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1. INTRODUCTION

The goal of this work is to verify the security of implementation code by typing. Here
we are concerned particularly with authentication and authorization properties.

We develop an extended typechecker for code written in F# (a variant of ML) [Syme
et al. 2007] and annotated with refinement types that embed logical formulas. We use
these dependent types to specify access-control and cryptographic properties, as well
as desired security goals. Typechecking then ensures that the code is secure.

We evaluate our approach on code implementing authorization decisions and on ref-
erence implementations of security protocols. Our typechecker verifies security proper-
ties for a realistic threat model that includes a symbolic attacker, in the style of Dolev
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and Yao [1983], who is able to create arbitrarily many principals, create arbitrarily
many instances of each protocol role, send and receive network traffic, and compromise
arbitrarily many principals.

Verifying Cryptographic Implementations. In earlier work, Bhargavan et al. [2008b] advo-
cate the cryptographic verification of reference implementations of protocols, rather
than their handwritten models, in order to minimize the gap between executable
and verified code. They automatically extract models from F# code and, after ap-
plying various program transformations, pass them to ProVerif, a cryptographic ana-
lyzer [Blanchet 2001; Abadi and Blanchet 2005]. Their approach yields verified security
for very detailed models, but also demands considerable care in programming, in order
to control the complexity of global cryptographic analysis for giant protocols. Even if
ProVerif scales up remarkably well in practice, beyond a few message exchanges or a
few hundred lines of F#, verification becomes long (up to a few days) and unpredictable
(with trivial code changes leading to divergence).

Cryptographic Verification Meets Program Verification. In parallel with the development of
specialist tools for cryptography, verification tools in general are also making rapid
progress, and can deal with much larger programs (see, e.g., Flanagan et al. [2002],
Filliâtre and Marché [2004], Barnett et al. [2005], and Régis-Gianas and Pottier [2008]).
To verify the security of programs with some cryptography, we would like to combine
both kinds of tools. However, this integration is delicate: the underlying assumptions
of cryptographic models to account for active adversaries typically differ from those
made for general-purpose program verification. On the other hand, modern applications
involve a large amount of (noncryptographic) code and extensive libraries, sometimes
already verified; we’d rather benefit from this effort.

Authorization by Typing. Logic is now a well-established tool for expressing and reason-
ing about authorization policies. Although many systems rely on dynamic authorization
engines that evaluate logical queries against local stores of facts and rules, it is some-
times possible to enforce policies statically. Thus, Fournet et al. [2007a, 2007b] treat
policy enforcement as a type discipline; they develop their approach for typed π -calculi,
supplemented with cryptographic primitives. Relying on a “says” modality in the logic,
they also account for partial trust (in logic specification) in the face of partial compro-
mise (in their implementations). The present work is an attempt to develop, apply, and
evaluate this approach for a general-purpose programming language.

Outline of the Implementation. Our prototype tool, named F7, takes as input module
interfaces (similar to F# module interfaces but with extended types) and module imple-
mentations (in plain F#). It typechecks implementations against interfaces, and also
generates plain F# interfaces by erasure. Using the F# compiler, generated interfaces
and verified implementations can then be compiled as usual.

Our tool performs typechecking and partial type inference, relying on an external
theorem prover for discharging the logical conditions generated by typing. We currently
use plain first-order logic (rather than an authorization-specific logic) and delegate its
proofs to Z3 [de Moura and Bjørner 2008], a solver for Satisfiability Modulo Theories
(SMT). Thus, in comparison with previous work, we still rely on an external prover, but
this prover is being developed for general program verification, not for cryptography;
also, we use this prover locally, to discharge proof obligations at various program
locations, rather than rely on a global translation to a cryptographic model.

Reflecting our assumptions on cryptography and other system libraries, some mod-
ules have two implementations: a symbolic implementation used for extended typing
and symbolic execution, and a concrete implementation used for plain typing and
distributed execution. We have access to a collection of F# test programs already an-
alyzed using dual implementations of cryptography [Bhargavan et al. 2008b], so we
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can compare our new approach to prior work on model extraction to ProVerif. Unlike
ProVerif, typechecking requires annotations that include pre- and post-conditions. On
the other hand, these annotations can express general authorization policies, and their
use makes typechecking more compositional and predictable than the global analy-
sis performed by ProVerif. Moreover, typechecking succeeds even on code involving
recursion and complex data structures.

Outline of the Theory. We justify our extended typechecker by developing a formal type
theory for a core of F#: a concurrent call-by-value λ-calculus named RCF.

To represent pre- and post-conditions, our calculus has standard dependent functions
and pairs, and a form of refinement types [Freeman and Pfenning 1991; Xi and Pfenning
1999]. A refinement type takes the form {x : T | C}; a value M of this type is a value
of type T such that the formula C{M/x} holds. (Another name for the construction is
predicate subtyping [Rushby et al. 1998]; {x : T | C} is the subtype of T characterized
by the predicate C.)

To represent security properties, expressions may assume and assert formulas in
first-order logic. An expression is safe when no assertion can ever fail at runtime. By
annotating programs with suitable formulas, we formalize security properties, such as
authentication and authorization, as expression safety.

Our F# code is written in a functional style, so pre- and post-conditions concern
data values and events represented by logical formulas; our type system does not (and
need not for our purposes) directly support reasoning about mutable state, such as
heap-allocated structures.

Contributions. First, we formalize our approach within a typed concurrent λ-calculus.
We develop a type system with refinement types that carry logical formulas, building
on standard techniques for dependent types, and establish its soundness.

Second, we adapt our type system to account for active (untyped) adversaries, by
extending subtyping so that all values manipulated by the adversary can be given
a special universal type (Un). Our calculus has no built-in cryptographic primitives.
Instead, we show how a wide range of cryptographic primitives can be symbolically
coded (and typed) in the calculus, using a seal abstraction [Morris 1973; Sumii and
Pierce 2007]. The corresponding robust safety properties then follow as a corollary of
type safety.

Third, experimentally, we implement our approach as an extension of F#, and develop
a new typechecker (with partial type inference) based on Z3 (a fast, incomplete, first-
order logic prover).

Fourth, we evaluate our approach on a series of programming examples involving au-
thentication and authorization properties of protocols and applications; this indicates
that our use of refinement types is an interesting alternative to global verification tools
for cryptography, especially for the verification of executable reference implementa-
tions.

Contents. The article is organized as follows. Section 2 presents our core language with
refinement types, and illustrates it by programming access control policies. Section 3
adds typed support for cryptography, using an encoding based on seals, and illustrates
it by implementing MAC-based authentication protocols. Section 4 describes our type
system and its main properties. Sections 5 and 6 report on the prototype implementa-
tion and our experience with programming protocols with our type discipline. Section 7
discusses related work and Section 8 concludes.

Appendixes provide additional details. Appendix A describes the logic and our
usage of Z3. Appendix B defines the semantics and safety of expressions. Appendix C
establishes properties of the type system. A preliminary, abridged version of this
article appears in the proceedings of CSF’08 [Bengtson et al. 2008]. A technical report
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[Bengtson et al. 2010] revised in November 2010, includes additional appendixes
showing our typed encodings for formal cryptography, the full code of an extended
example, and also detailed proofs of the development in Appendix C. The typechecker,
cryptographic libraries, and all examples described in this article are available as part
of the F7 distribution at http://research.microsoft.com/F7

2. A LANGUAGE WITH REFINEMENT TYPES

Our calculus is an assembly of standard parts: call-by-value dependent functions, de-
pendent pairs, sums, iso-recursive types, message-passing concurrency, refinement
types, subtyping, and a universal type Un to model attacker knowledge. This is es-
sentially the Fixpoint Calculus (FPC) [Gunter 1992], augmented with concurrency and
refinement types. Hence, we adopt the name Refined Concurrent FPC, or RCF for
short. This section introduces its syntax, semantics, and type system (apart from Un),
together with an example application. Section 3 introduces Un and applications to cryp-
tographic protocols. (Any ambiguities in the informal presentation should be clarified
by the semantics in Appendix B and the type system in Section 4.)

2.1. Expressions, Evaluation, and Safety

An expression represents a concurrent, message-passing computation which may re-
turn a value. A state of the computation consists of: (1) a multiset of expressions being
evaluated in parallel; (2) a multiset of messages sent on channels but not yet received;
and (3) the log, a multiset of assumed formulas. The multisets of evaluating expressions
and unread messages model a configuration of a concurrent or distributed system; the
log is a notional central store of logical formulas, used only for specifying correctness
properties.

We write S � C to mean that a formula C logically follows from a set S of formulas.
In our implementation, C is some formula in (untyped) first-order logic with equality.
In our intended models, terms denote closed values of RCF, and equality M = N is
interpreted as syntactic identity between values. (Appendix A gives the details.)
Formulas and Deducibility:
C logical formula
{C1, . . . , Cn} � C logical deducibility

We assume collections of names, variables, and type variables. A name is an identifier,
generated at runtime, for a channel, while a variable is a placeholder for a value. If φ is
a phrase of syntax, we write φ{M/x} for the outcome of substituting a value M for each
free occurrence of the variable x in φ. We identify syntax up to the capture-avoiding
renaming of bound names and variables. We write fnfv(φ) for the set of names and
variables occurring free in a phrase of syntax φ. We say a phrase is closed to mean it
has no free variables (although it may have free names).
Syntax of Values and Expressions:
a, b, c name
x, y, z variable
h ::= value constructor

inl left constructor of sum type
inr right constructor of sum type
fold constructor of recursive type

M, N ::= value
x variable
() unit
fun x → A function (scope of x is A)

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 2, Article 8, Publication date: January 2011.



Refinement Types for Secure Implementations 8:5

(M, N) pair
h M construction

A, B ::= expression
M value
M N application
M = N syntactic equality
let x = A in B let (scope of x is B)
let (x, y) = M in A pair split (scope of x, y is A)
match M with constructor match

h x → A else B (scope of x is A)
(νa)A restriction (scope of a is A)
A � B fork
a!M transmission of M on channel a
a? receive message off channel
assume C assumption of formula C
assert C assertion of formula C

To evaluate M, return M at once. To evaluate M N, if M = fun x → A, evaluate
A{N/x}. To evaluate M = N, if the two values M and N are the same, return true �=
inr (); otherwise, return false �= inl (). To evaluate let x = A in B, first evaluate A; if
evaluation returns a value M, evaluate B{M/x}. To evaluate let (x1, x2) = M in A, if
M = (N1, N2), evaluate A{N1/x1}{N2/x2}. To evaluate match M with h x → A else B,
if M = h N for some N, evaluate A{N/x}; otherwise, evaluate B.

To evaluate (νa)A, generate a globally fresh channel name c, and evaluate A{c/a}.
To evaluate A � B, start a parallel thread to evaluate A (whose return value will be
discarded), and evaluate B. To evaluate a!M, emit message M on channel a, and return
() at once. To evaluate a?, block until some message N is on channel a, remove N from
the channel, and return N.

To evaluate assume C, add C to the log, and return (). To evaluate assert C, return
(). If S � C, where S is the set of logged formulas, we say the assertion succeeds;
otherwise, we say the assertion fails. Either way, it always returns ().

Expression Safety:
A closed expression A is safe if and only if, in all evaluations of A, all assertions succeed.
(See Appendix B for formal details.)

The only way for an expression to be unsafe is for an evaluation to lead to an assert C,
where C does not follow from the current log of assumed formulas. Hence, an expression
may fail in other ways while being safe according to this definition. For example, the
restriction (νa)a? is safe, although it deadlocks in the sense no message can be sent on
the fresh channel a and so a? blocks forever. The application () (fun x → x) is safe, but
illustrates another sort of failure: it tries to use () as a function, and so is stuck in the
sense that evaluation cannot proceed.

Assertions and assumptions are annotations for expressing correctness properties.
Inasmuch as our notion of safety is relative to the assumptions executed during eval-
uation, these assumptions must be carefully reviewed.

There is no mechanism in RCF to branch based on whether or not a formula is
derivable from the current log. Our intention is to verify safety statically. If we know
statically that an expression is safe, there is no reason to implement the log of assumed
expressions because every assertion is known to succeed.

Once assumed, a formula remains in the log for the whole run. Thus, if an assert
succeeds, then, later in the run, any other assert with the same formula will also
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succeed. Hence, our notion of safety captures stable safety properties, which is adequate
for verifying the security of concurrent protocols.

2.2. Types and Subtyping

We outline the type system; the main purpose for typechecking an expression is to
establish its safety. We assume a collection of type variables, ranged over by α, β. For
any phrase φ, the set fnfv(φ) includes the type variables, as well as the names and
(value) variables, that occur free in φ. Notice that no types or type variables occur in
the syntax of values or expressions. If φ is a phrase of syntax, we write φ{T/α} for the
outcome of substituting a type T for each free occurrence of the type variable α in φ.

Syntax of Types:
H, T ,U, V ::= type

unit unit type
�x : T . U dependent function type (scope of x is U )
	x : T . U dependent pair type (scope of x is U )
T + U disjoint sum type
μα.T iso-recursive type (scope of α is T )
α type variable
{x : T | C} refinement type (scope of x is C)

{C} �= { : unit | C} ok-type
bool

�= unit + unit Boolean type

(The notation denotes an anonymous variable that by convention occurs nowhere
else.)

A value of type unit is the unit value (). A value of type �x : T . U is a function M
such that if N has type T , then M N has type U {N/x}. A value of type 	x : T . U is a
pair (M, N) such that M has type T and N has type U {M/x}. A value of type T + U is
either inl M where M has type T , or inr N where N has type U . A value of type μα.T is
a construction fold M, where M has the (unfolded) type T {μα.T/α}. A type variable is
a placeholder for a type, such as a recursive type. A value of type {x : T | C} is a value
M of type T such that the formula C{M/x} follows from the log.

As usual, we can define syntax-directed typing rules for checking that the value of
an expression is of type T , written E � A : T , where E is a typing environment. The
environment tracks the types of variables and names in scope.

The core principle of our system is safety by typing.

THEOREM 1 (SAFETY). If ∅ � A : T then A is safe.

PROOF. See Appendix C.

Section 4 has all the typing rules; the majority are standard. Here, we explain the
intuitions for the rules concerning refinement types, assumptions, and assertions.

The judgment E � C means C is deducible from the formulas mentioned in refine-
ment types in E. For example:

—If E includes y : {x : T | C} then E � C{y/x}.
Consider the refinement types T1 = {x1 : T | P(x1)} and T2 = {x2 : unit | ∀z.P(z) ⇒

Q(z)}. If E = (y1 : T1, y2 : T2) then E � Q(y1) via the preceding rule plus first-order logic.
The introduction rule for refinement types is as follows.

—If E � M : T and E � C{M/x} then E � M : {x : T | C}.
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A special case of refinement is an ok-type, written {C}, and short for { : unit | C}:
a type of tokens that a formula holds. For example, up to variable renaming, T2 =
{∀z.P(z) ⇒ Q(z)}. The specialized rules for ok-types are:

—If E includes x : {C} then E � C.
—A value of type {C} is (), a token that C holds.

The type system includes a subtype relation E � T <: T ′, and the usual subsumption
rule:

—If E � A : T and E � T <: T ′ then E � A : T ′.

Refinement relates to subtyping as follows. (To avoid confusion, note that True is a
logical formula which always holds, while true is a Boolean value defined as inr ()).

—If T <: T ′ and C � C ′ then {x : T | C} <: {x : T ′ | C ′}.
—{x : T | True} <:> T .

For example, {x : T | C} <: {x : T | True} <: T .
We typecheck assume and assert as follows.

— E � assume C : {C}.
—If E � C then E � assert C : unit.

By typing the result of assume as {C}, we track that C can subsequently be assumed
to hold. Conversely, for a well-typed assert to be guaranteed to succeed, we must check
that C holds in E. This is sound because when typechecking any A in E, the formulas
deducible from E are a lower bound on the formulas in the log whenever A is evaluated.

For example, we can derive Aex : unit where Aex is the following, where Foo and Bar
are nullary predicate symbols.

let x = assume Foo() ⇒ Bar() in
let y = assume Foo() in assert Bar()

By the rule for assumptions we have:

assume Foo() ⇒ Bar() : {Foo() ⇒ Bar()}
assume Foo() : {Foo()}

The rule for checking a let-expression is:

—If E�A:T and E, x:T �B:U then E�let x = A in B:U .

By this rule, to show Aex : unit it suffices to check

E � assert Bar() : unit

where E = x : {Foo() ⇒ Bar()}, y : {Foo()}. The displayed judgment follows by the rule
for assertions as we can derive E � Bar(), since we have both E � Foo() ⇒ Bar() and
E � Foo(). Thus Aex is safe.

2.3. Formal Interpretation of Our Typechecker

We interpret a large class of F# expressions and modules within our calculus. To enable
a compact presentation of the semantics of RCF, there are two significant differences
between expressions in these languages. First, the formal syntax of RCF is in an
intermediate, reduced form (reminiscent of A-normal form [Sabry and Felleisen 1993])
where let x = A in B is the only construct to allow sequential evaluation of expressions.
As usual, A; B is short for let = A in B, and let f x = A is short for let f = fun x →
A. More notably, if A and B are proper expressions rather than being values, the
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application A B is short for let f = A in (let x = B in f x). In general, the use in F# of
arbitrary expressions in place of values can be interpreted by inserting suitable lets.

The second main difference is that the RCF syntax for communication and concur-
rency ((νa)A, A � B, a?, and a!M) is in the style of a process calculus. In F# we express
communication and concurrency via a small library of functions, which is interpreted
within RCF as follows.

Functions for Communication and Concurrency:
(T )chan

�= (T → unit) ∗ (unit → T )

chan
�= fun x → (νa)(fun x → a!x, fun → a?)

send
�= fun c x → let (s, r) = c in s x send x on c

recv
�= fun c → let (s, r) = c in r () block for x on c

fork
�= fun f → ( f () � ()) run f in parallel

We define references in terms of channels.

Functions for References:
(T )ref �= (T )chan

ref M �= let r = chan "r" in send r M; r new reference to M
!M �= let x = recv M in send M x; x dereference M
M := N �= recv M; send M N update M with N

We also assume standard encodings of strings, numeric types, Booleans, tuples,
records, algebraic types (including lists) and pattern-matching, and recursive func-
tions. (An appendix to the technical report lists the full details.) RCF lacks full-fledged
polymorphism, but by duplicating definitions at multiple monomorphic types we can
recover the effect of having polymorphic definitions.

We use the following notations for functions with preconditions, and nonempty tuples
(instead of directly using the core syntax for dependent function and pair types). We
usually omit conditions of the form {True} in examples.

Derived Notation for Functions and Tuples:
{x1 : T1 | C1} → U �= �x1 : {x1 : T1 | C1}. U

(x1 : T1 ∗ · · · ∗ xn : Tn){C} �=
{

	x1 : T1. . . . 	xn−1 : Tn−1. {xn : Tn | C} if n > 0
{C} otherwise

To treat assume and assert as F# library functions, we follow the convention that
constructor applications are interpreted as formulas (as well as values). If h is an
algebraic type constructor of arity n, we treat h as a predicate symbol of arity n, so that
h(M1, . . . , Mn) is a formula.

All of our example code is extracted from two kinds of source files: either extended
typed interfaces (.fs7) that declare types, values, and policies; or the corresponding F#

implementation modules (.fs) that define them.
We sketch how to interpret interfaces and modules as tuple types and expressions.

In essence, an interface is a sequence val x1 : T1 . . . val xn : Tn of value declarations,
which we interpret by the tuple type (x1 : T1 ∗ · · · ∗ xn : Tn). A module is a sequence
let x1 = A1 . . . let xn = An of value definitions, which we interpret by the expression
let x1 = A1 in . . . let xn = An in (x1, . . . , xn). If A and T are the interpretations of
a module and an interface, our tool checks whether A : T . Any type declarations are
simply interpreted as abbreviations for types, while a policy statement assume C is
treated as a declaration val x : {C} plus a definition let x = assume C for some fresh x.
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2.4. Example: Access Control in Partially Trusted Code

This example illustrates static enforcement of file access control policies in code that is
typechecked but not necessarily trusted, such as applets or plug-ins. (See, for example,
Dean et al. [1996], Pottier et al. [2001], Abadi and Fournet [2003], and Abadi [2007] for
a more general discussion of security mechanisms for partially trusted code.)

We first declare a type for the logical facts in our policy. We interpret each of its
constructors as a predicate symbol: here, we have two basic access rights for reading
and writing a given file, and a property stating that a file is public.

type facts =
| CanRead of string // read access
| CanWrite of string // write access
| PublicFile of string // some file attribute

For instance, the fact CanRead("C:/README") represents read access to "C:/README".
We use these facts to give restrictive types to sensitive primitives. For instance, the
declarations

val read: file:string{CanRead(file)} → string
val delete: file:string{CanWrite(file)} → unit

demand that the function read be called only in contexts that have previously estab-
lished the fact CanRead(M) for its string argument M (and similarly for write). These
demands are enforced at compile-time, so in F# the function read just has type string →
string and its implementation may be left unchanged.

More operationally, to illustrate our formal definition of expression safety, we may
include assertions, and define

let read file = assert(CanRead(file)); "data"
let delete file = assert(CanWrite(file))

Library writers are trusted to include suitable assume statements. They may declare
policies, in the form of logical deduction rules, declaring, for instance, that every file
that is writable is also readable:

assume ∀x. CanWrite(x) ⇒ CanRead(x)

and they may program helper functions that establish new facts. For instance, they
may declare

val publicfile: file : string → unit{ PublicFile(file) }
assume ∀x. PublicFile(x) ⇒ CanRead(x)

and implement publicfile as a partial function that dynamically checks its filename
argument.

let publicfile f =
if f = "C:/public/README" then assume (PublicFile(f))
else failwith "not a public file"

The F# library function failwith throws an exception, so it never returns and can safely
be given the polymorphic type string → α, where α can be instantiated to any RCF type.
(We also coded more realistic dynamic checks, based on dynamic lookups in mutable,
refinement-typed, access control lists. We omit their code for brevity.)

To illustrate our code, consider a few sample files, one of them writable:

let pwd = "C:/etc/password"
let readme = "C:/public/README"
let tmp = "C:/temp/tempfile"
let = assume (CanWrite(tmp))
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Typechecking the following test code returns two type errors:

let test:unit =
delete tmp; // ok

// delete pwd; // type error
let v1 = read tmp in // ok, using 1st logical rule

// let v2 = read readme in // type error
publicfile readme; let v3 = read readme in () // ok

For instance, the second delete yields the error “Cannot establish formula CanWrite(pwd)
at acls.fs(39,9)-(39,12).”

In the last line, the call to publicfile dynamically tests its argument, ensuring PublicFile
(readme) whenever the final expression read readme is evaluated. This fact is recorded
in the environment for typing the final expression.

From the viewpoint of fully trusted code, our interface can be seen as a self-inflicted
discipline; indeed, one may simply assume ∀x.CanRead(x). In contrast, partially trusted
code (such as mobile code) would not contain any assume. By typing this code against
our library interface, possibly with a policy adapted to the origin of the code, the
host is guaranteed that this code cannot call read or write without first obtaining the
appropriate right.

Although access control for files mostly relies on dynamic checks (ACLs, permissions,
and so forth), a static typing discipline has advantages for programming partially
trusted code: as long as the program typechecks, one can safely rearrange code to more
efficiently perform costly dynamic checks. For example, one may hoist a check outside
a loop, or move it to the point a function is created, rather than called, or move it to a
point where it is convenient to handle dynamic security exceptions.

In the code that follows, for instance, the function reader can be called to access the
content of file readme in any context with no further runtime check.

let test higher order:unit =
let reader: unit → string =

(publicfile readme; (fun () → read readme)) in
// let v4 = read readme in // type error

let v5 = reader () in () // ok

Similarly, we programmed (and typed) a function that merges the content of all files
included in a list, under the assumption that all these files are readable, declared as

val merge: (file:string{ CanRead(file) }) list → string

where list is a type constructor for lists, with a standard implementation typed in RCF.
We finally illustrate the use of refinement-typed values within imperative data struc-

tures to “store” valid formulas. We may declare an access control list (ACL) database
as

type entry =
| Readable of x:string{CanRead(x)}
| Writable of x:string{CanWrite(x)}
| Nothing

val acls : (string,entry) Db.t
val safe read: string → string
val readable: file:string → unit{ CanRead(file) }

(where Db.t is a type constructor for our simplified typed database library, parameter-
ized by the types of the keys and entries stored in the database) and implement it
as
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let acls: (string,entry) Db.t = Db.create()
let safe read file =

match Db.select acls file with
| Readable file → read file
| Writable file → read file
| → failwith "unreadable"

let readable file =
match Db.select acls file with
| Readable f when f = file → ()
| Writable f when f = file → ()
| → failwith "unreadable"

Both safe read and readable lookup an ACL entry and, by matching, either “retrieve” a
fact sufficient for reading the file, or fail. The next code illustrates their usage.

let test acls:unit =
Db.insert acls tmp (Writable(tmp)); // ok

// Db.insert acls tmp (Readable(pwd)); // type error
Db.insert acls pwd (Nothing); // ok
let v6 = safe read pwd in // ok (but dynamically fails)
let v7 = readable tmp; read tmp in () // ok

3. MODELING CRYPTOGRAPHIC PROTOCOLS

We introduce our technique for specifying security properties of cryptographic protocols
by typing.

3.1. Roles and Opponents as Functions

Following Bhargavan et al. [2008b], we start with plain F# functions that create in-
stances of each role of the protocol (such as client or server). The protocols make use
of various libraries (including cryptographic functions, explained shortly) to commu-
nicate messages on channels that represent the public network. We model the whole
protocol as an F# module, interpreted as before as an expression that exports the func-
tions representing the protocol roles, as well as the network channel [Sumii and Pierce
2007]. We express authentication properties (correspondences [Woo and Lam 1993])
by embedding suitable assume and assert expressions within the code of the protocol
roles.

The goal is to verify that these properties hold in spite of an active opponent able
to send, receive, and apply cryptography to messages on network channels [Needham
and Schroeder 1978]. We model the opponent as some arbitrary (untyped) expression
O which is given access to the protocol and knows the network channels [Abadi and
Gordon 1999]. The idea is that O may use the communication and concurrency features
of RCF to create arbitrary parallel instances of the protocol roles, and to send and
receive messages on the network channels, in an attempt to force failure of an assert
in protocol code. Hence, our formal goal is robust safety in that no assert fails, despite
the best efforts of an arbitrary opponent.
Formal Threat Model: Opponents and Robust Safety
A closed expression O is an opponent iff O contains no occurrence of assert.
A closed expression A is robustly safe iff the application O A is safe for all opponents O.

(An opponent must contain no assert, since otherwise it could vacuously falsify safety.)

3.2. Typing the Opponent

To allow type-based reasoning about the opponent, we introduce a universal type Un of
data known to the opponent, much as in earlier work [Abadi 1999; Gordon and Jeffrey
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2003a]. By definition, Un is type equivalent to (both a subtype and a supertype of) all
of the following types: unit, (�x : Un. Un), (	x : Un. Un), (Un + Un), and (μα.Un). Hence,
we obtain opponent typability, that O : Un for all opponents O.

It is useful to characterize two kinds of type: public types (of data that may flow to
the opponent) and tainted types (of data that may flow from the opponent).

Public and Tainted Types:
Let a type T be public if and only if T <: Un.
Let a type T be tainted if and only if Un <: T .

We can show that refinement types satisfy the following kinding rules. (Section 4 has
kinding rules for the other types, following prior work [Gordon and Jeffrey 2003b].)

— E � {x : T | C} <: Un iff E � T <: Un
— E � Un <: {x : T | C} iff E � Un <: T and E, x : T � C

Consider the type T1
�= {x : string | CanRead(x)}. According to the preceding rules, this

type is public because string is public, but it is only tainted if CanRead(x) holds for all
x (and let’s suppose CanRead(x) does not hold for all x). If we have a value M of this
type we can conclude CanRead(M). The type cannot be tainted, for if it were, we could
conclude CanRead(M) for any M chosen by the opponent.

Dually, for a type that is tainted but not public, consider the function type T2
�= T1 →

Un. Specializing the rules to come in Section 4, a function type T → U is public when
T is tainted and U is public, so T2 is not public. On the other hand, a function type
T → U is tainted when T is public and U is tainted, so T2 is tainted.

To see why it would be unsafe to consider the type T2 public, consider the function
fun x → assert CanRead(x), which has type T2. The assertion is safe because x has the
refinement type T1, and so the formula CanRead(x) holds. Intuitively, it should be safe
to give any value of public type to the untyped opponent, but it is unsafe to do so with
this function, because the opponent could apply it to some argument x that does not
satisfy CanRead(x).

To summarize, we have the strict inclusions T1 <: Un <: T2. This shows that not
all types are public (consider T2), not all types are tainted (consider T1), hence not all
types are equivalent to Un, and Un is not the top type (because T2 is not its subtype).

Verification of protocols versus an arbitrary opponent is based on a principle of robust
safety by typing.

THEOREM 2 (ROBUST SAFETY). If ∅ � A : Un then A is robustly safe.

PROOF. See Appendix C.

To apply the principle, if expression A and type T are the RCF interpretations of a
protocol module and a protocol interface, it suffices by subsumption to check that A : T
and T is public. The latter amounts to checking that Ti is public for each declaration
val xi : Ti in the protocol interface.

(Some of our example interfaces include declarations of the form private val xi : Ti.
These declarations are available only within protocol code and are not exported to the
attacker, and hence Ti is not necessarily public. We include these declarations for the
sake of exposition, and also to inform our typechecker of the enhanced type Ti.)

3.3. A Cryptographic Library

We provide various libraries to support distributed programming. They include poly-
morphic functions for producing and parsing network representations of values, de-
clared as
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val pickle: x:α → (p:α pickled)
val unpickle: p:α pickled → (x:α)

and for messaging: addr is the type of TCP duplex connections, established by calling
connect and listen, and used by calling send and recv. All these functions are public.

The cryptographic library provides a typed interface to a range of primitives, in-
cluding hash functions, symmetric encryption, asymmetric encryption, and digital sig-
natures. We detail the interface for HMACSHA1, a keyed hash function, used in our
examples to build Message Authentication Codes (MACs). This interface declares
type αhkey = HK of αpickled Seal
type hmac = HMAC of Un
val mkHKey: unit → αhkey
val hmacsha1: k:α hkey → x:α pickled → h:hmac
val hmacsha1Verify: k:α hkey → xx:Un → h:hmac → x:α pickled

where hmac is the type of hashes and αhkey is the type of keys used to compute hashes
for values of type α.

The function mkHKey generates a fresh key (informally fresh random bytes). The
function hmacsha1 computes the joint hash of a key and a pickled value with matching
types. The function hmacsha1Verify verifies whether the joint hash of a key and a value
(presumed to be the pickled representation of some value of type α) matches some given
hash. If verification succeeds, this value is returned, now with the type α indicated in
the key. Otherwise, an exception is raised.

Although keyed hash verification is concretely implemented by recomputing the hash
and comparing it to the given hash, this would not meet its typed interface: assume α is
the refinement type x : string{CanRead(x)}. In order to hash a string x, one needs to prove
CanRead(x) as a precondition for calling hmacsha1. Conversely, when receiving a keyed
hash of x, one would like to obtain CanRead(x) as a post-condition of the verification;
indeed, the result type of hmacsha1Verify guarantees it. At the end of this section, we
describe a well-typed symbolic implementation of this interface.

3.4. Example: A Protocol Based on MACs

Our first cryptographic example implements a basic one-message protocol with a Mes-
sage Authentication Code (MAC) computed as a shared-keyed hash; it is a variant of a
protocol described and verified in earlier work [Bhargavan et al. 2008b].

We present snippets of the protocol code to illustrate our typechecking method; an
appendix to the technical report lists the full source-code for a similar but more general
protocol. We begin with a typed interface declaring three types: event for specifying
our authentication property; content for authentic payloads; and message for messages
exchanged on a public network.
type event = Send of string // a type of logical predicate
type content = x:string{Send(x)} // a string refinement
type message = (string ∗ hmac) pickled // a wire format

The interface also declares functions, client and server, for invoking the two roles of the
protocol.
val addr : (string ∗ hmac, unit) addr // a public server address
private val hk: content hkey // a shared secret

private val make: content hkey → content → message
val client: string → unit // start a client

private val check: content hkey → message → content
val server: unit → unit // start a server
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The client and server functions share two values: a public network address addr where
the server listens, and a shared secret key hk. Given a string argument s, client calls the
make function to build a protocol message by calling hmacsha1 hk (pickled s). Conversely,
on receiving a message at addr, server calls the check function to check the message by
calling hmacsha1Verify.

In the interface, values marked as private may occur only in typechecked imple-
mentations, and hence are not available to the opponent. Conversely, the other values
(addr, client, server) must have public types, and may be made available to the opponent.

Authentication is expressed using a single event Send(s) recording that the string s
has genuinely been sent by the client; formally, that client(s) has been called. This event
is embedded in a refinement type, content, the type of strings s such that Send(s). Thus,
following the type declarations for make and check, this event is a precondition for
building the message, and a post-condition after successfully checking the message.

Consider the following code for client and server.

let client text =
assume (Send(text)); // privileged
let c = connect addr in
send c (make hk text)

let server () =
let c = listen addr in
let text = check hk (recv c) in
assert(Send text) // guaranteed by typing

The calls to assume before building the message and to assert after checking the
message have no effect at runtime (the implementations of these functions simply
return ()) but they are used to specify our security policy. In the terminology of cryp-
tographic protocols, assume marks a “begin” event, while assert marks an “end”
event.

Here, the server code expects that the call to check only returns text values previously
passed as arguments to client. This guarantee follows from typing, by relying on the
types of the shared key and cryptographic functions. On the other hand, this guarantee
does not presume any particular cryptographic implementation; indeed, simple vari-
ants of our protocol may achieve the same authentication guarantee, for example, by
authenticated encryption or digital signature.

Conversely, some implementation mistakes would result in a compile-time type error
indicating a possible attack. For instance, removing private from the declaration of
the authentication key hk, or attempting to leak hk within client, would not be type-
correct; indeed, this would introduce an attack on our desired authentication property.
Other such mistakes include using the authentication key to hash a plain string, and
rebinding text to any other value between the assume and the actual MAC computation.

3.5. Example: Logs and Queries

We now relate our present approach to more traditional correspondence properties
stated in terms of runtime events. To this end, we explicitly code calls to a secure log
function that exclusively records begin- and end-events, and we formulate our security
property on the series of calls to this function.

Continuing with our MAC example protocol, we modify the interface as follows.

type event = Send of string | Recv of string
private val log : e:event{ ∀x. (e = Recv(x) ⇒ Send(x)) } →

r:unit{ ∀x. (e = Send(x) ⇒ Send(x)) }
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The intended correspondence property Recv(x)⇒ Send(x) can now be read off the de-
clared type of log. (In this type, Send and Recv are used both as F# datatype constructors
and predicate constructors.)

We also slightly modify the implementation as follows.
let log x = match x with
| Send text → assume (Send(text))
| Recv text → assert(Send(text))

let client text =
log (Send(text)); // we log instead of assuming
let c = connect addr in
send c (make hk text)

let server () =
let c = listen addr in
let text = check hk (recv c) in
log (Recv text) // we log instead of asserting

The main difference is that assume is relegated to the implementation of log; we also
omit the redundant assert in server code, as the condition follows from the type of
both check and log. As a corollary of type soundness, we obtain that, for all runs, every
call to log with a Recv event is preceded by a call to log with a matching Send event (by
induction on the series of calls to log).

3.6. Example: Principals and Compromise

We now extend our example to multiple principals, with keys shared between each pair
of principals. Hence, the keyed hash authenticates not only the message content, but
also the sender and the intended receiver. The full implementation is in an appendix
to the technical report; here we give only the types.

We represent principal names as strings; Send events are now parameterized by the
sending and receiving principals, as well as the message text.
type prin = string
type event = Send of (prin ∗ prin ∗ string) | Leak of prin
type (;a:prin,b:prin) content = x:string{ Send(a,b,x) }
The second event Leak is used in our handling of principal compromise, as described
shortly. The type definition of content has two value parameters, a and b; they bind
expression variables in the type being defined, much like type parameters bind type
variables. (Value parameters appear after type parameters, separated by a semicolon;
here, content has no type parameters before the semicolon.)

We store the keys in a (typed, list-based) private database containing entries of the
form (a,b,k) where k is a symmetric key of type (;a,b)content hkey shared between a and b.
val genKey: prin → prin → unit
private val getKey: a:

string → b:string → ((;a,b) content) hkey

Trusted code can call getKey a b to retrieve a key shared between a and b. Both trusted
and opponent code can also call genKey a b to trigger the insertion of a fresh key shared
between a and b into the database.

To model the possibility of key leakage, we allow opponent code to obtain a key by
calling the function leak.
assume ∀a,b,x. ( Leak(a) ) ⇒ Send(a,b,x)
val leak:

a:prin → b:prin → (unit{ Leak(a) }) ∗ ((;a,b) content) hkey
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This function first assumes the event Leak(a) as recorded in its result type, then calls
getKey a b and returns the key. Since the opponent gets a key shared between a and
b, it can generate seemingly authentic messages on a’s behalf; accordingly, we declare
the policy that Send(a,b,x) holds for any x after the compromise of a, so that leak can be
given a public type; without this policy, a subtyping check fails during typing. Hence,
whenever a message is accepted, either this message has been sent (with matching
sender, receiver, and content) or a key for its apparent sender has been leaked.

3.7. Discussion: Modeling Secrecy

Although this article focuses on authentication and authorization properties, our type
system also guarantees secrecy properties. Without key secrecy, for instance, we would
not be able to obtain authenticity by typing for the protocol examples given earlier.

In a well-typed program, the opponent is given access only to a public interface,
so any value passed to the opponent must first be given a public type. On the other
hand, the local type of the value does not yield in itself any guarantee of secrecy, since
the same value may be given a public type in another environment under stronger
logical assumptions. Informally, the logical formulas embedded in a type indicate the
conditions that must hold before values of that type are considered public.

To give a more explicit account of secrecy, we consider a standard “no escape” property
that deems a value secret as long as no opponent can gain direct access to the value.
(This form of secrecy is adequate for some values; it is weaker than equivalence-based
forms of secrecy that further exclude any implicit flow of information from the actual
value of a secret to the opponent.)
Robust Secrecy:
Let A be an expression with free variable s. The expression A preserves the secrecy of s
unless C iff the expression let s = (fun → assert C) in A is robustly safe.

This definition does not rely on types; instead, it tests whether the opponent may
gain knowledge of s: then, the opponent may also call the function, thereby triggering
the guarded assertion assert C. By definition of robust safety, the formula C must then
follow from the assumptions recorded in the log.

As a simple corollary of Theorem 2 (Robust Safety), we establish a principle of robust
secrecy by typing.

THEOREM 3 (ROBUST SECRECY). If s : {C} → unit � A : Un, then A preserves the secrecy
of s unless C.

PROOF. (In this proof, we anticipate the typing rules of Section 4.) By hypothesis,
s : {C} → unit � A : Un, hence ∅ � C, and thus {C} � assert C : unit by (Exp Assert),
∅ � (fun → assert C) : {C} → unit by (Val Fun), and ∅ � let s = (fun →
assert C) in A : Un by (Exp Let). We conclude by Theorem 2 (Robust Safety).

By inspection of the rules for public kinding, we see that the type {C} → unit given
to s is public only in environments that entail C, and thus is indeed a type of secrets
“unless C holds.”

We illustrate secrecy on a two-message protocol example, relying on authenticated,
symmetric encryptions instead of MACs. The first message is a session key (k) encrypted
under a long-term key; the second message is a secret payload (s) encrypted under the
session key. Secrecy is stated unless Leak(a), a fact used next to illustrate the usage of
assumptions for modeling key compromise.

We use the following declarations.

type empty = u:unit { Leak(a) }
type secret = {nonce:bytes; value:(empty → unit)}
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type payload = secret

private val s: payload
private val k0: (payload symkey) symkey

// The protocol uses a fresh session key
// and relies on its authenticated encryption
// client → server : { fresh k }k0
// server → client : { s }k

val addr : (enc, enc) addr
val client: unit → unit
val server: unit → unit

Both s (the payload) and k0 (the long-term key) must be declared as private values;
otherwise we obtain kinding errors.

We give a definition only for the test secret; the rest of the protocol definitions are
similar to those listed before.

let s = {nonce = mkNonce();
value = fun () → assert(Leak(a))} // our test secret

We obtain an instance of Theorem 3 (Robust Secrecy) for the expression A that consists
of library code plus the protocol code (without the definition of s). As we typecheck
the protocol definitions, we would obtain typing errors, for instance, if the client code
attempted to leak k0, k, or s on a public channel, or if the server code attempted to
encrypt s under a public key instead of k.

We can model the compromise of the client machine by releasing k0 (its only initial
secret) to the opponent. The code used to model this situation is typable only with
sufficient assumptions: we may, for instance, define a public function let leak()=
assume(Leak(a)); k0, with an assumption that records the potential loss of secrecy
for s.

In a refined example with multiple clients, each with its own long-term key, we may
use a more precise secrecy condition, such as C = ∃a.( Leak(a)∧ Accept(a)) where Leak(a)
records the compromise of a principal named a and Accept(a) records that the server
actually accepted to run a session with a as client. Thus, for instance, we may be able
to check the secrecy of s despite the compromise of unauthorized clients.

We refer to Gordon and Jeffrey [2005] and Fournet et al. [2007b] for a more general
account of secrecy and authorization despite compromise.

3.8. Implementing Formal Cryptography

Morris [1973] describes sealing, a programming language mechanism to provide “au-
thentication and limited access.” Sumii and Pierce [2007] provide a primitive semantics
for sealing within a λ-calculus, and observe the close correspondence between sealing
and various formal characterizations of symmetric-key cryptography.

In our notation, a seal k for a type T is a pair of functions: the seal function for k, of
type T → Un, and the unseal function for k, of type Un → T . The seal function, when
applied to M, wraps up its argument as a sealed value, informally written {M}k in this
discussion. This is the only way to construct {M}k. The unseal function, when applied
to {M}k, unwraps its argument and returns M. This is the only way to retrieve M from
{M}k. Sealed values are opaque; in particular, the seal k cannot be retrieved from {M}k.

We declare a type of seals, and a function mkSeal to create a fresh seal, as follows.

type αSeal = (α → Un) ∗ (Un → α)
val mkSeal: string → αSeal
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To implement a seal k, we maintain a list of pairs [(M1, a1); . . . ; (Mn, an)]. The list
records all the values Mi that have so far been sealed with k. Each ai is a fresh name
representing the sealed value {Mi}k. The list grows as more values are sealed; we
associate a reference s with the seal k, and store the current list in s. We maintain
the invariant that both the Mi and the ai are pairwise distinct: the list is a one-to-one
correspondence.

The function mkSeal that follows creates a fresh seal, by generating a fresh reference
s that holds an empty list; the seal itself is the pair of functions (seal s, unseal s). The
code uses the abbreviations ref, !, and := displayed in Section 2.

The code also relies on library functions for list lookups.

let rec first f xs = match xs with
| x::xs → (let r = f x in match r with

Some(y) → r
| None → first f xs)

| [] → None
let left z (x,y) = if z = x then Some y else None
let right z (x,y) = if z = y then Some x else None

The function first, of type (α→ β option)→ αlist → β option, takes as parameters a function
and a list; it applies the function to the elements of the list, and returns the first non-
None result, if any; otherwise it returns None. This function is applied to a pair-filtering
function left, defined as let left z (x,y)= if z = x then Some y else None, to retrieve the
first ai associated with the value being sealed, if any, and is used symmetrically with a
function right to retrieve the first Mi associated with the value being unsealed, if any.

type αSealRef = ((α ∗ Un) list) ref
let seal: αSealRef →α→ Un = fun s m →

let state = !s in match List.first (List.left m) state with
| Some(a) → a
| None →

let a: Un = Pi.name "a" in
s := ((m,a)::state); a

let unseal: αSealRef → Un → α= fun s a →
let state = !s in match List.first (List.right a) state with
| Some(m) → m
| None → failwith "not a sealed value"

let mkSeal (n:string) : αSeal =
let s = ref []:α SealRef in

(seal s, unseal s)

Irrespective of the type α for M, sealing returns a public name a, which may be commu-
nicated on some unprotected network, and possibly passed to the opponent.

In a variant of seal, we always generate a fresh value a, rather than perform a
list lookup; this provides support for nondeterministic encryption and signing (with
different, unrelated values for different encryptions of the same value).

Within RCF, we derive formal versions of cryptographic operations, in the spirit of
Dolev and Yao [1983], but based on sealing rather than algebra. Our technique depends
on being within a calculus with functional values. Thus, in contrast with previous work
in cryptographic π -calculi [Gordon and Jeffrey 2003b; Fournet et al. 2007b] where all
cryptographic functions were defined and typed as primitives, we can now implement
these functions and retrieve their typing rules by typechecking their implementations.

An appendix to the technical report includes listings for the interface and the (typed)
symbolic implementation of cryptography. We use seals to derive formal models for
MACs (HMACSHA1), symmetric encryption (AES), asymmetric encryption (RSA), and
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digital signatures (RSASHA1). For example, the functions that model HMACSHA1 are
as follows.

let mkHKey ():α hkey =
let s = mkSeal "hkey" in

HK s
let hmacsha1 (HK(key)) text =

let (h, ) = key in
let t = h text in

HMAC (t)
let hmacsha1Verify (HK key) text (HMAC h) =

let ( ,hv) = key in
let x:α pickled = hv h in

if x = text then x else failwith "hmac verify failed"

Keys are modeled as seals; computing and verifying MACs then correspond to uses of
sealing and unsealing.

Following the same style, we model RSA encryption using the types and functions
that follow.

type β deckey = DK of β symkey Seal
type β enckey = EK of (β symkey → Un)
type penc = RSA of Un

let mkRsaDecKey () : β deckey =
let s = mkSeal "rsakey" in

DK(s)
let rsaEncKey (DK dk) =

let (e,d) = dk in EK(e)
let rsaEncrypt (EK (e)) t = RSA(e t)
let rsaDecrypt (DK k) (RSA msg) =

let (e,d) = k in d msg

RSA decryption keys are modeled as seals. RSA encryption keys are public and can be
derived from the corresponding decryption key. Encryption and decryption are modeled
as sealing and unsealing.

Our abstract functions for defining cryptographic primitives can be seen as symbolic
counterparts to the oracle functions commonly used in cryptographic definitions of
security (see, for instance, Bellare and Rogaway [1993]). For example, in a random-
oracle model for keyed hash functions, an oracle function would take an input to be
hashed, perform a table lookup of previously hashed inputs, and either return the
previous hash value, or generate (and record) a fresh hash value. The main difference
is that we rely on symbolic name generation, whereas the oracle relies on probabilistic
sampling.

4. A TYPE SYSTEM FOR ROBUST SAFETY

The type system consists of a set of inductively defined judgments. Each is defined
relative to a typing environment, E, which defines the variables and names in scope.
Judgments:
E � � E is syntactically well-formed
E � T in E, type T is syntactically well-formed
E � C formula C is derivable from E
E � T :: ν in E, type T has kind ν
E � T <: U in E, type T is a subtype of type U
E � A : T in E, expression A has type T
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Syntax of Kinds:
ν ::= pub | tnt kind (public or tainted)
Let ν satisfy pub = tnt and tnt = pub.

Syntax of Typing Environments:
μ ::= environment entry

α type variable
α :: ν kinding for recursive type α
α <: α′ subtyping for recursive types α �= α′
a 
 T channel name
x : T variable

E ::= μ1, . . . , μn environment

dom(α) = {α}
dom(α :: ν) = {α}
dom(α <: α′) = {α, α′}
dom(a 
 T ) = {a}
dom(x : T ) = {x}
dom(μ1, . . . , μn) = dom(μ1) ∪ · · · ∪ dom(μn)

recvar(E) = {α, α′ | (α <: α′) ∈ E} ∪ {α | (α :: ν) ∈ E}
If E = μ1, . . . , μn we write μ ∈ E to mean that μ = μi for some i ∈ 1..n. We write

T <:> T ′ for T <: T ′ and T ′ <: T . Let recvar(E) be just the type variables occurring
in kinding and subtyping entries of E. Let E be executable if and only if recvar(E) = ∅.
Such environments contain names, variables, and type variables (but no entries α :: ν
or α <: α′). Let fnfv(E) = ⋃{fnfv(T ) | (a 
 T ) ∈ E ∨ (x : T ) ∈ E}.
Rules of Well-Formedness and Deduction:

(Env Empty)

∅ � �

(Env Entry)
E � � fnfv(μ) ⊆ dom(E) dom(μ) ∩ dom(E) = ∅

E, μ � �
(Type)
E � � fnfv(T ) ⊆ dom(E)

E � T

(Derive)
E � � fnfv(C) ⊆ dom(E) forms(E) � C

E � C

forms(E) �=
{ {C{y/x}} ∪ forms(y : T ) if E = (y : {x : T | C})

forms(E1) ∪ forms(E2) if E = (E1, E2)
∅ otherwise

The function forms(E) maps an environment E to a set of formulas {C1, . . . , Cn}. We
occasionally use this set in a context expecting a formula, in which case it should be
interpreted as the conjunction C1 ∧ · · · ∧ Cn, or True in case n = 0. For example:

forms(x : {C}) = forms(x : {y : unit | C}) y /∈ fv(C)
= {C{x/y}} ∪ forms(x : unit)
= {C}

Observe also that forms(E) = ∅ if E contains only names; formulas are derived only
from the types of variables, not from the types of channel names.

The next set of rules axiomatizes the sets of public and tainted types of data that can
flow to or from the opponent.
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Kinding Rules: E � T :: ν for ν ∈ {pub, tnt}
(Kind Var)
E � � (α :: ν) ∈ E

E � α :: ν

(Kind Unit)
E � �

E � unit :: ν

(Kind Fun)
E � T :: ν E, x : T � U :: ν

E � (�x : T . U ) :: ν

(Kind Pair)
E � T :: ν E, x : T � U :: ν

E � (	x : T . U ) :: ν

(Kind Sum)
E � T :: ν E � U :: ν

E � (T + U ) :: ν

(Kind Rec)
E, α :: ν � T :: ν

E � (μα.T ) :: ν

(Kind Refine Public)
E � {x : T | C} E � T :: pub

E � {x : T | C} :: pub

(Kind Refine Tainted)
E � T :: tnt E, x : T � C

E � {x : T | C} :: tnt

The following rules for ok-types are derivable.

(Kind Ok Public)
E � {C}

E � {C} :: pub

(Kind Ok Tainted)
E � {C} E � C

E � {C} :: tnt

The following rules of subtyping are standard [Cardelli 1986; Pierce and Sangiorgi
1996; Aspinall and Compagnoni 2001]. The two rules for subtyping refinement types
are the same as in Sage [Gronski et al. 2006].

Subtype: E � T <: U
(Sub Refl)
E � T recvar(E) ∩ fnfv(T ) = ∅

E � T <: T

(Sub Public Tainted)
E � T :: pub E � U :: tnt

E � T <: U
(Sub Fun)
E � T ′ <: T E, x : T ′ � U <: U ′

E � (�x : T . U ) <: (�x : T ′. U ′)

(Sub Pair)
E � T <: T ′ E, x : T � U <: U ′

E � (	x : T . U ) <: (	x : T ′. U ′)
(Sub Sum)
E � T <: T ′ E � U <: U ′

E � (T + U ) <: (T ′ + U ′)

(Sub Var)
E � � (α <: α′) ∈ E

E � α <: α′

(Sub Rec)
E, α <: α′ � T <: T ′ α /∈ fnfv(T ′) α′ /∈ fnfv(T )

E � (μα.T ) <: (μα′.T ′)
(Sub Refine Left)
E � {x : T | C} E � T <: T ′

E � {x : T | C} <: T ′

(Sub Refine Right)
E � T <: T ′ E, x : T � C

E � T <: {x : T ′ | C}
The universal type Un is type equivalent to all types that are both public and tainted;

we (arbitrarily) define Un
�= unit. We can show that this definition satisfies the intended

meaning: that T is public if and only if T is a subtype of Un, and that T is tainted if
and only if T is a supertype of Un. (See Lemma 16 (Public Tainted) in Appendix C.)

The following congruence rule for refinement types is derivable from the two prim-
itive rules for refinement types (Sub Refine Left) and (Sub Refine Right). We also list
the special case for ok-types.

(Sub Refine)
E � T <: T ′ E, x : {x : T | C} � C ′

E � {x : T | C} <: {x : T ′ | C ′}

(Sub Ok)
E, : {C} � C ′

E � {C} <: {C ′}
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PROOF. To derive (Sub Refine), we are to show that E � T <: T ′ and E, x : {x : T |
C} � C ′ imply E � {x : T | C} <: {x : T ′ | C ′}. By Lemma 2 (Derived Judgments) in
Appendix C, E, x : {x : T | C} � C ′ implies E � {x : T | C}. By (Sub Refine Left),
E � {x : T | C} and E � T <: T ′ imply E � {x : T | C} <: T ′. By (Sub Refine Right),
this and E, x : {x : T | C} � C ′ imply E � {x : T | C} <: {x : T ′ | C ′}.

Next, we present the rules for typing values. The rule for constructions h M depends
on an auxiliary relation h : (T ,U ) that delimits the possible argument T and result U
of each constructor h.

Rules for Values: E � M : T
(Val Var)
E � � (x : T ) ∈ E

E � x : T

(Val Unit)
E � �

E � () : unit

(Val Fun)
E, x : T � A : U

E � fun x → A : (�x : T . U )
(Val Pair)
E � M : T E � N : U {M/x}

E � (M, N) : (	x : T . U )

(Val Refine)
E � M : T E � C{M/x}

E � M : {x : T | C}
(Val Inl Inr Fold)
h : (T ,U ) E � M : T E � U

E � h M : U
inl:(T , T +U ) inr:(U, T +U ) fold:(T {μα.T/α}, μα.T )

We can derive an introduction rule for ok-types.

(Val Ok)
E � C

E � () : {C}
PROOF. From E � C we know that E � � and that E � C{()/x}. By (Val Unit),

E � () : unit. By (Val Refine), E � () : {x : unit | C}, that is, E � () : {C}.
Our final set of rules is for typing arbitrary expressions.

Rules for Expressions: E � A : T
(Exp Subsum)
E � A : T E � T <: T ′

E � A : T ′

(Exp Appl)
E � M : (�x : T . U ) E � N : T

E � M N : U {N/x}
(Exp Split)
E � M : (	x : T . U )
E, x : T , y : U, : {(x, y) = M} � A : V
{x, y} ∩ fv(V ) = ∅

E � let (x, y) = M in A : V

(Exp Match Inl Inr Fold)
E � M : T h : (H, T )
E, x : H, : {h x = M} � A : U
E, : {∀x.h x �= M} � B : U

E � match M with h x → A else B : U
(Exp Eq)

E � M : T E � N : U x /∈ fv(M, N)

E � M = N : {x : bool | (x = true ∧ M = N) ∨ (x = false ∧ M �= N)}
(Exp Assume)

E � � fnfv(C) ⊆ dom(E)

E � assume C : { : unit | C}

(Exp Assert)
E � C

E � assert C : unit
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(Exp Let)
E � A : T E, x : T � B : U x /∈ fv(U )

E � let x = A in B : U

(Exp Res)
E, a 
 T � A : U a /∈ fn(U )

E � (νa)A : U

(Exp Send)
E � M : T (a 
 T ) ∈ E

E � a!M : unit

(Exp Recv)
E � � (a 
 T ) ∈ E

E � a? : T

(Exp Fork)
E, : {A2} � A1 : T1

E, : {A1} � A2 : T2

E � (A1 � A2) : T2

In rules for pattern-matching pairs and constructors, we use equations and inequa-
tions within refinement types to track information about the matched variables: (Exp
Split) records that M is the pair (x, y); (Exp Match Inl Inr Fold) records that M is h x
when A runs and that M is not of that form when B runs. Rule (Exp Eq) similarly
tracks the result of equality tests.

The final rule, (Exp Fork) for A1 � A2, relies on an auxiliary function to extract the
top-level formulas from A2 for use while typechecking A1, and to extract the top-level
formulas from A1 for use while typechecking A2. The function A returns a formula rep-
resenting the conjunction of each C occurring in a top-level assume C in an expression
A, with restricted names existentially quantified.

Formula Extraction: A

(νa)A = ∃a.A A1 � A2 = A1 ∧ A2 let x = A1 in A2 = A1 assume C = C
A = True if A matches no other rule.

5. IMPLEMENTING REFINEMENT TYPES FOR F#

We implement a typechecker, known as F7, that takes as input a series of extended RCF
interface files and F# implementation files and, for every implementation file, performs
the following tasks: (1) typecheck the implementation against its RCF interface, and
any other RCF interfaces it may use; (2) kindcheck its RCF interface, ensuring that
every public value declaration has a public type; and then (3) generate a plain F#

interface by erasure from its RCF interface. The programming of these tasks almost
directly follows from our type theory. In the rest of this section, we only highlight some
design choices and implementation decisions.

For simplicity, we do not provide syntactic support for extended types or nonatomic
formulas in implementation files. To circumvent this limitation, one can always move
extended types and complex formulas to the RCF interface by adding auxiliary decla-
rations.

5.1. Handling F# Language Features

Our typechecker processes F# programs with many more features than the calculus of
Section 2. Thus, type definitions also feature mutual recursion, algebraic datatypes,
type abbreviations, and record types; value definitions also feature mutual recursion,
polymorphism, nested patterns in let- and match-expression, records, exceptions, and
mutable references. As described in Section 2, these constructs can be expanded out to
simpler types and expressions within RCF. Hence, for example, our typechecker elim-
inates type abbreviations by inlining, and compiles records to tuples. The remaining
constructs constitute straightforward generalizations of our core calculus. For example,
polymorphic functions represent a family of functions, one for each instance of a type
variable; hence, when checking a specific function application, our typechecker uses
the argument type and expected result type to first instantiate the function type and
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then typecheck it. (An appendix in the technical report provides additional details on
these codings.)

5.2. Annotating Standard Libraries

Any F# program may use the set of pervasive types and functions in the standard
library; this library includes operations on built-in types such as strings, Booleans,
lists, options, and references, and also provides system functions such as reading and
writing files and pretty-printing. Hence, to check a program, we must provide the
typechecker with declarations for all the standard library functions and types it uses.
When the types for these functions are F# types, we can simply use the F# interfaces
provided with the library and trust their implementation. However, if the program
relies on extended RCF types for some library functions, we must provide our own RCF
interface. For example, the following code declares two functions on lists.

assume
(∀x, u. Mem(x,x::u)) ∧
(∀x, y, u. Mem(x,u) ⇒ Mem(x,y::u)) ∧
(∀x, u. Mem(x,u) ⇒ (∃y, v. u = y::v ∧ (x = y ∨ Mem(x,v))))

val mem: x:α → u:α list → r:bool{r=true ⇒ Mem(x,u)}
val find: (α → bool) → (u:α list → r:α{ Mem(r,u) })

We declare an inductive predicate Mem for list membership and use it to annotate the
two library functions for list membership (mem) and list lookup (find). Having defined
these extended RCF types, we have a choice: we may either trust that the library
implementation satisfies these types, or reimplement these functions and typecheck
them. For lists, we reimplement (and retypecheck) these functions; for other library
modules such as String and Printf, we trust the F# implementation.

5.3. Implementing Trusted Libraries

In addition to the standard library, our F# programs rely on libraries for cryptography
and networking. We write their concrete implementations on top of .NET Framework
classes. For instance, we define keyed hash functions as follows.

open System.Security.Cryptography
type αhkey = HK of bytes
type hmac = bytes
let mkHKey () = HK (mkNonce())
let hmacsha1 (HK k) (P x) =

(new HMACSHA1 (k)).ComputeHash x
let hmacsha1Verify (HK k) (P x) (h:bytes) =

let hh = (new HMACSHA1 (k)).ComputeHash x in
if h = hh then P x else failwith "hmac verify failed"

Similarly, the network send and recv are implemented using TCP sockets (and not
typechecked in RCF).

We also write symbolic implementations for cryptography and networking, coded
using seals and channels, and typechecked against their RCF interfaces. These imple-
mentations can also be used to compile and execute programs symbolically, sending
messages on local channels (instead of TCP sockets) and computing sealed values (in-
stead of bytes); this is convenient for testing and debugging, as one can inspect the
symbolic structure of all messages.

5.4. Type Annotations and Partial Type Inference

Type inference for dependently typed calculi, such as RCF, is undecidable in general.
For top-level value definitions, we require that all types be explicitly declared. For
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Table I. Typechecking Example Programs

F# code F# decl. F7 decl. Time Z3 proofs
(lines) (lines) (lines) (S) (goals)

Typed Libraries 440 125 146 12.1 12
Access Control (Section 2.4) 104 16 34 8.3 16
MAC Protocol (Section 3.4) 40 9 12 2.5 3
Logs and Queries (Section 3.5) 37 10 16 2.8 6
Secrecy (Section 3.7) 51 18 41 2.7 6
Principals & Compromise (Section 3.6) 48 13 26 3.1 12
Flexible Signatures (Section 6) 167 25 52 14.6 28

subexpressions, our typechecker performs type inference using standard unification-
based techniques for plain F# types (polymorphic functions, algebraic datatypes) but it
may require annotations for types carrying formulas.

5.5. Generating Proof Obligations for Z3

Following our typing rules, our typechecker must often establish that a condition fol-
lows from the current typing environment (such as when typing function applications
and kinding value declarations). If the formula trivially holds, the typechecker dis-
charges it; for more involved first-order-logic formulas, it generates a proof obligation
in the Simplify format [Detlefs et al. 2005] and invokes the Z3 prover. Since Z3 is
incomplete, it sometimes fails to prove a valid formula.

The translation from RCF typing environments to Simplify involves logical re-
encodings. Thus, constructors are coded as injective, uninterpreted, disjoint functions.
Hence, for instance, a type definition for lists

type (α) list = Cons of α∗ αlist | Nil

generates logical declarations for a constant Nil and a binary function Cons, and the
two assumptions

assume ∀x,y. Cons(x,y) �= Nil.
assume ∀x,y,x’,y’.

(x = x’ ∧ y = y’) ⇔ Cons(x,y) = Cons(x’,y’).

Each constructor also defines a predicate symbol that may be used in formulas.
Not all formulas can be translated to first-order-logic; for example, equalities between
functional values cannot be translated and are rejected.

5.6. Evaluation

We have typechecked all the examples of this article and a few larger programs. Table I
summarizes our results; for each example, it gives the number of lines of typed F# code,
of generated F# interfaces, and of declarations in RCF interfaces, plus typechecking
time, and the number of proof obligations passed to Z3. Since F# programmers are ex-
pected to write interfaces anyway, the line difference between RCF and F# declarations
roughly indicates the additional annotation burden of our approach.

The first row is for typechecking our symbolic implementations of lists, cryptography,
and networking libraries. The second row is an extension of the access control example
of Section 2; the next three rows are variants of the MAC protocol of Section 3. The
second-last row is an example adapted from earlier work [Fournet et al. 2007a]; it illus-
trates the recursive verification of any chain of certificates. The final row implements
the protocol described next in Section 6.

The examples in this article are small programs designed to exercise the features of
our type system; our results indicate that typechecking is fast and that annotations
are not too demanding. Recent experiments [Bhargavan et al. 2009] indicate that our
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typechecker scales well to large examples; it can verify custom cryptographic protocol
code with around 2000 lines of F# in less than 3 minutes. In comparison with an earlier
tool FS2PV [Bhargavan et al. 2008b] that compiles F# code to ProVerif, our typechecker
succeeds on examples with recursive functions, such as the last row in Table I, where
ProVerif fails to terminate. It also scales better, since we can typecheck one module
at a time rather than construct a large ProVerif model. On the other hand, FS2PV

requires no type annotations, and ProVerif can also prove injective correspondences
and equivalence-based properties [Blanchet et al. 2008].

6. APPLICATION: FLEXIBLE SIGNATURES

We illustrate the controlled usage of cryptographic signatures with the same key for
different intents, or different protocols. Such reuse is commonplace in practice (at least
for long-term keys) but it is also a common source of errors (see Abadi and Needham
[1996]), and it complicates protocol verification.

The main risk is to issue ambiguous signatures. As an informal design principle,
one should ensure that whenever a signature is issued: (1) its content follows from the
current protocol step; and (2) its content cannot be interpreted otherwise, by any other
protocol that may rely on the same key. To this end, one may for instance sign nonces,
identities, session identifiers, and tags as well as the message payloads to make the
signature more specific.

Our example is adapted from protocol code for XML digital signatures, as prescribed
in Web services security standards [Eastlake et al. 2002; Nadalin et al. 2004]. These sig-
natures consist of an XML “signature information” which represents a list of (hashed)
elements covered by the signature, together with a binary “signature value,” a signed
cryptographic hash of the signature information. Web services normally treat received
signed-information lists as sets, and only check that these sets cover selected elements
of the message, possibly fewer than those signed, to enable partial erasure as part of
intermediate message processing. This flexibility induces protocol weaknesses in some
configurations of services. For instance, by providing carefully crafted inputs, an adver-
sary may cause a naive service to sign more than intended, and then use this signature
(in another XML context) to gain access to another service.

For simplicity, we only consider a single key and two interpretations of messages.
We first declare types for these interpretations (either requests or responses) and their
network format (a list of elements plus their joint signature).

type id = int // representing message GUIDs
type events =
| Request of id ∗ string // id and payload
| Response of id ∗ id ∗ string // id, request id, and payload

type element =
| IdHdr of id // Unique message identifier
| InReplyTo of id // Identifier for some related messsage
| RequestBody of string // Payload for a request message
| ResponseBody of string // Payload for a response message
| Whatever of string // Any other elements

type siginfo = element list
type msg = siginfo ∗ dsig

Depending on their constructor, signed elements are interpreted for requests
(RequestBody), responses, (InReplyTo, ResponseBody), both (IdHdr), or none (Whatever). We
formally capture this intent in the type declaration of the information that is signed.

type verified = x:siginfo{
(∀id, b.(Mem(IdHdr(id),x) ∧ Mem(RequestBody(b),x))

⇒ Request(id,b) )
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∧ (∀id, req, b.(Mem(IdHdr(id),x) ∧ Mem(ResponseBody(b),x)
∧ Mem(InReplyTo(req),x)) ⇒ Response(id,req,b) ) }

Thus, the logical meaning of a signature is a conjunction of message interpretations,
each guarded by a series of conditions on the elements included in the signature infor-
mation.

We only present code for requests. We use the following declarations for the key pair
and for message processing.

private val k: (verified,unit) privkey
private val sk: verified sigkey
val vk: verified verifkey
private val mkMessage: verified → msg
private val isMessage: msg → verified

type request = (id:id ∗ b:string){ Request(id,b) }
val isRequest: msg → request
private val mkPlainRequest: request → msg
private val mkRequest: request → siginfo → msg

To accept messages as a genuine requests, we just verify its signature and find two
relevant elements in the list.

let isMessage (msg,dsig) =
let signed: siginfo → siginfo pickled = pickle in
unpickle (rsasha1Verify vk (signed msg) dsig)

let isRequest msg =
let si = isMessage msg in
let i = find id si in
let r = find request si in
(i,r)

For producing messages, we may define (and type) the following code.

let mkMessage siginfo =
let signed: verified → verified pickled = pickle in
(siginfo, rsasha1 sk (signed siginfo))

let mkPlainRequest (id,payload) =
let l1: element list = [] in
let ide: element = IdHdr(id) in
let reqe : element = RequestBody(payload) in
let ls:element list = ide::reqe::l1 in
mkMessage ls

let mkRequest (id,payload) extra : msg =
check harmless extra;
let ide: element = IdHdr(id) in
let reqe : element = RequestBody(payload) in
let ls:element list = ide::reqe::extra in
mkMessage ls

While mkPlainRequest uses a fixed list of signed elements, mkRequest takes further ele-
ments to sign as an extra parameter. In both cases, typing the list with the refinement
type verified ensures: (1) Request(id,b), from its input refinement type; and (2) that the list
does not otherwise match the two clauses within verified. For mkRequest, this requires
some dynamic input validation check harmless extra where check harmless is declared as

val check harmless: x: siginfo → r: unit {
( ∀s. not(Mem(IdHdr(s),x)))
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∧ ( ∀s. not(Mem(InReplyTo(s),x)))
∧ ( ∀s. not(Mem(RequestBody(s),x)))
∧ ( ∀s. not(Mem(ResponseBody(s),x))) }

and recursively defined as

let rec check harmless m = match m with
| IdHdr( ):: → failwith "bad"
| InReplyTo( ):: → failwith "bad"
| RequestBody( ):: → failwith "bad"
| ResponseBody( ):: → failwith "bad"
| ::xs → check harmless xs
| [] → ()

On the other hand, the omission of this check, or an error in its implementation, would
be caught as a type error.

To conclude this example, we provide an alternative declaration for type verified. This
type specifies a more restrictive interpretation of signatures: it assumes that the rele-
vant elements appear in a fixed order at the head of the list. (This corresponds roughly
to our most precise model in earlier work, which relied on an ad hoc specification of list
within ProVerif.)

type verifiedprefix = x:siginfo{
( ∀id, b, extra.( x = IdHdr(id)::RequestBody(b)::extra ⇒ Request(id,b) ))

∧ ( ∀id, req, b, extra.( x = IdHdr(id)::InReplyTo(req)::ResponseBody(b)::extra
⇒ Response(id,req,b) )) }

Formally, our typechecker confirms that verified is a subtype of prefixverified. For instance,
we may use it instead of verified for typing mkRequest (and even remove the call to
check harmless), but not for typing isRequest.

7. RELATED WORK

RCF is intended for verifying security properties of implementation code, and is related
to various prior type systems and static analyses. We describe some of the more closely
related approaches. (See also Section 1 for a comparison with prior work of the authors.)

Verification tools for cryptographic protocol implementations. CSur was the first tool to ana-
lyze the source code of cryptographic protocols [Goubault-Larrecq and Parrennes 2005];
it can verify protocol code in C annotated with logical assertions, by generating proof
obligations for an external first-order logic theorem prover.

In prior work [Bhargavan et al. 2008a, 2008b] a subset of F# was translated into dif-
ferent variants of the applied π -calculus which could be verified by Blanchet’s theorem
provers ProVerif [Blanchet 2001] and CryptoVerif [Blanchet 2006] respectively. The
use of specialized provers enables the verification of complex cryptographic protocols
but is problematic with large implementations.

ASPIER [Chaki and Datta 2009] has been applied to verify code of the central loop
of OpenSSL. It performs no interprocedural analysis and relies on unverified user-
supplied abstractions of all functions called from the central loop. ASPIER is based
on software model-checking techniques, and proves properties of OpenSSL assuming
bounded numbers of active sessions.

Program verification using dependent types. Like standard forms of constructive type the-
ory [Martin-Löf 1984; Constable et al. 1986; Coquand and Huet 1988; Parent 1995],
our system RCF relies on dependent types (that is, types which contain values), and it
can establish logical properties by typechecking. There are, however, three significant
differences in style between RCF and constructive type theory. Most notably, RCF does
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not rely on the Curry-Howard correspondence, which identifies types with logical for-
mulas; instead, RCF has a fixed set of type constructors, and is parameterized by the
choice of a logic which may or may not be constructive. Secondly, types in RCF may con-
tain only values, but not arbitrary expressions such as function applications. Thirdly,
properties of functions are stated by refining their argument and result types with
preconditions and post-conditions, rather than by developing a behavioral equivalence
on functions.

Our treatment of refinement types follows Sage [Gronski et al. 2006], a functional
programming language with a rich type system including refinement types. Typecheck-
ing generates proof obligations that are sent to an automatic theorem prover; those that
cannot be proved automatically are compiled down to runtime checks.

Our approach of annotating programs with pre- and post-conditions has similari-
ties with extended static checkers used for program verification, such as ESC/Java
[Flanagan et al. 2002], Spec# [Barnett et al. 2005], and ESC/Haskell [Xu 2006]. Such
checkers have not been used to verify security properties of cryptographic code, but they
can find many other kinds of errors. For instance, Poll and Schubert [2007] use ESC/-
Java2 [Cok and Kiniry 2004] to verify that an SSH implementation in Java conforms
to a state machine specification. Combining approaches can be even more effective,
for instance, Hubbers et al. [2003] generate implementation code from a verified pro-
tocol model and check conformance using an extended static checker. In recent work,
Régis-Gianas and Pottier [2008] enrich a core functional programming language with
higher-order logic proof obligations. These are then discharged either by an automatic
or an interactive theorem prover depending on the complexity of the proof.

In comparison with these approaches, we propose subtyping rules that capture no-
tions of public and tainted data, and we provide functional encodings of cryptography.
Hence, we achieve typability for opponents representing active attackers. Also, we use
only stable formulas: in any given run, a formula that holds at some point also holds for
the rest of the run; this enables a simple treatment of programs with concurrency and
side-effects. More precise stateful properties can still be specified and verified within
RCF using a refined state monad [Borgström et al. 2010].

One direction for further research is to avoid the need for refinement type annota-
tions, by inference. A potential starting point is a recent line of work based on Liquid
Types [Rondon et al. 2008, 2010; Kawaguchi et al. 2009], a polymorphic system of
refinement types for ML, together with a type inference algorithm based on predicate
abstraction.

Type systems for security. Type systems for information flow have been developed for
code written in many languages, including Java [Myers 1999], ML [Pottier and Simonet
2003], and Haskell [Li and Zdancewic 2006]. Further works extend them with support
for cryptographic mechanisms (for example, Askarov and Sabelfeld [2005], Askarov
et al. [2006], Vaughan and Zdancewic [2007], and Fournet and Rezk [2008].

These systems seek to guarantee noninterference properties for programs annotated
with confidentiality and integrity levels. In contrast, our system seeks to guarantee
assertion-based security properties commonly used in authorization policies and cryp-
tographic protocol specifications, and disregards implicit flows of information.

These systems also feature various privileged primitives for declassifying confiden-
tial information and endorsing untrusted information which play a role similar to our
assume primitive for injecting formulas.

Type systems with logical effects such as ours have also been used to reason about
the security of models of distributed systems. For instance, type systems for variants
of the π -calculus [Fournet et al. 2007b; Cirillo et al. 2007; Maffeis et al. 2008] and the
λ-calculus [Jagadeesan et al. 2008] can guarantee that expressions follow their access
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control policies. Type systems for variants of the π -calculus, such as Cryptyc [Gordon
and Jeffrey 2002], have been used to verify secrecy, authentication, and authorization
properties of protocol models. Unlike our tool, none of these typecheckers operates on
source code.

The AURA type system [Vaughan et al. 2008; Jia et al. 2008] also enforces authoriza-
tion by relying on value-dependent types, but it takes advantage of the Curry-Howard
isomorphism for a particular intuitionistic logic [Abadi 2007]; hence, proofs are ma-
nipulated at runtime, and may be stored for later auditing; in contrast, we erase all
formulas and discard proofs after typechecking.

Fable [Swamy et al. 2008] is a core formalism for expressing security policies; its
type system does not in itself guarantee security properties, but additional proofs can
build on type safety to establish properties including access control, information flow,
and provenance. Fine [Swamy et al. 2010; Chen et al. 2010] is another refinement
type system for F#, partly inspired by RCF; it extends the F# source language with
dependent, refinement, and affine types that can be used to express and statically
verify information flow and stateful authorization policies. Moreover, source programs
typechecked with Fine can be compiled to proof-carrying code in a low-level interme-
diate language. To use the Fine typechecker and compiler, the programmer writes in
an extended source language with extensive type annotations. In contrast, our type-
checker works with pure F# programs with all annotations provided in an external
RCF interface. Moreover, our verification case studies focus on the use of cryptography
to enforce security policies, while the the use of cryptographic primitives with Fine
remains future work.

Beyond typechecking, many verification techniques also rely on checking logical
properties of protocols, using, for instance, pre- and post-conditions in a protocol logic
with domain-specific axioms [Durgin et al. 2003; Datta et al. 2007].

Security verification using RCF. Our type system and its typechecker have been used to
verify implementations of complex cryptographic protocols and security mechanisms.

—Backes et al. [2009] use RCF as the formal basis of a compiler for zero-knowledge
protocols; the compiler takes a verified (well-typed) protocol model and generates a
well-typed RCF program, hence preserving the desired security properties.

—Baltopoulos and Gordon [2009] use F7 to validate an improved compilation strategy
for the Links multitier programming language [Cooper et al. 2006], where keyed
hashes and encryption protect the integrity and secrecy of Web application data held
in HTML forms.

—Bhargavan et al. [2009] use F7 as a component of a verifying protocol compiler for
multiparty sessions; the compiler generates a protocol implementation along with
type annotations and the typechecker verifies that the implementation meets its
high-level security specification.

—Guts et al. [2009] also use our typechecker to verify the correct use of security audit
logs in distributed applications; well-typed programs are guaranteed to log enough
information to later convince a judge that a particular sequence of events occurred.

—Bhargavan et al. [2010b] extend the F7 typechecker with support for implicit pred-
icates representing the pre- and post-conditions of functions, in order to verify ap-
plications that use higher-order functions to perform cryptographic operations over
recursive data structures, such as lists.

—Bhargavan et al. [2010a] develop a revised set of cryptographic libraries for F7, with
embedded logical invariants, and use them to verify a Web services security protocol
stack and an implementation of the widely deployed Cardspace protocol for federated
identity management. Their main motivation is to extend the scope of cryptographic
verification by typing.
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Their libraries rely on different, more logic-oriented design principles, and differ-
ent types for the opponent. Kinds in RCF provide a simple, built-in mechanism for
constraining types in opponent interfaces; they suffice to model many cryptographic
primitives, but not all of those found in large case studies. Bhargavan et al. also rely
on RCF and F7, but do not rely on kinds.

Instead, their approach involves developing (and assuming) a logical theory of
symbolic cryptographic structures (including in particular a Pub predicate that rep-
resents the attacker knowledge). To verify a given protocol, one can then extend and
customize the logical theory, rather than just declaring types.

Intuitively, instead of types with nested constructors subject to kinding, they
mostly use refinement types of the form {x : bytes | C}, carrying logical specifications
C subject to subtyping. Instead of the kinding judgments E � T :: pub and E � T ::
tnt, they use subtyping judgments E � T <: {x : bytes | Pub(x)} and E � {x : bytes |
Pub(x)} <: T , respectively, where Pub is an ordinary predicate of their theory.

Both sets of libraries are distributed with F7. Theirs yield a more general treat-
ment of secrecy, and a flexible model for additional cryptographic patterns. For ex-
ample, their libraries include weaker, unauthenticated encryption algorithms that
one can use to build composite patterns such as hybrid encryption, which are not
easily encodable with our libraries. Conversely, their libraries are more complex, and
their usage sometimes requires hand proofs as well as typechecking.

—This article focuses on verifying security protocols written in RCF against a for-
mal model of cryptography expressed with seals. Subsequent work by Backes et al.
[2010] and by Fournet [2009] develops techniques for verifying RCF code against
the computational model of cryptography. Additionally, Backes et al. show a formal
correspondence between seals and a formal algebra in the style of Dolev and Yao
[1983].

Finally, a tutorial article [Gordon and Fournet 2010] develops the calculus RCF in
several stages (but without kinds), and summarizes the various projects building on it.

8. CONCLUSION

The use of logical formulas as computational effects is a valuable way to integrate
program logics and type systems, with application to security.

APPENDIXES

A. LOGICS

Formally, RCF is parameterized by the choice of a logic, in the sense that our typed
calculus depends only on a series of abstract properties of the logic, rather than on a
particular semantics for logic formulas.

Experimentally, our prototype implementation uses ordinary first-order logic with
equality, with terms that include all the values M, N of Section 2.1 (including functional
values). During typechecking, this logic is partially mapped to the Simplify input of
Z3, with the implementation restriction that no term should include any functional
value. This restriction prevents discrepancies between runtime equality in RCF and
term equality in F#.

We first give an abstract definition of the logic used for the theorems, and then give a
concrete definition of the logic used in the implementation. Other interesting instances
of logics for our verification purposes include authorization logics with “says” modali-
ties [Abadi et al. 1993], which may be used to give a logical account of principals and
partial trust by typing [Fournet et al. 2007b]. Accordingly, we refer to our parametric
logic as an authorization logic.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 2, Article 8, Publication date: January 2011.



8:32 J. Bengtson et al.

A.1. Definition of Authorization Logic

We give a generic, partial definition of logic that captures only the logical properties
that are used to establish our typing theorems.

An authorization logic is given as a set of formulas defined by a grammar that
includes the one given shortly and a deducibility relation S � C, from finite multisets
of formulas to formulas that meets the properties listed next.

Minimal Syntax of Formulas:
p predicate symbol
C ::= formula

p(M1, . . . , Mn) atomic formula
M = M′ equation
C ∧ C ′ conjunction
C ∨ C ′ disjunction
¬C negation
∀x.C universal quantification
∃x.C existential quantification

True
�= () = () False

�= ¬True M �= M′ �= ¬(M = M′)
(C ⇒ C ′) �= (¬C ∨ C ′) (C ⇔ C ′) �= (C ⇒ C ′) ∧ (C ′ ⇒ C)

Properties of Deducibility: S � C
S, C stands for S ∪ {C}; in (Subst), σ ranges over substitutions of values for variables
and permutations of names.

(Axiom)

C � C

(Mon)
S � C

S, C ′ � C

(Subst)
S � C

Sσ � Cσ

(Cut)
S � C S, C � C ′

S � C ′

(And Intro)
S � C0 S � C1

S � C0 ∧ C1

(And Elim)
S � C0 ∧ C1

S � Ci

(Or Intro)
S � Ci

S � C0 ∨ C1
i = 0, 1

(Exists Intro)
S � C{M/x}

S � ∃x.C

(Exists Elim)
S � ∃x.C S, C � C ′ x /∈ fv(S, C ′)

S � C ′

(Eq)

∅ � M = M

(Ineq)
M �= N fv(M, N) = ∅

∅ � M �= N

(Ineq Cons)
h N = M for no N fv(M) = ∅

∅ � ∀x.hx �= M

We have a derived property (True) ∅ � True.
Although these properties are mostly standard in first-order logic, they are not com-

plete; for instance, we do not set any axiom for negation, so our typing results apply
both to intuitionistic and classical logics. Also, we do not provide enough properties to
discharge the proof obligations when typing our examples.

We use property (Mon) for the soundness of typing subexpressions, and use prop-
erty (Subst) for establishing substitution lemmas. We also implicitly use (Subst) for
handling the terms of RCF up to α-conversion on bound names and variables.

We use the properties (And Intro), (And Elim), (Exists Intro), (Exists Elim), and
(True) in the proof of Lemma 28 (� Preserves Logic), to show that the formula A
extracted from an expression A is preserved by structural equivalence.

We use the properties (Eq), (Ineq), and (Or Intro) in the proof of Lemma 30 (→
Preserves Logic), for the soundness of the typing rule (Exp Eq). Similarly, we use
property (Ineq Cons) for the soundness of (Exp Match Inl Inr Fold).

Since functions fun x → A are values, they may occur in atomic formulas or equa-
tions. Still, these functions are essentially inert in the logic; they can be compared
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for equality but the logic does not allow reasoning about the application of functions.
Said otherwise, the equational theory M = M′ is only up to α-conversion, but not, for
instance, β-conversion. Recall that we identify the syntax of values up to the consistent
renaming of bound variables, so that, for example, fun x → x and fun y → y are the
same value. Hence, ∅ � fun x → x = fun y → y is an instance of (Eq).

A.2. An Authorization Logic Based on First-Order Logic

For the sake of a self-contained exposition, we review classical first-order logic (predi-
cate calculus) with equality, as supported by the Z3 prover used by our typechecker.

First-Order Logic (Review). The syntax of first-order logic consists of sets of formulas, C,
and terms, t, induced by sets of predicate symbols, p, and function symbols, f .

Syntax of First-Order Terms and Formulas:
t ::= x | f (t1, . . . , tn)
C ::= p(t1, . . . , tn) | (t = t′) | False | C ∧ C ′ | C ∨ C ′ | C ⇒ C ′ | ∀x.C | ∃x.C

¬C �= (C ⇒ False) t �= t′ �= ¬(t = t′)

We recall a proof system, FOL, for classical first-order logic with equality in the style
of Gentzen’s natural-deduction. (More precisely, this is the theory of classical first-
order logic with equality as implemented in Isabelle [Paulson 1991], presented using
sequents following, for example, Dummett [1977] and Paulson [1987].

Proof Theory FOL: S � C
(FOL Assume)
C ∈ S

S � C

(FOL Refl)

S � t = t

(FOL Subst)
S � t = t′ S � C{t/x}

S � C{t′/x}
(FOL And Intro)
S � C0 S � C1

S � C0 ∧ C1

(FOL And Elim)
S � C0 ∧ C1

S � Ci

(FOL Or Intro)
S � Ci

S � C0 ∨ C1
i = 0, 1

(FOL Or Elim)
S � C0 ∨ C1 S, C0 � C ′ S, C1 � C ′

S � C ′

(FOL False)
S � False

S � C

(FOL Classical)
S,¬C � C

S � C
(FOL Imply Intro)

S, C � C ′

S � C ⇒ C ′

(FOL Imply Elim)
S � C ⇒ C ′ S � C

S � C ′

(FOL All Intro)
S � C x /∈ fv(S)

S � ∀x.C

(FOL All Elim)
S � ∀x.C

S � C{t/x}
(FOL Exists Intro)
S � C{t/x}
S � ∃x.C

(FOL Exists Elim)
S � ∃x.C S, C � C ′ x /∈ fv(S, C ′)

S � C ′

The only rule of FOL that is specific to classical logic is (FOL Classical). The proof
theory IFOL [Paulson 1991] for intuitionistic first-order logic consists of all the rules
of FOL apart from (FOL Classical).

An Authorization Logic. To construct an authorization logic from FOL, we begin by spec-
ifying a particular instance of FOL, and translation from the formulas of authorization
logic into this instance.

The syntaxes of formulas in the two logics are essentially the same. The only subtlety
in the translation is that the phrases of RCF syntax, including values M and expres-
sions within values, that may occur in authorization logic formulas include binders,
while the syntax of first-order terms does not. Our solution is to use the standard first-
order locally nameless representation of syntax with binders introduced by de Bruijn
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[1972]. Each bound name or variable in an RCF phrase is represented as a numeric
index, while each free name or variable is represented by itself. We assume that the set
of variables of RCF coincides with the variables of FOL, and that each of the (countable)
set of names of RCF is included as a nullary function symbol (that is, a constant) in
FOL. Moreover, we assume there is a function symbol for each form of RCF phrase,
zero and successor symbols to represent indexes, a function symbol to form a bound
variable from an index, and one to form a bound name from an index. We refer to these
function symbols (including names) as syntactic. Hence, any phrase of RCF has a rep-
resentation as a first-order term; in particular, we write M for the term representing
the value M. (We omit the standard details of the locally nameless representation; for
a discussion see, for example, Gordon [1994] and Aydemir et al. [2008].) Notice that if
M is obtained from N by consistent renaming of bound names and variables then M
and N are identical first-order terms.

Hence, we may obtain an FOL formula C from an authorization logic formula C
via a homomorphic translation with base cases p(M1, . . . , Mn) = p(M1, . . . , Mn) and
M = N = M = N. We extend the translation to sets of formulas: S = {C1, . . . , Cn} when
S = {C1, . . . , Cn}.

In our intended model, the semantics of a term is an element of a domain defined
as the free algebra with constructors corresponding to each of the syntactic function
symbols. Hence, the domain is the set of closed phrases of RCF in de Bruijn represen-
tation.

We extend the theory FOL with standard axioms valid in the underlying free algebra,
that syntactic function symbols yield distinct results, and are injective. (The notation
�x = �y means x1 = y1 ∧ · · · ∧ xn = yn where �x and �y are the lists x1, . . . , xn and y1, . . . , yn.)

Additional Rules for FOL/F:
(F Disjoint)

f �= f ′ syntactic

S � ∀�x.∀�y. f (�x) �= f ′(�y)

(F Injective)
f syntactic

S � ∀�x.∀�y. f (�x) = f (�x) ⇒ �x = �y

We can use Z3, or some other general SMT solver, to check whether a sequent S � C
is derivable in FOL/F by simply declaring an axiom for each instance of (F Disjoint) and
(F Injective). (The problem is semidecidable so the SMT solver may fail to determine
whether or not the sequent is derivable.)

Now, we define our authorization logic: we take the set of formulas to be exactly the
minimal syntax of Appendix A.1, and we define the deducibility relation S � C to hold
if and only if the sequent S � C is derivable in the theory FOL/F.

THEOREM 4 (LOGIC). FOL/F is an authorization logic.

Since the derivations do not need (FOL Classical), the intuitionistic variation IFOL/F
could also serve as an authorization logic.

B. SEMANTICS AND SAFETY OF EXPRESSIONS

This appendix formally defines the operational semantics of expressions, and the notion
of expression safety, as introduced in Section 2.

An expression can be thought of as denoting a structure, given as follows. We define
the meaning of assume C and assert C in terms of a structure being statically safe.

Let an elementary expression, e, be any expression apart from a let, restriction, fork,
message send, or an assumption.
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Structures and Static Safety:∏
i∈1..n Ai

�= () � A1 � . . . � An
L ::= {} | (let x = L in B)

S ::= (νa1) . . . (νa�)((
∏

i∈1..m

assume Ci) � (
∏

j∈1..n

c j !Mj) � (
∏

k∈1..o

Lk{ek}))

Let structure S be statically safe if and only if, for all k ∈ 1..o and C, if ek = assert C
then {C1, . . . , Cm} � C.

Structures formalize the idea, explained in Section 2.1, that a state has three com-
ponents:

(1) a series of elementary expressions ek being evaluated in parallel contexts;
(2) a series of messages Mj sent on channels but not yet received; and
(3) the log, a series of assumed formulas Ci.

Heating: A � A′

Axioms A ≡ A′ are read as both A � A′ and A′ � A.

A � A (Heat Refl)
A � A′′ if A � A′ and A′ � A′′ (Heat Trans)

A � A′ ⇒ let x = A in B � let x = A′ in B (Heat Let)
A � A′ ⇒ (νa)A � (νa)A′ (Heat Res)
A � A′ ⇒ (A � B) � (A′ � B) (Heat Fork 1)
A � A′ ⇒ (B � A) � (B � A′) (Heat Fork 2)

() � A ≡ A (Heat Fork ())
a!M � a!M � () (Heat Msg ())
assume C � assume C � () (Heat Assume ())

a /∈ fn(A′) ⇒ A′ � ((νa)A) � (νa)(A′ � A) (Heat Res Fork 1)
a /∈ fn(A′) ⇒ ((νa)A) � A′ � (νa)(A � A′) (Heat Res Fork 2)
a /∈ fn(B) ⇒

let x = (νa)A in B � (νa)let x = A in B
(Heat Res Let)

(A � A′) � A′′ ≡ A � (A′ � A′′) (Heat Fork Assoc)
(A � A′) � A′′ � (A′ � A) � A′′ (Heat Fork Comm)
let x = (A � A′) in B ≡

A � (let x = A′ in B)
(Heat Fork Let)

LEMMA 1 (STRUCTURE).
For every expression A, there is a structure S such that A � S.

Reduction: A → A′

(fun x → A) N → A{N/x} (Red Fun)
(let (x1, x2) = (N1, N2) in A) →

A{N1/x1}{N2/x2}
(Red Split)

(match M with h x → A else B) →{
A{N/x} if M = h N for some N
B otherwise

(Red Match)

M = N →
{

true if M = N
false otherwise (Red Eq)

a!M � a? → M (Red Comm)
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assert C → () (Red Assert)
let x = M in A → A{M/x} (Red Let Val)

A → A′ ⇒ let x = A in B → let x = A′ in B (Red Let)
A → A′ ⇒ (νa)A → (νa)A′ (Red Res)
A → A′ ⇒ (A � B) → (A′ � B) (Red Fork 1)
A → A′ ⇒ (B � A) → (B � A′) (Red Fork 2)

A → A′ if A � B, B → B′, B′ � A′ (Red Heat)

Expression Safety:
An expression A is safe if and only if, for all A′ and S, if A →∗ A′ and A′ � S, then S is
statically safe.

C. PROPERTIES OF THE TYPE SYSTEM

The structure of this appendix is as follows.
—Appendix C.1 develops basic properties of the type system, such as weakening,

strengthening, and exchange lemmas.
—Appendix C.2 contains the proof of Lemma 15 (Public Down/Tainted Up), which

characterizes the relationship between the public and tainted kinds and subtyping.
—Appendix C.3 establishes properties of subtyping, principally Lemma 20 (Transitiv-

ity), that subtyping is transitive.
—Appendix C.4 presents an alternative characterization of the expression typing rela-

tion, avoiding the nonstructural rule (Val Refine), by building its effect into each of
the structural rules for values; this characterization is useful in various subsequent
proofs.

—Appendix C.5 proves various properties of substitution.
—Appendix C.6 establishes Theorem 1 (Safety). The main lemmas in the proof are

Proposition 29 (� Preserves Types) and Proposition 31 (→ Preserves Types).
—Finally, Appendix C.7 establishes Theorem 2 (Robust Safety); the main additional

lemma needed is Lemma 34 (Opponent Typability), that any opponent expression
can be typed within the system.

C.1. Basic Properties

We begin with some standard properties of our type system. To state them, we let J
range over {�, T , C, T :: ν, T <: T ′, A : T }.

LEMMA 2 (DERIVED JUDGMENTS).
(1) If E � T then E � � and fnfv(T ) ⊆ dom(E).
(2) If E � C then E � � and fnfv(C) ⊆ dom(E).
(3) If E � T :: ν then E � T .
(4) If E � T <: T ′ then E � T and E � T ′.
(5) If E � A : T then E � T and fnfv(A) ⊆ dom(E).

LEMMA 3 (TYPE VARIABLE STRENGTHENING).
Let entry μ be one of α, α :: ν ′, or α <: α′, and assume that dom(μ) ∩ fnfv(E′) = ∅.
(1) If E, μ, E′ � � then E, E′ � �.
(2) If E, μ, E′ � C and dom(μ) ∩ fnfv(C) = ∅ then E, E′ � C.
(3) If E, μ, E′ � T :: ν and dom(μ) ∩ fnfv(T ) = ∅ then E, E′ � T :: ν.
(4) If E, μ, E′ � T <: T ′ and dom(μ) ∩ fnfv(T , T ′) = ∅ then E, E′ � T <: T ′.

PROOF. By an induction on the depth of derivation of E, μ, E′ � J , using property
(Cut) of the logic.
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LEMMA 4 (ANON VARIABLE STRENGTHENING).
If E, : {C}, E′ � J and forms(E, E′) � C then E, E′ � J .

LEMMA 5 (EXCHANGE).
If E, μ1, μ2, E′ � J and dom(μ1) ∩ fnfv(μ2) = ∅ then E, μ2, μ1, E′ � J .

LEMMA 6 (WEAKENING).
If E, E′ � J and E, μ, E′ � � then E, μ, E′ � J .

The following lemma captures the idea that the formulas in a tainted type cannot be
relied upon, because any data produced by the opponent may flow into a tainted type.

LEMMA 7 (KINDING).
If E � T :: tnt, and x �∈ dom(E), then forms(E) � forms(x : T ).

If T is a subtype of T ′, then the set of formulas forms(x : T ) is logically stronger than
the set of formulas forms(x : T ′).

LEMMA 8 (LOGICAL SUBTYPING).
If E � T <: T ′ and x /∈ dom(E) then forms(E), forms(x : T ) � forms(x : T ′).

Our system enjoys a standard bound weakening property that an occurrence of T in
the environment of a judgment can be replaced by a subtype T ′.

LEMMA 9 (BOUND WEAKENING).
Suppose that E � T ′ <: T . If E, x : T , E′ � J then E, x : T ′, E′ � J . Moreover the depth
of the derivation of the second judgment equals that of the first (except where J is a
typing judgment).

Recall that an ok-type {C} is a token witnessing that the formula C holds, and is
defined to be the refinement type { : unit | C}. The final lemmas in this section state
some simple properties of ok-types.

LEMMA 10 (BOUND WEAKENING OK).
Suppose that E, C ′ � C. If E, x : {C}, E′ � J then E, x : {C ′}, E′ � J .

LEMMA 11 (SUB REFINE LEFT REFL).
If E � {x : T | C} then E � {x : T | C} <: T .

LEMMA 12 (AND SUB).
If E � {x : T | C1 ∧ C2} then: E � {x : T | C1 ∧ C2} <:> {x : {x : T | C1} | C2}.

LEMMA 13 (OK ∧).
We have E, : {C1}, : {C2}, E′ � J if and only if E, : {C1 ∧ C2}, E′ � J .

C.2. Properties of Kinding

We introduced in Section 3.2 a universal type Un of data known to the opponent.
Lemma 16 (Public Tainted) is a standard characterization [Gordon and Jeffrey 2003b]
of the public and tainted kinds: a type T is public if and only if it is a subtype of Un,
and a type is tainted if and only if it is a supertype of Un. The next two lemmas are
needed in the proof of this main lemma.

LEMMA 14 (REPLACING TAINTED BOUNDS).
If E, x : T , E′ � U :: ν and E � T :: tnt and E � V then E, x : V, E′ � U :: ν.

LEMMA 15 (PUBLIC DOWN/TAINTED UP).
Suppose that E is executable.

(1) If E � T <: T ′ and E � T ′ :: pub then E � T :: pub.
(2) If E � T :: tnt and E � T <: T ′ then E � T ′ :: tnt.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 2, Article 8, Publication date: January 2011.



8:38 J. Bengtson et al.

LEMMA 16 (PUBLIC TAINTED).
For all T and executable E:

(1) E � T :: pub if and only if E � T <: Un.
(2) E � T :: tnt if and only if E � Un <: T .

C.3. Properties of Subtyping

The main result in this section is transitivity of subtyping, perhaps the most difficult
proof in the development because it needs a relatively complex inductive argument.

The proof of transitivity depends on the following lemma, the first two of which
concern the use of recursive type variables declared by entries α <: α′ in the typing
environment.

LEMMA 17 (REC KINDING).
If E � T :: ν and (α <: α′) ∈ E then α /∈ fnfv(T ) and α′ /∈ fnfv(T ).

LEMMA 18 (REC SUBTYPING).
If E � T <: T ′ and (α <: α′) ∈ E we have that: {α, α′} ∩ fnfv(T ) = ∅ if and only if
{α, α′} ∩ fnfv(T ′) = ∅.

The following lemma formalizes the intuition that the formulas decorating the type
in the environment are all that matter as far as the kinding and subtyping judgments
are concerned. In particular, we can replace an environment entry x : T with x : (T )�,
where (T )� is the refinement of the unit type given as follows.

Formulizing a Type:

(T )� �= {x : unit | forms(x : T )}

LEMMA 19 (FORMULIZE TYPE). Assume E, x : T , E′ � �.

(1) E, x : (T )�, E′ � �.
(2) E, x : T , E′ � C iff E, x : (T )�, E′ � C.
(3) E, x : T , E′ � U :: ν iff E, x : (T )�, E′ � U :: ν.
(4) E, x : T , E′ � U <: U ′ iff E, x : (T )�, E′ � U <: U ′.

Moreover, the depth of the derivations of each pair of judgments is the same.

LEMMA 20 (TRANSITIVITY).
If E is executable and E � T <: T ′ and E � T ′ <: T ′′ then E � T <: T ′′.

C.4. Alternative Formulation of Typing

We present an alternative definition of expression typing which avoids the nonstruc-
tural rule (Val Refine), and hence is useful in the proofs of Lemma 23 (Substitution),
Proposition 29 (� Preserves Types), and Proposition 31 (→ Preserves Types).

Alternative Rules for Typing Values: E � A : T
(Val Var Refine)
E � C{x/y} (x : T ) ∈ E

E � x : {y : T | C}

(Val Unit Refine)
E � C{()/y}

E � () : {y : unit | C}
(Val Fun Refine)
E, x : T � A : U E � C{fun x → A/y}
E � fun x → A : {y : (�x : T . U ) | C}
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(Val Pair Refine)
E � M : T E � N : U {M/x} E � C{(M, N)/y}

E � (M, N) : {y : (	x : T . U ) | C}
(Val Inl Inr Fold Refine)
h : (T ,U ) E � M : T E � U E � C{h M/y}

E � h M : {y : U | C}

LEMMA 21 (ALTERNATIVE TYPING).
Assuming that E is executable, the expression typing relation E � A : T is the least
relation closed under the alternative rules for values displayed before together with the
original rules for expressions.

LEMMA 22 (FORMULAS).
If E � M : T and x /∈ dom(E) then forms(E) � forms(x : T ){M/x}.
C.5. Properties of Substitution

To state the two substitution lemmas in this section, we need a notation for applying a
substitution to the entries in environments. If x /∈ dom(E), let E{M/x} be the outcome
of applying {M/x} to each type occurring in E. Similarly, if α /∈ dom(E), let E{T/α} be
the outcome of applying {T/α} to each type occurring in E. We define these notations
as follows.

Substitution into Typing Environments:
E{M/x} = (μ1{M/x}, . . . , μn{M/x}) where x /∈ dom(E) and E = μ1, . . . , μn

μ{M/x} =
{ y : (U {M/x}) if μ = (y : U ) and x �= y

a 
 (U {M/x}) if μ = a 
 U
μ otherwise

E{T/α} = (μ1{T/α}, . . . , μn{T/α}) where α /∈ dom(E) and E = μ1, . . . , μn

μ{T/α} =
{ y : (U {T/α}) if μ = (y : U )

a 
 (U {T/α}) if μ = a 
 U
μ otherwise

Our first substitution lemma shows how substitution of a value M for a variable x
affects various judgments.

LEMMA 23 (SUBSTITUTION).

(1) If h : (T ,U ) then h : (T {M/x},U {M/x}).
(2) If x /∈ dom(E) then forms(E){M/x} = forms(E{M/x}).
(3) If E, x : U, E′ � � and E � M : U then E, (E′{M/x}) � �.
(4) If E, x : U, E′ � C and E � M : U then E, (E′{M/x}) � C{M/x}.
(5) Suppose that E � M : U.

—If E, x : U, E′ � T then E, (E′{M/x}) � T {M/x}.
—If E, x : U, E′ � T :: ν then E, (E′{M/x}) � T {M/x} :: ν.
—If E, x : U, E′ � T <: T ′then E, (E′{M/x}) � T {M/x} <: T ′{M/x}.
—If E, x : U, E′ � A : T then E, (E′{M/x}) � A{M/x} : T {M/x}.

The following auxiliary lemma expresses that kinding judgments do not depend on
type declarations of the form α <: α′.

LEMMA 24.
If E, α <: α′, E′ � T :: ν then E, α :: pub, α′ :: tnt, E′ � T :: ν.
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Our second substitution lemma shows how substitution of a type T for a variable α
affects various judgments.

LEMMA 25 (TYPE SUBSTITUTION).

(1) If E, α, E′ � J and E � T and recvar(E) ∩ fnfv(T ) = ∅ then E, (E′{T/α}) � J {T/α}.
(2) If E, α :: ν, E′ � � and E � T :: ν then E, (E′{T/α}) � �.
(3) If E, α :: ν, E′ � U and E � T :: ν then E, (E′{T/α}) � U {T/α}.
(4) If E, α :: ν, E′ � T ′ :: ν ′ and E � T :: ν then E, (E′{T/α}) � T ′{T/α} :: ν ′.
(5) If E, α <: α′, E′ � T <: T ′ and E � U <: U ′ then E, (E′σ ) � T σ <: T ′σ where

σ = {U/α}{U ′/α′}.
C.6. Proof of Theorem 1 (Safety)

We need the following inversion lemma for analyzing instances of subtyping.

LEMMA 26 (INVERSION).

(1) Let T be {y : (�x : T ′′. U ′′) | C} or (�x : T ′′. U ′′).
If E � T <: �x : T ′. U ′ then E � T ′ <: T ′′ and E, x : T ′ � U ′′ <: U ′.

(2) Let T be {y : (	x : T ′′. U ′′) | C} or (	x : T ′′. U ′′).
If E � T <: 	x : T ′. U ′ then E � T ′′ <: T ′ and E, x : T ′′ � U ′′ <: U ′.

(3) Let T be {y : (μα.U ) | C} or (μα.U ).
If E � T <: μα′.U ′ then E � U {μα.U/α} <: U ′{μα′.U ′/α′}.

(4) Let T be {y : T1 + T2) | C} or T1 + T2.
If E � T <: U1 + U2 then E � T1 <: U1 and E � T2 <: U2.

(5) Let h be inl, inr, or fold. Let T be {y : U | C} or U for any U such that h : (H,U ). For
any H′ and U ′ such that h : (H′,U ′), if E � T <: U ′ then E � H <: H′.

Recall from Section 4 that A is the set of formulas extracted from the expression
A. For example, (νa)(assume Foo(a, x) � assume Bar(z)) = ∃a.(Foo(a, x) ∧ Bar(z)). The
following states that if A is well-typed in environment E, then the formulas extracted
from A are well-formed in E, that is, all their free variables are declared in E.

LEMMA 27.
If E � A : T then E � {A}.

The next two lemmas assert that heating A � A′ preserves the extracted formulas
of an expression (that is, the formulas extracted from A′ follow from those extracted
from A) and also that heating preserves types.

LEMMA 28 (� PRESERVES LOGIC).
If A � A′ then A′ � A.

PROPOSITION 29 (� PRESERVES TYPES).
If E is executable, E � A : T , and A � A′, then E � A′ : T .

Similarly, the next two lemmas assert that reduction A → A′ preserves the extracted
formulas of an expression and also that reduction preserves types.

LEMMA 30 (→ PRESERVES LOGIC).
If A → A′ then A′ � A.

PROPOSITION 31 (→ PRESERVES TYPES).
If E is executable, fv(A) = ∅, E � A : T , and A → A′, then E � A′ : T .

Our next results are that typing implies static safety and, indeed, safety.
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LEMMA 32 (STATIC SAFETY).
If ∅ � S : T then S is statically safe.

RESTATEMENT OF THEOREM 1 (SAFETY)
If ∅ � A : T then A is safe.

PROOF. Consider any A′ and S such that A →∗ A′ and A′ � S; it suffices to show that
S is statically safe. By Proposition 31 (→ Preserves Types), ∅ � A : T and A →∗ A′
imply ∅ � A′ : T . By Proposition 29 (� Preserves Types), this and A′ � S imply
∅ � S : T . By Lemma 32 (Static Safety), this implies S is statically safe.

C.7. Proof of Theorem 2 (Robust Safety)

First, we note that Un is type equivalent to a range of types.

LEMMA 33 (UNIVERSAL TYPE).
Given E � � we have E � Un <:> T for each T that follows:

{unit, (�x : Un. Un), (	x : Un. Un), (Un + Un), (μα.Un)}
The next lemma establishes that any opponent can be well-typed using Un to type its

free names. The lemma is a little more general; it applies to any expression containing
no Assert; an opponent is any such expression with no free variables.

LEMMA 34 (OPPONENT TYPABILITY).
Suppose E � � and that E is executable. If O is an expression containing no assert such
that (a 
 Un) ∈ E for each name a ∈ fn(O), and (x : Un) ∈ E for each variable x ∈ fv(O),
then E � O : Un.

Finally, we prove that robust safety follows by typing.

RESTATEMENT OF THEOREM 2 (ROBUST SAFETY)
If ∅ � A : Un then A is robustly safe.

PROOF. Consider any opponent O with fn(O) = {a1, . . . , an}. We are to show the
application O A is safe. Let E = a1 
 Un, . . . , a1 
 Un. By Lemma 34 (Oppo-
nent Typability), E � O : Un. By (Exp Subsum) and Lemma 33 (Universal Type),
E � O : (�x : Un. Un). By Lemma 6 (Weakening), E � A : Un. We can easily derive
E � let f = O in (let x = A in f x) : Un, that is, E � O A : Un. Hence, we can
derive ∅ � (νa1) . . . (νan)(O A) : Un. By Theorem 1 (Safety), (νa1) . . . (νan)(O A) is safe.
Restriction does not affect safety, so it follows that O A is itself safe, as required.
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AYDEMIR, B., CHARGÉRAUD, A., PIERCE, B. C., POLLACK, R., AND WEIRICH, S. 2008. Engineering formal metatheory.
In Proceedings of the ACM Symposium on Principles of Programming Languages (POPL’08). ACM, 3–17.
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