
Revocation in the privilege calculus ?

Babak Sadighi Firozabadi1 and Marek Sergot2

1 Swedish Institute of Computer Science (SICS)
babak@sics.se

2 Imperial College of Science, Technology and Medicine
mjs@doc.ic.ac.uk

Abstract. We have previously presented a framework for updating priv-
ileges and creating management structures by means of authority certifi-
cates. These are used both to create access-level permissions and to dele-
gate authority to other agents. In this paper we extend the framework to
support a richer set of revocation schemes. As in the original, we present
an associated calculus of privileges, encoded as a logic program, for rea-
soning about certificates, revocations, and the privileges they create and
destroy. The discussion of revocation schemes follows an existing classi-
fication in the literature based on three separate dimensions: resilience,
propagation, and dominance. The first does not apply to this framework.
The second is specified straightforwardly. The third can be encoded but
raises a number of further questions for future investigation.

1 Introduction

A public key certificate (PKC) is a data record digitally signed by the private key
of its issuer, a certificate authority (CA). A PKC can be seen as a statement by
its issuer to certify that there is a binding between an identity (a distinguished
name) and a certain public key. Revocation of a PKC can be seen as another
statement saying that from a certain time point—the time-stamp of the revo-
cation or the time-stamp of the revocation list containing the revocation—the
binding given in the PKC no longer holds. The usual reason for revoking a PKC
is that the private key matching the public key given in the certificate is lost or
stolen.

Sometimes, in addition to the identity of the key holder, a PKC contains
other information, e.g., the key holder’s affiliation. As a consequence, a PKC
sometimes has to be revoked not because the private key is lost, but because
the affiliation of the key holder has changed. However, with the introduction
of new types of digital certificates, i.e., attribute certificates (AC), there will
often be cases in which one has to revoke a certificate because the attribute
(privilege) given in the certificate needs to be deleted. For example, a certificate
containing an access permission may get revoked because the permission given
? This research was supported in part by Policy Based Management Project funded

by the Swedish Agency for Innovation Systems, and by AMANDA project funded
by Microsoft Research in Cambridge, UK.



in that certificate does not hold any longer and not because the private key used
to sign the certificate has been exposed.

In an earlier paper [FSB01] we presented a framework for updating privi-
leges in a dynamic environment by means of authority certificates in a Privilege
Management Infrastructure. These certificates can be used to create access-level
permissions but also to delegate authority to other agents, thereby providing a
mechanism for creating management structures and for changing these structures
over time. We presented a semantic framework for privileges and certificates, and
an associated calculus, encoded as a logic program, for reasoning about them.
The framework distinguishes between the time a certificate is issued or revoked
and the time for which the associated privilege is created. This enables certifi-
cates to have prospective and retrospective effects, and allows us to reason about
privileges and their consequences in the past, present, and future. The calculus
provides a verification procedure for determining, given a set of declaration and
revocation certificates, whether a certain privilege holds.

In our earlier presentation we restricted attention to the simplest form of
revocation only. The present paper expands the framework for managing au-
thorities to support a richer set of revocation schemes. The ideas in this paper
has earlier been presented in the position paper [FS02]. The current paper ex-
tends the ideas and incorporate them in the privilege calculus.

1.1 Revocation (deletion) Classification

In [HJPW01], the authors classify revocation schemes based on three dimensions—
resilience, propagation, and dominance—which can be combined in various ways
to provide several distinct categories. Although these authors do not consider
revocation of certificates, but rather deletion of privileges that have been granted
in a delegation chain, and although their way of representing privileges and del-
egations is not the same as ours, we nevertheless find it instructive to consider
how that classification might apply to the classification of revocation schemes in
our framework. The three dimensions are:

1. Resilience: This concerns how a privilege may be revoked in such a way
that its effects are persistent, that is to say, in such a way that no other
agent may subsequently re-create it. For example, this is the effect that
is obtained by creating a ‘negative privilege’ that will always override its
positive counterpart. In this way, the subsequent granting of the positive
privilege will never have an effect, since it will always be overriden by the
negative one.

2. Propagation: This concerns how revocation of a privilege may have indirect
effects on other privileges stemming from it in a delegation chain.

3. Dominance: This concerns how an agent may be allowed to revoke privi-
leges that are not directly delegated by him. For example, the case considered
by [HJPW01] is one in which an agent retains the ability to revoke not only
his own delegations, but those of any other agents whose privileges were
obtained in a delegation chain stemming from him.



Of these three, the first, resilience, is not applicable to our framework. We
do not support the granting of negative privileges. Put another way, our frame-
work deliberately separates privileges from the means by which they are created
(here, the issuing of certificates). It is meaningful in our framework to revoke
certificates, and thereby indirectly delete privileges, but it is not meaningful to
revoke privileges directly.

The other two dimensions, however, do apply, and are examined in the body
of the paper.

2 Managing Authorities

In ITU-T Recommendation X.509 (2000) [X.500], the standard is extended to
include Privilege Management Infrastructure (PMI) as well as Public Key Infras-
tructure (PKI). PMI is similar to PKI, but its purpose is to give an infrastructure
for issuing and managing attribute certificates for assigning and conveying priv-
ileges.

The main components of a PMI are: Attribute Certificates (AC), Sources of
Authority (SoA), Attribute Authorities (AA), and Attribute Certificate Revo-
cation Lists (ACRL). An attribute certificate is, like a public key certificate, a
digitally signed statement (in the form of a data structure) certifying the bind-
ing between the holder of the certificate and some of his privileges. A privilege
in an attribute certificate can be, for example, an access permission, a group
membership, or a role assignment. A SoA is an agent who is recognised by the
users as initially empowered to create and delegate certain privileges. An AA is
an agent who has been delegated, by the SoA, the authority to create a privi-
lege. A number of AAs can create an authority management structure in which
authorities have been delegated from the top AA, e.g. the SoA, to subordinates.
An ACRL is a list of references of attribute certificates that are no longer to be
considered valid.

The framework introduced in our earlier paper [FSB01] provides a means for
creating and updating authority management structures such as an AA structure
in the PMI model of X.509 (2000). In that paper we distinguish between an access
level permission and a management level authority. perm(s, a, o) represents an
access level permission which says agent s is permitted to perform action a on
object o. auth(s, p) represents an management level authority which says agent s
has the authority to bring about privilege p. Here, p can either be an access-level
permission or another management-level authority. We use the term privilege to
refer both to an access level permission and a management level authority. Note
that having the authority to create a privilege does not necessarily mean that
one has or can enjoy that privilege oneself; nor that one has the authority to
create that privilege for oneself.

A certificate stating that its holder has the authority to create a privilege
by means of issuing another certificate is called here an authority certificate.
Neither in PMI [X.500] nor in other digital certificate frameworks there is a
direct support for encoding management authorities in certificates, however one



can see an authority to create a privilege as an permission to delegate that
privilege which can be encoded in attribute certificates.

In [FSB01], we considered only the simplest type of revocation, one that
makes it possible to invalidate a certificate from the time the revocation occurs
for all times in the future. In the current paper, we generalise this revocation
type, allowing the revoker to disable a certificate in the past, present, or future,
permanently or just for some specified period of time. This means that the time
at which the revocation occurs and the time for which the revoked certificate
becomes invalidated are independent. Furthermore, in the previous framework
we allowed only the issuer of a certificate to revoke it (though it was possible to
get other effects indirectly). In this paper we consider a number of alternatives,
under the heading of ‘dominance’.

2.1 The Framework of Authority Management

The framework contains only two type of actions: the issuing of certificates and
the revoking of certificates.

– Certificates are represented as:

certifies(issuer , p[I], time-stamp, id).

The intended reading is as follows: the issuer makes an attempt, at time
time-stamp to bring about that privilege p holds for the time interval [I]. We
say that the certificate certifies (or sometimes ‘contains’) the privilege p, and
we call [I] the validity interval of the certificate. If p is a permission then the
action in p is an access level action, e.g. read or write a file. If p is a management
level authority, of the form auth(s, q), then the action in p is the creation of a
privilege q for s. The id is the unique identifier of the certificate.

For simplicity we leave out all the parts of a certificate management system
that do not have any impact on the reasoning required to determine whether a
given privilege holds at a given time. In particular, validation of signatures is of
course an essential component of verifying a certificate, but signatures are not
part of the reasoning process for verifying that a privilege holds, and for this
reason signatures do not appear in our representation of certificates.

– Revocations are represented as:

revokes(issuer , id, [I], time-stamp).

Revocations, like certificates, are seen as time-stamped statements. In con-
trast to certificates, a revocation does not have an id, but it contains the id of
the certificate which is the subject of the revocation. The interval [I], called the
disabling interval, represents the period of time for which the revocation disables
the certificate with the id id. By specifying the disabling interval, revocation can
be used to disable the particular instance of the privilege in that certificate either
temporarily or permanently. Note that revocation works on certificates: if the



same privilege is created by several different certificates, revoking only one of
them will not necessarily disable the privilege itself. All of the certificates would
have to be revoked for that to happen.

Given a historical database of certificates and revocations, it is possible to
determine whether a privilege p holds at a given time. Informally: a privilege p
holds at a time-point t when there is a certificate c declaring that p holds for
some interval I containing t; the certificate c moreover must be ‘effective’ at t, in
the sense that it was issued by s at a time when s had the authority to declare p
to hold for interval I. The authority of s, in turn, requires a certificate that was
effective at the time c was issued — and so on, in a chain of effective certificates
back to some source whose authority can be accepted without certification (as
determined by the organisational structure).

Now, we give a number of definitions to make these ideas more precise. We
assume that there is a historical database recording the issued certificates and
their revocations. This database may be stored in a distributed form: the only
requirement is that the reasoning engine for determining whether a certain priv-
ilege holds has access to the information.

Definition 1. A certificate c1 directly supports another certificate c2 if

1. the privilege given in c1 is the authority for the issuer of c2 to bring about
the privilege given in c2 at the time of issuance of c2, and

2. c1 is not disabled at the issuance time of c2.

If condition 1 holds we say that the privilege given in c1 validates the certificate
c2.

Note that this definition refers only to the time point at which c2 is issued. If
c1 becomes disabled at any other time, that is to say, for some time period not
containing the issuance time of c2, the support of c1 for c2 will not be affected.

Definition 2. A set of certificates c1 . . . cn is a chain if each ci directly supports
ci+1, for 1 ≤ i < n.

A chain represents an authority management structure created by a number
of authority certificates. A chain usually, but not always, ends in an end-entity
attribute certificate containing an access level permission.

Definition 3. A certificate ci in a chain c1 . . . cn indirectly supports a cer-
tificate cj, if i + 1 < j and 1 ≤ i < n.

In any application there should be a way of defining who is a source of
authority and in what circumstances. For example, in many applications the
owner of an object is considered to be the source of authority for any privilege
concerning that object. We assume that there is a specified way of recognising
sources of authorities, either because the SoA relation between an agent and
a privilege is given explicitly, or by means of a set of rules which defines this
relation.



Definition 4. A certificate is called rooted if it is issued by the source of au-
thority of the particular privilege given in the certificate.
A chain of certificates is rooted if the first certificate in the chain is rooted.

In this framework, anyone can issue a certificate at any time with or with-
out having the necessary authority to make it effective. Without the necessary
authority, the certificate has no effect. However, it is possible for a certificate c1

to become supported, retrospectively, by another certificate c2 issued at a time
later than c1. This happens when the validity interval of c2 contains the issuance
time of c1. Examples of the use of such retrospective mechanisms are provided
in [FSB01].

Definition 5. A chain that is not rooted is called a dormant chain.
A certificate is called dormant at time t if it is part of a dormant chain at

time t.

Since a certificate can be revoked permanently or for a specified time period
only, we say that a revoked certificate is disabled.

Definition 6. A certificate c1 is disabled at time t if there is a revocation for
c1 and t is contained in the disabling interval of c1.

Definition 7. A certificate c is effective at time t if it is rooted at time t, t is
at or after the time of issuing of c, and c is not disabled at time t.

Definition 8. A privilege P holds at time t if there is a certificate c that cer-
tifies P , c is effective at time t, and t is contained in the validity interval of
c.

2.2 Privilege Calculus

Here we present a logic program which implements the framework given above,
encoding in an executable form the definitions given in the previous section. It
provides a means of evaluating queries of the form

holds(P, T)

to determine whether a privilege P holds at time-point T given a database of
time-stampled certificates and revocations. The program presented below can be
executed as a Prolog program as it stands, once the symbol ‘:’ is declared as an
infix functor. It can also be executed in other logic programming systems to give
the same results but with different computational behaviour. We use a term of
the form [T1, T2] to represent the closed-interval [T1, T2], and a term of the form
since(T1) to represent the open-ended interval of all time points later than or
equal to T1.

Rather than the holds(P, T) program, it is very straightforward to pro-
duce a generalisation, which is the version we present here. The 3-ary predicate



holds(P, T, TD) represents that, according to the certificates and revocations is-
sued up to and including time TD, privilege P holds at time T . This generalized
form allows one to query not only the current state of the certificates and revo-
cations database, but all past states as well. This can very useful for auditing
purposes, for example, or for determining the effects of retroactive certificates
and revocations. (The simpler, less general version of the program, may be ob-
tained by deleting all occurrences of the parameter TD, and all conditions in
which it appears.)

[PC 0.] T during interval [Ts, Te] ← Ts ≤ T ≤ Te.
T during interval since(Ts)← Ts ≤ T .

[PC 1.] holds(P, T, TD) ← C = certifies(S, P :I, T0, ID), T0 ≤ TD,
effective(C, T, TD),
T during interval I.

[PC 2.] effective(C, T, TD) ← C = certifies(S,Priv, T0, ID), T0 ≤ TD,
T0 ≤ T,
rooted(C, TD),
not disabled(C, T, TD).

[PC 3.] rooted(C, TD) ← chain(C1, C, TD),
C1 = certifies(S,Priv, T0, ID), T0 ≤ TD,
sourceOfAuthority(S, P ).

[PC 4.] chain(C,C, TD).

[PC 5.] chain(C1, C2, TD) ← supports(C1, C2, TD).

[PC 6.] chain(C1, C2, TD) ← supports(C1, C3, TD), chain(C3, C2, TD).

[PC 7.] validates(auth(S, P ):I, C, TD) ← C = certifies(S, P, T, ID), T ≤ TD,
T during interval I.

[PC 8.] supports(C1, C2, TD) ← C1 = certifies(S1,Priv, T1, ID1), T1 ≤ TD,
C2 = certifies(S2,Priv′, T2, ID2), T2 ≤ TD,
validates(Priv, C2, TD),
not disabled(C1, T2, TD).

[PC 9.] disabled(C, T, TD) ← C = certifies(S,Priv, ID, T0),
revokes(S, ID, I, T1),
T0 < T1 ≤ TD,
T during interval I.



3 Revocation schemes in the privilege calculus

In this framework we are concerned with the revocation of certificates, and for
reasons already explained, the resiliance dimension of [HJPW01] does not apply.
We now consider how the propagation and dominance dimensions apply to the
revocation schemes of ourframework.

c

¼

c1

¼

j

c2

j

c3

Fig. 1. c, c1, c2, and c3 are certificates. An arrow between two certificates represents the
support relation between the two in the direction of the arrow. For example, the arrow
between c and c1 represents that c supports c1. A deliberate feature of the framework
is that the issuer of a certificate does not have to identify the certificate that grants
him the necessary authority to issue a new certificate. It is possible therefore that the
same certificate can be supported by more than one certificate, as shown here. Both c1

and c2 could have created a privilege that made the issuing of certificate c3 effective.

3.1 Simple Revocation

The simplest revocation scheme is the one in which an agent revokes one of his
own issued certificates simply in order to withdraw the privilege given in that
certificate from the time of revocation onwards. In the case where the privilege
in the revoked certificate is an access-level permission, the effect of the revoca-
tion is that this particular instance of the permission does not hold at any time
after the issuance of the revocation. In the case where the privilege in the re-
voked certificate is a management level authority the effect is that the certificate
can no longer support any new certificate issued after the issuance time of the
revocation. However, revocation of this certificate will not affect any other exist-
ing certificates—any certificates created by a delegation chain from the revoked
certificate will continue to be effective (unless revoked directly).

This simple scheme is easily specified in the privilege calculus by a revocation
with a disabling interval that starts at the revocation time and extends (open-
ended) into the future: the revocation has the form revokes(issuer , id, since(ts), ts).



This implies that from the time of the revocation and for any time after that,
the particular instance of the privilege given in the revoked certificate is deleted.

In the diagram above, if the issuer of c revokes c at any time t after the
issuance of c1, c2, and c3, the revocation will not affect certificates c1, c2, c3, but
c cannot be used to support any new certificate issued after time t.

3.2 Propagation of revocations

Sometimes one needs to revoke a certificate in such a way that it affects the
validity of some other certificates. The typical scenario is when one discovers
that an agent has abused his authority. If this (perhaps fraudulent) agent is in
a management role in which he has delegated privileges to others, then often
one wants to delete not only his authority but also all those privileges that were
delegated by him, and by his delegatees in turn.

This kind of propagation of revocations can be specified in the privilege cal-
culus by disabling the certificate that made the fraudulent agent an authority.
The certificate has to be disabled in such a way that its support for other cer-
tificates vanishes. This can be done by a revocation that has a disabling interval
containing all the time points, in the past and in the future, at which that cer-
tificate supports other certificates. This is similar to: I say now that what I said
in the past was not true, hence every other statement based on what I said then
does not hold either. The framework we are presenting is explicitly designed to
support such retrospective effects. Note that we are reasoning in two different
time lines: one is the time of the certificate database, and the other is the time
at which a privilege in a certificate holds.

Example: In the above picture, certificate c, issued by agent a, directly supports
certificates c1, issued by a1 at time t1, and c2, issued by a2 at time t2. Further
assume that a1 and a2 are different agents both included in the group of agents
who receive the privilege given in c and that t1 6= t2.

If at a certain time tx, a finds out that a1 is a fraudulent agent, the authority
given to a1 has to be deleted, immediately. But not only does the authority
given to a1 have to be deleted, the authorities delegated by a1 also have to be
deleted. Beside revoking c from time tx, a must disable c such that its support
for c1 disappears. a can do this by first revoking c at tx such that c cannot be
used by a1 at any time after tx. This is a simple revocation of c at time tx by
its issuer. In order for a to delete privileges delegated by a1, he has to revoke c
again, but this time in such a way that the support relation between c and c1

disappears. Of course, one could consider a revocation format that allows several
disabling intervals to be specified in one revocation statement. One can similarly
devise other kinds of ‘macros’ for commonly occurring patterns of revocation
statements.

Note that, if c does not support c1 any longer then automatically c1’s support
for c3 also disappears. Further, the support of c for c2 remains the same if
the disabling interval does not include t2. Hence, the authority management
structure created by a2 remains untouched. However, for a2 to be able to exercise,



at any time after tx, the same authority he once received in c, a has to issue a
new certificate c′, at time tx, that gives a2, but not a1, the same privilege that
was given to him in c.

3.3 Dominance

In the framework presented so far, it is only the issuer of a certificate that has the
possibility to revoke it. Relaxing this constraint will complicate the framework as
well as the privilege calculus, but it is necessary if we want to support revocation
schemes based on the dominance dimension. But why do we need this?

It is a deliberate feature of our framework that agent x who issues a certificate
does not have to identify the certificate which grants him the necessary authority:
the certificate C does not have any record of which other certificate is being
invoked when certificate C is issued. This is by design. It is not realistic in our
view to require that agents say “I am issuing this certificate by the authority
given to me by certificate X”. Agent x may not know the identifier of X, and in
the case of a dormant chain, there is no such X (yet).

But now consider. Bjorn goes on holiday for the weekend and we are unable
to revoke any of the certificates he issued until he gets back. The only way is
to try to discover who has issued certificates to Bjorn, and then to ask each of
them to revoke their certificates so Bjorn’s privileges are revoked. That is clearly
ridiculous. Some of the problem can be mitigated by introducing some kind of
representation mechanism, allowing Bjorn to specify who can act for him in his
absence. But that does not solve all the problems. It does not deal with the case
where Bjorn has forgotten to appoint a representative, or done so deliberately.

The most general approach would be to decouple entirely the authority to
grant privileges from the authority to revoke certificates, i.e., by introducing
separate predicates auth+(s, p), which says “s has the authority to bring about
p”, and predicate auth−(s, p), which says “s has the authority to delete p”. This
would enable us to delegate each of these authorities separately. We would be
able to give the authority to create a privilege to one agent and the authority to
delete that privilege to a different agent.

Although this general approach would cover many interesting scenarios, and
has great flexibility, we believe that it would also make the framework too pow-
erful and too difficult to manage. Therefore we consider a less general approach,
similar to that discussed under the heading of ‘dominance’ by [HJPW01]. Here,
an agent is given the authority to revoke any certificate issued by him, and any
certificate that is issued on the basis of a delegation chain stemming from one
of the certificates issued by him.

The rationale is this. When an agent delegates some authority to another
agent, he retains some responsibility for the actions of the delegatee. And then
it seems only natural to say that the delegator should therefore retain some
measure of control over how the delegated authority is used. In a certificate-based
framework, this suggests the delegator should be allowed to revoke certificates
issued on the basis of his original delegation acts. This also seems to be the
reasoning behind the dominance mechanism discussed in [HJPW01].



The framework and the associated calculus of privileges can be modified
straightforwardly. One simply replaces [PC 9.] in the privilege calculus with a
more elaborate version. An example is given presently.

There are a number of outstanding points of detail to be examined, however.
In particular, in a framework such as ours which supports the issuing of cer-
tificates with retrospective effects, it is easy to produce undesirable effects. For
example, if a wishes to revoke a certificate C issued by b, a could simply issue a
certificate granting himself the authority to create the privilege certified by C.
a’s certificate is not effective, but it is the start of a dormant chain supporting
the certificate C. If we are not careful in specifying the dominance relation, a
may be allowed the authority to revoke C in these circumstances.

One solution is to restrict attention to rooted chains, on the grounds that
their validity rests ultimately on a source of authority whose actions need not
be questioned. A second check is to compare the times of issuance of certifi-
cates in a chain, blocking the retrospective revocation of certificates through the
dominance mechanism.

Such questions remain to be explored more systematically. Here we illustrate
how the calculus of privileges can be modified to support the form of dominance
just discussed. Investigation of other forms of dominance and their properties is
a topic of current research for us.

[PC 9x.] disabled(C, T, TD) ← C = certifies(S1,Priv1, ID1, T1), T1 ≤ TD,
revokes(Sr, ID1, I, T2), T2 ≤ TD,
T during interval I,
T1 < T2,
dominant(Sr, C, TD).

[PC 10.] dominant(S2, C, TD) ← C = certifies(S1,Priv1, ID1, T1),
certifies(S2,Priv2, ID2, T2),
C ′ = certifies(S2,Priv2, ID2, T2),
chain(C ′, C, TD),
rooted(C ′, TD).

It is possible to derive equivalent but computationally more efficient formula-
tions. However, there are other implementation issues and options to be consid-
ered. We leave detailed discussion for another paper dealing with the practical
aspects of the framework.

Example: In the above picture, the issuer of c wants to delete the privilege given
in c3 which is supported by both c1 and c2 without deleting the privilege given
in c1 nor the privilege given in c2. Now, what the issuer of c can do is to revoke
c3 directly without touching the validity of c1 or c2.

3.4 Related work

In this paper we only focus on the issue of privilege revocations in terms of cer-
tificate revocations. Hence, we will only consider the related work that deals with



the privilege revocation issues. This means that, currently, we do not consider
the issues of secure and reliable revocation mechanism for distributed certificates
as it is the case in PKI and PMI systems.

Most of the earlier work in revocation of privileges has focused on the con-
sequences of revocations in terms of propagation issue. The revocation schemes
discussed above are similar to those addressed in the databases literature. The
grant option presented in [GW76] is similar to the delegations in our privilege
calculus with the main distinction that in the privilege calculus one can delegate
an authority to create a privilege to someone without creating the privilege for
that person and/or without delegating the authority to that person to create the
privilege for himself. In the framework given in [GW76] or its extension given in
[Fag78], the grant capability can only be given together with the privilege itself.

In the original authorisation mechanism given in [GW76] if the same privilege
is granted by the same grantor to the same subject but at different time-points
then only the first one is recorded in a table and the second one is ignored. In
[Fag78], the author shows that, because of how the authorisations are recorded
in the authorisation mechanism given in [GW76], its revocation mechanism does
not perform as it should. Hence the authorisation mechanism is extended such
that similar authorisations with different time-stamps are recorded. For more
details we refer the reader to [Fag78]. Note that in these authorisation mecha-
nisms one does not revoke a particular exercise of a grant option, but the actual
granted privilege, as grants themselves have no identifiers. This is different from
our approach in which each delegation has its own identifier in terms of the i.d
of its certificate.

A very similar approach to ours is given in [BSJ97], in which a framework
for authorisations with a grant option is developed. The framework uses the
grant option given in [GW76,Fag78] for further delegation of authorisations to
support a decentralised management of authorisations. In this framework, nega-
tive authorisations are used for blocking positive authorisations for limited time
periods. This is different from the framework given in this paper in which we use
revocations with blocking time. The authors also give definitions for cascaded
and non-cascaded revocations that are similar to our simple and propagation
schemes for revocations.

In [BBFS97] the authors develop a framework for temporal authorisations
using time intervals and temporal operators for specifying the time interval dur-
ing which an authorisation is valid. In the same way a revocation may also have
a time-interval that specifies the interval that the revoked authorisation becomes
invalid which is similar to the disabling interval in revocations in our framework.
However, this framework is also based on the same grant model as the autho-
risation mechanism in [GW76,Fag78], and it does not support the retrospective
authorisations as in the Privilege Calculus.



4 Conclusion

We have presented an extension of our framework for updating privileges by
means of authority certificates in order to provide a richer variety of revoca-
tion schemes than was originally supported. As in the original, we provide an
associated calculus, encoded as a logic program, for reasoning about what priv-
ileges hold at which times given a database (or access to such a database) of
time-stamped attribute certificates and revocations.

We find the classification scheme for revocation mechanisms introduced in
[HJPW01], and the dimensions of resilience, propagation, and dominance iden-
tified there, extremely illuminating and helpful in structuring our own investi-
gations. However, by focussing as we do on mechanisms for the creation and
revocation of privileges, and on time-dependent effects, we find that there are a
number of further distinctions that can be drawn. The concept of dominance, in
particular, seems deserving of further examination, in that we have encountered
a number of further points of detail that need to be resolved. We are currently
undertaking a more systematic exploration of these possibilities.

A distributed privilege management system requires an architecture for se-
cure and reliable revocation of digital certificates.

References

[BBFS97] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. Decentralized Adminis-
tration for a Temporal Access Control Model. Information Systems, 22:223–
248, 1997.

[BSJ97] E. Bertino, P. Samarati, and Sushil Jajodia. An extended authorization
model for relational databases. IEEE Transaction on Knowledge and Data
Engineering, 9(1):85–101, 1997.

[Fag78] R. Fagin. On an authorization mechanism. ACM Tansactions on Database
Systems, 3(3):310–319, Sept 1978.

[FS02] B. Sadighi Firozabadi and M. Sergot. Revocations Schemes for Delegated
Authorities. In proceedings of IEEE 3rd International Workshop on Policies
for Distributed Systems and Networks, June 2002.

[FSB01] Babak Sadighi Firozabadi, Marek Sergot, and Olav Bandmann. Using Au-
thority Certificates to Create Management Structures. In Proceeding of Se-
curity Protocols, 9th International Workshop, Cambridge, UK, April 2001.
Springer Verlag. In press.

[GW76] P.P. Griffiths and B.W. Wade. An authorozation mechanism for a relational
databse systems. ACM Transactions on Databases Systems, 1(3):242–255,
1976.

[HJPW01] Åsa Hagström, Sushil Jajodia, Francesco Parisi.Persicce, and Duninda Wi-
jesekera. Revocation - a Classification. In The Proceeding of the 14th Com-
puter Security Foundation Workshop. IEEE press, 2001.

[X.500] ITU-T Recommendation X.509: The Directory - Public-Key and Attribute
Certificate Frameworks. published by International Telecommunication
Union, 2000.


