ṽ1〉 |Ω

em |Ω
ejx

ej′ |Φ
eh |Φ

eh′

〉〉 | 〈〈Ω
ej |Φen |R1〉〉 |Φ

ei)

By point 2 of Lemma B.12, L′′ τ
−→→L′ where

L′ = (ν c̃, c̃′)(Ω
ek | 〈〈Q′ |Ω em |Ω

ejx
ej′ |Φ

eh |Φ
eh′

〉〉 | 〈〈Ω
ej |Φen |R1〉〉 |Φ

ei)

By point 2 of Lemma B.13, K ′
1 |Θ

ejx
ej′ ≈Λ L′

1 |Ω
ejx

ej′ . and we con-
clude because (K ′, L′) ∈ ≈̇∆.

Replicated input by P : similar to the previous case.

Isolation. We show the case for R, as the case for P is similar. There

are four ways to derive the sub-transition 〈〈Θ
ej |Φen |R〉〉

l·τ
−−→ M1.

– RΦenΘ
ej

≡ (ν ã)(RΦenΘ
ej

1 | l·c(π̃).RΦenΘ
ej

2 | l·c〈π̃σΦenΘ
ej

〉) and

M1 ≡ (ν ã)(RΦenΘ
ej

1 | (RΦenΘ
ej

2)σΦenΘ
ej

) ≡ 〈〈Θ
ej |Φen | (ν ã)(R1 |R2σ)〉〉

By syntactical reasoning, we can also derive

〈〈Ω
ej |Φen |R〉〉 ≡ (ν ã)(RΦenΩ

ej

1 | l·c(π̃).RΦenΩ
ej

2 | l·c〈π̃σΦenΩ
ej

〉)

l·τ
−−→ (ν ã)(RΦenΩ

ej

1 | (RΦenΩ
ej

2)σΦenΩ
ej

) = 〈〈Ω
ej |Φen | (ν ã)(R1 |R2σ)〉〉

and we conclude because, by definition of lts, we can use this transi-
tion to derive a transition for L∗ matching the one of K∗, with the
resulting states K ′ and L′ still in ≈̇∆.

– RΦenΘ
ej

≡ (ν ã)(RΦenΘ
ej

1 | !l·c(π̃).RΦenΘ
ej

2 | l·c〈π̃σΦenΘ
ej

〉): analogous to the
previous case.

– RΦenΘ
ej

≡ (ν ã)(RΦenΘ
ej

1 |m·go l.RΦenΘ
ej

2): similar to the previous cases,

although the reasoning on RΦenΘ
ej

2 is carried on at location l.

– RΦenΘ
ej

≡ (ν ã)(RΦenΘ
ej

1 | (x, π̃)R2 ◦ 〈l, π̃σΦenΘ
ej

〉) and

M1 ≡ (ν ã)(RΦenΘ
ej

1 |R2{l/x}σ
ΦenΘ

ej

)

where we have used the equation RΦenΘ
ej

2 = R2, which holds because

scripts cannot contain trigger names. In order for RΦenΘ
ej

to have the
form given above, R itself must have one of the three forms given
below.

69

1. If R ≡ (ν ã)(R1 | (x, π̃)R2 ◦ 〈l, π̃σ〉) then, by definition of script,

((x, π̃)R2◦〈l, π̃σ〉)Φ
enΘ

ej

= (x, π̃)R2◦〈l, π̃σΦenΘ
ej

〉 and the reasoning
is similar to the cases above.

2. If R ≡ (ν ã)(R1 | k◦〈l, π̃σ〉) where Φen = Φfn1 | 〈k ⇐ (x, π̃)R2〉 |Φfn2

with ñ1, k, ñ2 = ñ, then we have

RΦenΘ
ej

≡ (ν ã)(RΦenΘ
ej

1 | (x, π̃)R2 ◦ 〈l, π̃σΦenΘ
ej

〉)

RΦenΩ
ej

≡ (ν ã)(RΦenΩ
ej

1 | (x, π̃)R2 ◦ 〈l, π̃σΦenΩ
ej

〉)

and the reasoning is once again analogous to case 1.

3. The last and most interesting case arises if R ≡ (ν ã)(R1 | k ◦

〈l, π̃σ〉) and Θ
ej = Θ

ej1 | 〈k ⇐ (x, π̃)R2〉 |Θ
ej2 , where j̃1, k, j̃2 = j̃.

In this case, a tau transition by K∗ corresponds to a (Lts Def)

transition by K1. Without loss of generality, we assume that
the names ã are fresh. In order to derive an appropriate K ′, we
need to be explicit about the scripts in π̃σ. Hence, suppose that

X(π̃σ) = (π̃ρ; Φ
en′

) where ñ′ is fresh.

By definition of lts, K∗
τ
−→ K ′ where

K ′ = (ν c̃)(Θ
ek | 〈〈P |Θ em |Φ

eh〉〉 | 〈〈(ν ã)(R1 |R2{l/x}ρ) |Φ
en′

|Φen |Θ
ej〉〉 |Φ

ei)

Since R2 comes from the definition 〈k ⇐ (x, π̃)R2〉 which is part

of Θ
ej (hence was originated by some previous transition of P),

we need to move R2R2{l/x}ρ inside the leftmost merge operator.

K ′ ≡ (ν c̃, ã)(Θ
ek | 〈〈P |R2{l/x}ρ |Θ

em |Φ
eh |Φ

en′

〉〉 | 〈〈R1 |Φ
en |Θ

ej〉〉 |Φ
ei)

With K ′ of this form, we will derive a transition from K1 to
a suitable K ′

1, and use the bisimilarity hypothesis to derive a
matching transition for L∗. By definition of lts,

K1
l·k(π̃ρ)
−−−−−→ Θ

ek |Θ em |Θ
ej |P |R2{l/x}ρ = K ′

1

By K1 ≈Λ L1 and by point 3 of Lemma B.12 we know that

Ω
ej = Ω

ej1 | 〈k ⇐ (x, π̃′)R3〉 |Ω
ej2 . Using our standard reasoning

on the hypothesis K1 ≈Λ L1, we can derive the transition

L1
l·k(π̃ρ)
−−−−−→→Ω

ek |Ω em |Ω
ej |Q′ = L′

1 ≈Λ K ′
1

Breaking down the transition into
τ
−→→

l·k(π̃ρ)
−−−−−→→

τ
−→→ and using

point 2 of Lemma B.12, we obtain

L∗
τ
−→→L′ = (ν c̃, ã)(Ω

ek | 〈〈Q′ |Ω em |Φ
eh |Φ

en′

〉〉 | 〈〈R1 |Φ
en |Ω

ej〉〉 |Φ
ei)

and hence (K ′, L′) ∈ ≈̇∆.

70

2

We can finally prove that domain bisimilarity is a congruence on both con-
figurations and, more importantly, open processes. The extension to open pro-
cesses does not involve significant difficulties because, by definition, bisimilarity
for open processes is closed under arbitrary substitutions.

Theorem B.15 (Congruence) Domain bisimilarity is a congruence:

1. for all configuration contexts C ∈ KW (Figure 11), if K ≈Λ L then
C[K] ≈Λ C[L];

2. for all extended process contexts C ∈ Kf (Definition 3.5), if P ≈Λ Q then
C[P] ≈Λ C[Q].

Proof.

1. By Lemma B.10, K ≈Λ L =⇒ (ν c̃)K ≈Λ (ν c̃)L. By Lemma B.14,
K ≈Λ L =⇒ K |M ≈Λ L |M . By Proposition B.1, K |M ≈Λ L |M =⇒
M |K ≈Λ M |L.

2. We need to show that

(a) P ≈Λ Q =⇒ (ν c̃)P ≈Λ (ν c̃)Q;

(b) P ≈Λ Q =⇒ P |R ≈Λ Q |R;

(c) P ≈Λ Q =⇒ l·c(π̃).P ≈Λ l·c(π̃).Q;

(d) P ≈Λ Q =⇒!l·c(π̃).P ≈Λ!l·c(π̃).Q;

(e) P ≈Λ Q =⇒ l·gom.P ≈Λ l·gom.Q.

By definition P ≈Λ Q if and only if Pσ ≈Λ Qσ for all closing substitutions
σ.

(a) Consider an arbitrary closing substitution σ for P , Q. Since we as-

sume substitutions to be capture avoiding, ((ν c̃)P)σ ≡ (ν c̃′)(P {c′/c}σ)

and ((ν c̃)Q)σ ≡ (ν c̃′)(Q{c′/c}σ). By hypothesis, P {c′/c}σ ≈Λ

Q{c′/c}σ. By point 1 above, (ν c̃′)(P {c′/c}σ) ≈Λ (ν c̃′)(Q{c′/c}σ).

(b) Similar to point 2a, using point 1.

(c) Let the family ≈̇ have the generic element

≈̇∆ = ≈∆ ∪{(l·c(π̃).P σ |M, l·c(π̃).Qσ |M) : Pσ ≈∆ Qσ}

where σ is a closing substitution, M =
∏

n≥0

li·ci〈ṽi〉 and scripts(ṽi) = ∅.

The thesis follows by showing that ≈̇ is a domain bisimulation, using
point 1.

(d) Similar to point 2c, using also transitivity of ≈∆ (Lemma B.9).

71

(e) Let the family ≈̇ have the generic element ≈̇∆ given by

if m 6∈ ∆: ≈̇∆ =≈∆ ∪{(l·gom.Pσ |M, l·gom.Qσ |M) : P σ ≈∆ Qσ}

if m ∈ ∆: ≈̇∆ =≈∆ ∪

(l·gom.P σ |M, l·gom.Qσ |M),
(P σ |M, l·gom.Qσ |M),
(l·gom.Pσ |M, Qσ |M)

: Pσ ≈∆ Qσ

where dom(M) ⊆ ∆, σ is a closing substitution, M =
∏

n≥0

li·ci〈ṽi〉 and

scripts(ṽi) = ∅. The family ≈̇ is a domain bisimulation.

2

B.3 Soundness

In this section, we show soundness : if two processes are domain bisimilar with
respect to Λ, then they are request congruent with respect to Λ. Our strategy
for proving the soundness of ≈Λ consists of three main steps. First, we define
an auxiliary relation ≍ on Core Xdπ networks such that two networks are in the
relation if the corresponding processes, in parallel with the definitions extracted
from the scripts in the corresponding stores, are Λ-bisimilar. Second we show
that ≍ is included in ∼Λ , and third we use ≍ as a stepping stone to relate ≈Λ

with ∼Λ .
We begin comparing reductions and transitions. If a configuration K can

perform a tau transition to become K ′, then the process 〈〈K〉〉 obtained by
merging the configuration can reduce to 〈〈K ′〉〉, for any store compatible with
K. On the other hand, if a process does a reduction step then, according to the
lts, it can either perform a request transition or a tau transition, depending on
whether (CRed Request) was used in the derivation.

Lemma B.16 (Reductions) Tau transitions between configurations imply re-
ductions between the corresponding networks. For all D, K such that dom(K) ⊆
dom(D)

1. if K
l·τ
−−→ K ′ then (D, 〈〈K〉〉) → (D, 〈〈K ′〉〉);

2. if K
τ
−→→ΛK ′ then (D, 〈〈K〉〉) →∗ (D, 〈〈K ′〉〉).

Proof. Point 1 follows from point 2 of Lemma B.12. Point 2 follows from point
1 noticing that tau transitions do not increase the domain of a configuration. 2

Lemma B.17 (Transitions) Reductions between networks imply tau or re-
quest transitions between the corresponding configurations. If (D, P) −→ (D1, P1)
then one of the following holds:

1. P
l·τ
−−→ P1 and D = {l 7→ T } ⊎ E = D1;

72

2. P
(k̃)l·req〈p′〉(T ′)
−−−−−−−−−−−→ P2 |Θ

ek and

P1 ≡ 〈〈P2 |Θ
ei〉〉,

D = {l 7→ T } ⊎ E,
D1 = {l 7→ T1} ⊎ E,

where there exists a

path p such that

E(p, T) = (T1, U1 p...pUn p∅),

X(p) = (p′; Θ
ek),

X(r[U1]p . . . pr[Un]p∅) = (T ′; Θ
ei).

Proof. Both points follow by induction on the depth of the derivation tree of
(D, P) → (D1, P1), using points 3 and 4 of Lemma B.3 to derive the labelled
transition from the structure of the processes as revealed by the reduction step.
2

We know by Definition 3.8 that a script-independent query language, starting
from queries and input trees which are equivalent up-to substitutions of scripts
for trigger names, gives equivalent output trees and results. The lemma below
relates this notion to extraction.

Lemma B.18 (Extraction) Consider an arbitrary script-independent query

language. Suppose X(T) = (T0; Θ
ek), X(p) = (p′; Θ

ej), E(p, T) = (T1, U1 p...pUn p∅),

X(r[U1]p...pr[Un]p∅) = (T ′; Θ
ei) and X(T1) = (T ′

1; Θ
eh).

1. for any definition 〈k ⇐ A〉 occurring in Θ
ei or Θ

eh there must be a definition

〈k′ ⇐ A〉 occurring in Θ
ek or Θ

ej.

2. if X(S) = (T0; Ω
ek) and X(q) = (p′; Ω

ej), then E(q, S) = (S1; V1 p...pVn p∅),

X(r[V1]p . . . pr[Vn]p∅) = (T ′; Ω
ei) and X(S1) = (T ′

1; Ω
eh).

Proof. Both points follow easily by Definition 3.8 and Observation 3.10. 2

We need to compare domain bisimilarity, which is defined on configurations
without taking the store into account, with domain congruence, which is de-
fined using reduction congruence (a relation on networks). We can do this
because bisimilarity requires a correspondence between matching actions of two
configurations, which implies that the stores in the networks corresponding to
the configurations can diverge, after each reduction step, only up-to equivalent
scripts. To formalize this intuition, we introduce the relation ≍ on networks.

Definition B.19 (Candidate Relation) We define the candidate relation ≍
by

≍
def

=
{
((D, P), (B, Q)) : X(D) = (D′; Θ

ek), X(B) = (D′; Ω
ek), P |Θ

ek ≈Λ Q |Ω
ek
}

where dom(B) = dom(D) = Λ and (fn(P) ∪ fn(Q)) ∩ Y = ∅.

We can show now that the candidate relation ≍ is sound with respect to ≃ ,
the relation on networks inducing request congruence.

73

Lemma B.20 The candidate relation is contained in the reduction congruence
induced by request observables: ≍ ⊆ ≃ .

Proof. By definition of ≃ , we need to show that ≍ is (1) observation preserv-
ing, (2) contextual, and (3) reduction-closed.

1. Follows from the definition of request observables, the hypothesis P |Θ
ek ≈Λ

Q |Ω
ek and Lemma B.16, noticing that Θ

ek and Ω
ek cannot perform tau or

request transitions.

2. Consider a generic reduction context (E ⊎ −, (ν c̃)(R | −)). By definition

of X, X(E⊎D) = (E′⊎D′; Φ
ej |Θ

ek) and X(E⊎B) = (E′⊎D′; Φ
ej |Ω

ek). By

hypothesis, P |Θ
ek ≈Λ Q |Ω

ek. By Theorem B.15, (ν c̃)(R |P |Θ
ek |Φ

ej) ≈Λ

(ν c̃)(R |Q |Ω
ek |Φ

ej). Since scripts have no private channel names, by struc-

tural congruence we conclude that (ν c̃)(R |P) |Θ
ek |Φ

ej ≈Λ (ν c̃)(R |Q) |Ω
ek |Φ

ej .

3. Suppose (D, P) ≍ (B, Q) and (D, P) −→ (D1, P1). We need to show that

(B, Q)
∗

−→ (B1, Q1) ≍ (D1, P1). For convenience, we report below what
(D, P) ≍ (B, Q) means:

X(D) = (D′; Θ
ek) (1)

X(B) = (D′; Ω
ek) (2)

P |Θ
ek ≈Λ Q |Ω

ek (3)

dom(B) = dom(D) = Λ (4)

By Lemma B.17, there are two cases:

1. P
l·τ
−−→ P1 and D = {l 7→ T } ⊎ E = D1.

By definition of lts and by equation (3) above,

P |Θ
ek l·τ

−−−−→ P1 |Θ
ek

≈Λ

y
x≈Λ

Q |Ω
ek τ
−→→Λ

l·τ
−−−−→

τ
−→→ΛQ1 |Ω

ek

By syntactical reasoning, Q
l·τ
−−→→ΛQ1.

By Lemma B.16, (B, Q) →∗ (B, Q1). By (1), (2) and (4) we conclude
with

(D, P) −−−−→ (D, P1)

≍

y
x≍

(B, Q)
∗

−−−−→ (B, Q1)

74

2. P
(j̃)l·req〈p′〉(T ′)
−−−−−−−−−−−→ P2 |Θ

ej where

P1 ≡ 〈〈P2 |Θ
ei〉〉,

D = {l 7→ T } ⊎ E,
D1 = {l 7→ T1} ⊎ E

for some p such that

E(p, T) = (T1, U1 p...pUn p∅),

X(p) = (p′; Θ
ej),

X(r[U1]p . . . pr[Un]p∅) = (T ′; Θ
ei).

By definition of lts and by (3),

P |Θ
ek (j̃)l·req〈p′〉(T ′)

−−−−−−−−−−−→ P2 |Θ
ej |Θ

ek

≈Λ

y
x≈Λ

Q |Ω
ek τ
−→→Λ

(j̃)l·req〈p′〉(T ′)
−−−−−−−−−−−→

τ
−→→ΛQ2 |Ω

ej |Ω
ek

(5)

By syntactical reasoning and point 4 of Lemma B.3,

Q
τ
−→→Λ(ν a)(Q3 | l·reqq〈c〉) = QM (6)

QM
(j̃)l·req〈p′〉(T ′)
−−−−−−−−−−−→ (ν a)(Q3 | l·c〈T ′〉) |Ω

ej τ
−→→ΛQ2 |Ω

ej (7)

for some q such that X(q) = (p′; Ω
ej). By (6) and Lemma B.16,

(B, Q)
∗

−→ (B, QM).

By (1) and definition of X,

D′ = {l 7→ T0} ⊎ E0 and Θ
ek = Θ

ek′

|Θ
fk′′

where X({l 7→ T }) = ({l 7→ T0}; Θ
ek′

) and X(E) = (E0; Θ
fk′′

).

By by (2) and a similar argument,

B = {l 7→ S} ⊎ E′ and Ω
ek = Ω

ek′

|Ω
fk′′

where X({l 7→ S}) = ({l 7→ T0}; Ω
ek′

) and X(E′) = (E0; Ω
fk′′

).

Suppose X(T1) = (T ′
1; Θ

eh). By point 2 of Lemma B.18,

E(q, S) = (S1; V1 p...pVn p∅),

X(r[V1]p . . . pr[Vn]p∅) = (T ′; Ω
ei),

X(S1) = (T ′
1; Ω

eh).

75

By definition of reduction,

(B, QM) −→ (B1, (ν a)(Q3 | l·c〈r[V1]p . . . pr[Vn]p∅〉))

By point 2 of Lemma B.17,

(ν a)(Q3 | l·c〈r[V1]p . . . pr[Vn]p∅〉) ≡ 〈〈(ν a)(Q3 | l·c〈T ′〉) |Ω
ei〉〉

By syntactical reasoning on (7),

(ν a)(Q3 | l·c〈T ′〉)
τ
−→→ΛQ2.

By point 2 of Lemma B.12,

〈〈(ν a)(Q3 | l·c〈T ′〉) |Ω
ei〉〉

τ
−→→Λ〈〈Q2 |Ω

ei〉〉.

By Lemma B.16,

(B1, 〈〈(ν a)(Q3 | l·c〈T ′〉) |Ω
ei〉〉)

∗
−→ (B1, 〈〈Q2 |Ω

ei〉〉)

By two applications of point 1 of Lemma B.18, for any definition

〈i ⇐ A〉 occurring in Θ
ei or Θ

eh there must be a definition 〈k′ ⇐ A〉

occurring in Θ
ek or Θ

ej.

By (5) and by Lemma B.13,

P2 |Θ
eh |Θ

fk′′

|Θ
ei ≈Λ Q2 |Ω

eh |Ω
fk′′

|Ω
ei.

By using an appropriate instance of the candidate bisimulation in
the proof of Lemma B.14,

〈〈P2 |Θ
ei〉〉 |Θ

eh |Θ
fk′′

≈Λ 〈〈Q2 |Ω
ei〉〉 |Ω

eh |Ω
fk′′

,

and we conclude with

(D, P) −−−−→ (D1, 〈〈P2 |Θ
ei〉〉)

≍

y
x≍

(B, Q)
∗

−−−−→ (B1, 〈〈Q2 |Ω
ei〉〉)

2

We have now all the tools necessary to show the soundness of domain bisim-
ilarity with respect to request congruence.

Theorem B.21 (Soundness) Domain bisimilarity is a sound approximation
of the domain congruence induced by request observables: for all Λ, P , Q where
(fn(P) ∪ fn(Q)) ∩ Y = ∅, if P ≈Λ Q then P ∼Λ Q.

76

Proof. By definition, P ∼Λ Q if and only if (D, C[P])≃ (D, C[Q]) for all
D, C[−] such that Λ ⊆ dom(D) and C[−] does not contain trigger names and
is closing for both P and Q. Suppose P ≈Λ Q and consider some arbi-

trary D, C[−] respecting the conditions above. Suppose X(D) = (D′; Θ
ek).

By point 2 of Theorem B.15, C[P] |Θ
ek ≈Λ C[Q] |Θ

ek. By Definition B.19,
(D, C[P]) ≍ (D, C[Q]). By Lemma B.20, (D, C[P])≃ (D, C[Q]). 2

77

	Introduction
	The Xd calculus
	Equivalences
	Related work

	Core Xd
	Trees, data and queries
	Networks
	Processes
	Reduction semantics
	A sample query and update language
	Example: Web services

	Behavioural Equivalences
	Reduction and Domain Congruence
	Bisimilarity
	Labelled transition system
	Domain bisimilarity

	Distributed Query Patterns
	Chaining, recruiting and referral
	Implementing the patterns
	Relating the patterns to a specification

	Rendez-vous and shipping
	The rendez-vous query pattern
	Equivalence of the patterns

	Conclusions
	Figures
	Results and proofs
	Basic properties
	Congruence
	Soundness

