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Our Intel project aim
• understand how software annotations can generate 

trust evidence

• show that such evidence leads to policies that can 
effectively guard rail executions

• do this for both qualitative and quantitative 
evidence and develop verification support for this

• study programmers’ intent as one source of 
evidence
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focus of this talk
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Trust evidence
• increasingly, evidence for trust is numeric

• e.g. reputations of web sites

• e.g. age of software

• e.g. statistical information about past behavior of 
subjects

• e.g. probability of one machine connecting to 
another
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Example
• numeric evidence may be needed even in 

seemingly qualitative settings

• e.g. you just downloaded the MacTex 2012 
package and it does not have a matching hash

• how likely is it that this downloaded software is 
maliciously corrupted?

• conditional on which browser you use (e.g. Chrome 
does things to your file!)
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Numeric aggregation 
and its verification

• want to use numeric/non-numeric evidence to 
produce recommendations or obligations

• which then should inform access-control decisions

• and at all sorts of hardware and software interfaces 
(e.g. forgetful loaders, social networks, infrastructure 
integrity, risk postures of organizations)

• how can we verify such aggregation and what does 
verification mean here?
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Trust-mediated 
Interactions
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Jens Riegelsberger, Martina Angela Sasse, and John D. McCarthy. The mechanics of trust: 
A framework for research and design. Int. J. Hum.-Comput. Stud., 62(3):381–422, 2005.
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Trust & Assurance
• Economic incentive to use trust: assurance 

techniques are expensive

• But trust signals less reliable in digital domain

• Want to use such signals and combine them 
with assurance techniques

• ... and in a tuneable manner
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Policies as blocks of 
aggregated trust signals

• policy (pol) returns a score:

• first, collect all scores of rules in policy whose 
predicate (i.e. trust or distrust signal q) is true

• second, apply op to all these scores to get 
result; if no q is true, return default score

                      op ::= + | min | max | * | ...
          rule ::= if (q) score

                            pol ::= op(rule*) default score
                

10

scope for extensions
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Full Peal syntax

• op aggregates scores of true predicates in policy

• policy isA policy set, combine policy sets (pSet) 
with min or max

• cond: compares values of pSet with thresholds

              op ::= + | * | min | max | ...   
   rule ::= if (q) score

                    pol ::= op(rule*) default score
                     pSet ::= pol | max(pSet,pSet) |     

                                   min(pSet,pSet)
                      cond ::= th < pSet | pSet <= th
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Example
• Alice wants to pay Bob via PayPal on 

Facebook

Analysis example: 

Does the behavior of cond change when 
threshold 0.5 changes to 0.6?
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Definition of signals

• transaction risk relies on amount that Alice means to pay, 
amount of 500 does not signal anything!

• other signals also rely on state of relationship graph, e.g. the 
number of mutual friends

• Last predicate protects against Bob having way too many 
friends (e.g. celebrity)
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Logical synthesis
• For each cond (“th < pSet” or “pSet <= th”): 

synthesize propositional formula Φ[cond] over q

• Models = determine truth values of predicates q

• Φ[cond] is true in model iff cond holds in model

• Synthesized Φ[cond] is basis for verification tasks

• predicates q themselves are/representable as 
formulas of first-order logic
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Verification tasks
• Is Φ[cond] always true/false? Vacuity 

checking

• Do Φ[th < pSet] and Φ[th’ < pSet] differ? 
Sensitivity analysis

• Is cond persistent, i.e. incomplete requests 
will grant access only if complete one would?

These and more complex verification tasks reduce 
to satisfiability checks of Φ[cond] in logic over 

predicates q
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Analyze instrumentations 
of Φ[cond]

• Is Φ[cond] always false? Satisfiability 
checking of that formula, then negate result

• Is Φ[cond] always true? Satisfiability checking 
of negation of that formula, then negate result

• Do Φ[th < pSet] and Φ[th’ < pSet] differ, when 
th < th’ ? Satisfiability checking of                    
Φ[th < pSet] && !Φ[th’ < pSet]
Etc. But satisfiability checks have to recognize 

logical dependencies of predicates q within pSet 
17
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SMT solvers
• SMT solvers: combine SAT solvers (“model checking”) 

with logical reasoning over theories (theorem proving)

• we have first prototype verification tool using SMT 
solver Z3 (Microsoft Research)

• below we will explore tradeoff between explicit 
synthesis of Φ[cond] (space intensive) and synthesis of 
symbolic version of Φ[cond]

• but first we provide idea and usage of SMT solvers, 
using Z3 as an example
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Simple Z3 code

• declares an integer, and a function that maps 
an (Int Bool) pair to an integer

• declares two assertions: a is greater than 10, 
and the value f(a,true) is less than 100

• (check-sat) directive to decide whether there 
is a model for conjunction of all assertions

(declare-const a Int)   ; example from Z3 documentation
(declare-fun f (Int Bool) Int)
(assert (> a 10))
(assert (< (f a true) 100))
(check-sat)
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Z3 witnesses

• (get-model) constructs witness of satisfiability, 
reports exception if no such model exists

(declare-const a Int) ; example from Z3 documentation
(declare-fun f (Int Bool) Int)
(assert (> a 10))
(assert (< (f a true) 100))
(check-sat)
(get-model)

sat
(model*
**(define.fun*a*()*Int
****11)
**(define.fun*f*((x!1*Int)*(x!2*Bool))*Int
****(ite*(and*(=*x!1*11)*(=*x!2*true))*0
******0))
)
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Scoping in Z3
(declare-const x Int) ; example from Z3 documentation
(declare-const y Int)
(declare-const z Int)
(push)
(assert (= (+ x y) 10))
(assert (= (+ x (* 2 y)) 20))
(check-sat)
(pop) ; remove the two assertions
(push) 
(assert (= (+ (* 3 x) y) 10))
(assert (= (+ (* 2 x) (* 2 y)) 21))
(check-sat)
(declare-const p Bool)
(pop)
(assert p) ; error, as declaration of p was removed from the stack

Each analysis in our tool wrapped in a push/pop frame
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Predicate definitions in 
Z3

• Our tool for Peal verification has text zone in 
which such domain specifics can be added

DOMAIN_SPECIFICS
(declare-const amountAlicePays Real)
(declare-const numberOfMutualFriends Int)
(declare-const numberOfBobsFriends Int)
(assert (= lowCostTransaction (> 100.0 amountAlicePays)))
(assert (= enoughMutualFriends (< 4 numberOfMutualFriends)))
(assert (= enoughMutualFriendsNormalized 
           (< numberOfBobsFriends (* 100 numberOfMutualFriends))))
(assert (= highCostTransaction (> amountAlicePays 1000.0)))
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Possible Z3 answers
• Some theories and their combination are 

decidable over first-order logic

• Even if not, conjunction of all assertions may 
still be decided in instances

• “sat” means that conjunction has model

• “unsat” means that conjunction has no model

• “unknown” means Z3 does not know which is 
the case
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Explicit synthesis
• Generate verification condition Φ[cond] by 

translating away all references to numerics

• Captures logical nature of condition

• Output is amenable to analysis with an SMT 
solver

• SMT solver will correctly reflect logical 
dependencies of predicates within/across 
policies

24



Explicit synthesis for 
pSet composition

• Induction on min/max compositions

• Encodes order properties of min/max

25

x < max(a,b)
iff (x < a) or (x < b)
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Synthesis of defaults
• pol = op((q1 s1) ... (qn sn)) default s

• reflect whether default is possible or not
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non-default case
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Synthesis of defaults
• default s consistent with threshold: 

conjunction of all negated qi as one disjunct

• otherwise, ensure at least one qi be true

• reflect whether default is possible or not

27

consistent

inconsistent
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Polarity of synthesis
• want witnessing sets of predicates to be closed 

under supersets

• X contained in Y implying op(X) <= op(Y) 
means op is monotone; in that case

• X contained in Y implying op(Y) <= op(X) 
means op is anti-tone; in that case
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Monotone: op is max
• pol = max((q1 s1) ... (qn sn)) default s

• th < pol if for some qi inequality th < si is true

• last slide: reduce pol <= th to th < pol case 
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Anti-tone: op is min
• pol = min((q1 s1) ... (qn sn)) default s

• pol <= th if there is some qi with si <= th

• now reduce th < pol to pol <= th case 
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Monotone: op is +
• let pol be +((q1 s1) ... (qn sn)) default s

• sort predicates qi in pol by ascending score order, e.g. 
the vector [0.1, 0.2,0.2,0.3,0.5]

• want to find minimal index sets {i,...,j} of predicates 
whose score sum is greater than 0.5 (“0.5 < pol”), say

• here: M1 = {{4,5}, {3,5}, {2,5}, {2,3,4}, {1,3,4}, {1,2,4}}

• explore from highest score, expand only if partial sum               
ti = s0 + ... + si can get current mass over threshold 0.5
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Computing all minimal 
index sets: M1

call enumOne({},0,n+1,+) for n rules where ti = s0 + ... + si

32

 aggregation operator

 explore indexes less than this
 unit of +

 current index set
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Example trace
th = 0.5, s = [0.1,0.2,0.2, 0.3, 0.5], t = [0.1,0.3,0.5,0.8,1.3]
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Non-default formula for +
• pol = +((q1 s1) ... (qn sn)) default s

• sort rules so that s0 <= s1 <= ... <= sn

• use enumerateOne to generate M1 below
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Anti-tone: op is *
• let pol be *((q1 s1) ... (qn sn)) default s

• Need: scores in [0,1]; so multiplication * is anti-
tone; sort scores in pol by descending order

• find minimal index sets {i,...,j} of qi whose score 
sum is <= th; M2 = set of such minimal index sets

• explore from lowest score, recurse only if partial 
product ti can get current mass below threshold th
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Computing all minimal 
index sets: M2

call enumTwo({},1,n+1,*) for n rules where unit = 1
enumTwo only reverses “th” comparisons of enumOne

36
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Example: Z3 code
• policies b1, b2 composed with max, 

satisfiability of “cond” explored
cond = pSet <= 0.5

b1 = min ((q1 0.2) (q2 0.4) (q3 0.9)) default 1
b2 = + ((q4 0.1) (q5 0.2) (q6 0.2)) default 0

pSet = max(b1, b2)

(declare-const q4 Bool) ... ; declare variables/functions
(assert (and (and (or q1 q2 q3) (or q1 q2)) (or (and (not q4) 
(not q5) (not q6)) (not false)))) ; synthesised formula in red
(check-sat) ; directive to check for satisfiability
(get-model) ; extraction of witness if satisfiable
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Parse tree of assertion
cond = pSet <= 0.5

b1 = min ((q1 0.2) (q2 0.4) (q3 0.9)) default 1
b2 = + ((q4 0.1) (q5 0.2) (q6 0.2)) default 0

pSet = max(b1, b2)

38

 max <= 0.5

inconsistent
default score

 qi with 
si <= 0.5

consistent
default score

 make + 
monotone

 M1 empty
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Naming mechanisms
• use simple naming mechanism for all 

syntactic categories: policies, policy sets, 
conditions, and analyses

• E.g. we actually bind condition names to 
formulas in asserts, as in

39

(assert (= cond (and (and (or 
q1 q2 q3) (or q1 q2)) (or (and 
(not q4) (not q5) (not q6)) (not 
false)))))
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DEMO of web app
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Non-random 
benchmark

• Majority voting: pol = +((q1 1/n) (q2 1/n) ... (qn 1/n)) 
default 0

• synthesis of 0.5 < pol generates exponentially many 
disjuncts in set M1

• e.g. for n=27, synthesized formula 0.5 GB !

• satisfiability checks easy, size of formula is real 
issue here: choose(n,ceilint(n/2)) many terms

• explore space-time trade-offs: symbolic synthesis 
41
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Symbolic synthesis
• Hybrid approach: synthesis of min and max 

composition of rules still done explicitly --          
linear in input size

• Synthesis of conditions for policy sets makes logical 
decomposition into conditions for policies explicit

• But synthesis of conditions for policies 
symbolically encodes operational semantics with 
auxiliary real variables
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Simple example
• a policy composed with +

• b2 = + ((q4 0.1) (q5 0.2) (q6 0.2)) default 0

• declare real variables b2_score_qi for each predicate 
qi in b2

• assert that these variables have desired operational 
value

• exploits that + (respectively *) has semantic unit 0 
(respectively 1)
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Declaring rule effect

44

(declare-const b2_score_q4 Real)     ; reals for b2
(assert (implies q4 (= 0.1 b2_score_q4)))

(assert (implies (not (= 0.0 b2_score_q4)) q4))

(declare-const b2_score_q5 Real)
(assert (implies q5 (= 0.2 b2_score_q5)))

(assert (implies (not (= 0.0 b2_score_q5)) q5))

(declare-const b2_score_q6 Real)
(assert (implies q6 (= 0.2 b2_score_q6)))

(assert (implies (not (= 0.0 b2_score_q6)) q6))

b2 = + ((q4 0.1) (q5 0.2) (q6 0.2)) default 0
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Declaring policy effect

• effect of policy (here b2) is function of 
condition, here cond2:

45

(declare-const cond2_b2 Bool)  
     (assert (= cond2_b2 (or 

                                              (and (< 0.6 0) (not (or q4 q5 q6))) ; default case
                             (and (or q4 q5 q6) ; non-default case

                                             (< 0.6 (+ b2_score_q4 b2_score_q5
                                                b2_score_q6))))))

b1 = min (...) ...
b2 = + ((q4 0.1) (q5 0.2) (q6 0.2)) default 0

cond2 = 0.6 < min(b1,b2)
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Symbolic synthesis
• Z3 input code linear in size of Peal conditions

• space/time tradeoff: e.g. for majority voting

• explicit synthesis could only deal with n=27 
for majority voting

• symbolic synthesis generates and verifies 
equivalent condition for n=5000 in seconds!
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Experiments
• All experiments test: Z3 code generation and Z3 analysis both 

take less than five minutes? 

• Server funded by this Intel project: 24-core, Linux, 48-GB RAM; 
generated random analyses one single core, here is an example:

48
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First experiment
• Don’t report results on * aggregation of rules in policies 

for these experiments, see Tech Report for details

• Analyzed sole policy with min or max composition: 
handle about 2 million rules within five minutes

• Sole policy for + composition: explicit synthesis can 
handle around 150 rules within five minutes

• Sole policy for + composition: symbolic synthesis can 
handle about six-thousand(!) rules within five minutes
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First experiment + 
Domain Specifics

• Repeated first experiment but added domain-specific 
constraints: linear inequalities, and model of method-call 
graph with in-degree at most 1

• Analyzed sole policy with min or max composition: handle 
about 7000 (2-million before) rules within five minutes

• Sole policy for + composition: explicit synthesis can handle 
around 130 (150 before) rules within five minutes

• Sole policy for + composition: symbolic synthesis can handle 
about two-thousand (6000 before) rules within five minutes
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Second experiment
• How many policies analyzable in 5 minutes where each policy 

has x/10 rules and x was 5-minute bound on number of rules 
from First Experiment (e.g. x = 200,000 for min and max)

• min or max composition: handle about 50 policies with about 
200,000 rules within five minutes

• + composition: explicit synthesis can handle around 18,000 
policies with 14 rules within five minutes

• + composition: symbolic synthesis can handle 24 policies with 
about six-hundred rules within five minutes
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Third experiment
• How many policies n with n rules each can we 

handle within five minutes?

• min or max composition: handle about 2000 to 3000 
policies with that many rules each within five minutes

• + composition: explicit synthesis can handle about 
100 policies with 100 rules each within five minutes

• + composition: symbolic synthesis can handle about 
160 policies with 160 rules each within five minutes
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Alice/Bob example
• cond1 = 0.5 < pSet different from cond2 = 0.6 < pSet

• pretty printed explanation extracted from explicit 
synthesis analysis (colors added manually):
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Result of analysis [name1 = different? cond1 cond2]
cond1 and cond2 are different

For example, when
highCostTransaction is false
enoughMutualFriendsNormalized is true
lowCostTransaction is true
enoughMutualFriends is true
aFriendOfAliceUnfriendedBob is false
cond2 is false
cond1 is true
numberOfBobsFriends is 5
amountAlicePays is 2.0
numberOfMutualFriends is 5
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Alice/Bob explanation
• 0.5 < pSet true, 0.6 < pSet false because

• all predicates in b1 false, so b1 returns 0.6 

• first two predicates in b2 true, so b2 returns at least 0.6

• don’t care about value of aFriendVouchesForBob

• so pSet = min(b1,b2) returns 0.6
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Future work
• Comprehensive experimental evaluation

• Case studies that make use of this tool

• Extension to non-constant or negative scores and 
metrics: symbolic synthesis allows for this

• Independent verification of reported Z3 models, 
shortening of models for symbolic synthesis

• Implementation of more complex analyses (e.g. 
computing “threshold spectrum” of policy set)
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