
Numerical Aggregation of
Trust Evidence:

From Foundations
to Reasoning Support

Michael Huth and Jim Huan-Pu Kuo
Imperial College London

in part joint work with
Jason Crampton and Charles Morisset

1

19 November 2013

1

Outline of presentation
• Motivation

• Peal: pluggable evidence aggregation language

• Generating verification conditions for Peal

• Experimental results

• Future work and conclusions

2
2

Our Intel project aim
• understand how software annotations can generate

trust evidence

• show that such evidence leads to policies that can
effectively guard rail executions

• do this for both qualitative and quantitative
evidence and develop verification support for this

• study programmers’ intent as one source of
evidence

3

focus of this talk

3

Trust evidence
• increasingly, evidence for trust is numeric

• e.g. reputations of web sites

• e.g. age of software

• e.g. statistical information about past behavior of
subjects

• e.g. probability of one machine connecting to
another

4

Example
• numeric evidence may be needed even in

seemingly qualitative settings

• e.g. you just downloaded the MacTex 2012
package and it does not have a matching hash

• how likely is it that this downloaded software is
maliciously corrupted?

• conditional on which browser you use (e.g. Chrome
does things to your file!)

5
5

Numeric aggregation
and its verification

• want to use numeric/non-numeric evidence to
produce recommendations or obligations

• which then should inform access-control decisions

• and at all sorts of hardware and software interfaces
(e.g. forgetful loaders, social networks, infrastructure
integrity, risk postures of organizations)

• how can we verify such aggregation and what does
verification mean here?

6
6

Trust-mediated
Interactions

7

Jens Riegelsberger, Martina Angela Sasse, and John D. McCarthy. The mechanics of trust:
A framework for research and design. Int. J. Hum.-Comput. Stud., 62(3):381–422, 2005.

7

Trust & Assurance
• Economic incentive to use trust: assurance

techniques are expensive

• But trust signals less reliable in digital domain

• Want to use such signals and combine them
with assurance techniques

• ... and in a tuneable manner

8
8

Outline of presentation
• Motivation

• Peal: pluggable evidence aggregation language

• Generating verification conditions for Peal

• Experimental results

• Future work and conclusions

9
9

Policies as blocks of
aggregated trust signals

• policy (pol) returns a score:

• first, collect all scores of rules in policy whose
predicate (i.e. trust or distrust signal q) is true

• second, apply op to all these scores to get
result; if no q is true, return default score

 op ::= + | min | max | * | ...
 rule ::= if (q) score

 pol ::= op(rule*) default score

10

scope for extensions

10

Full Peal syntax

• op aggregates scores of true predicates in policy

• policy isA policy set, combine policy sets (pSet)
with min or max

• cond: compares values of pSet with thresholds

 op ::= + | * | min | max | ...
 rule ::= if (q) score

 pol ::= op(rule*) default score
 pSet ::= pol | max(pSet,pSet) |

 min(pSet,pSet)
 cond ::= th < pSet | pSet <= th

11
11

Example
• Alice wants to pay Bob via PayPal on

Facebook

Analysis example:

Does the behavior of cond change when
threshold 0.5 changes to 0.6?

12

Definition of signals

• transaction risk relies on amount that Alice means to pay,
amount of 500 does not signal anything!

• other signals also rely on state of relationship graph, e.g. the
number of mutual friends

• Last predicate protects against Bob having way too many
friends (e.g. celebrity)

13

Outline of presentation
• Motivation

• Peal: pluggable evidence aggregation language

• Generating verification conditions for Peal

• Experimental results

• Future work and conclusions

14
14

Logical synthesis
• For each cond (“th < pSet” or “pSet <= th”):

synthesize propositional formula Φ[cond] over q

• Models = determine truth values of predicates q

• Φ[cond] is true in model iff cond holds in model

• Synthesized Φ[cond] is basis for verification tasks

• predicates q themselves are/representable as
formulas of first-order logic

15
15

Verification tasks
• Is Φ[cond] always true/false? Vacuity

checking

• Do Φ[th < pSet] and Φ[th’ < pSet] differ?
Sensitivity analysis

• Is cond persistent, i.e. incomplete requests
will grant access only if complete one would?

These and more complex verification tasks reduce
to satisfiability checks of Φ[cond] in logic over

predicates q
16

Analyze instrumentations
of Φ[cond]

• Is Φ[cond] always false? Satisfiability
checking of that formula, then negate result

• Is Φ[cond] always true? Satisfiability checking
of negation of that formula, then negate result

• Do Φ[th < pSet] and Φ[th’ < pSet] differ, when
th < th’ ? Satisfiability checking of
Φ[th < pSet] && !Φ[th’ < pSet]
Etc. But satisfiability checks have to recognize

logical dependencies of predicates q within pSet
17

17

SMT solvers
• SMT solvers: combine SAT solvers (“model checking”)

with logical reasoning over theories (theorem proving)

• we have first prototype verification tool using SMT
solver Z3 (Microsoft Research)

• below we will explore tradeoff between explicit
synthesis of Φ[cond] (space intensive) and synthesis of
symbolic version of Φ[cond]

• but first we provide idea and usage of SMT solvers,
using Z3 as an example

18

Simple Z3 code

• declares an integer, and a function that maps
an (Int Bool) pair to an integer

• declares two assertions: a is greater than 10,
and the value f(a,true) is less than 100

• (check-sat) directive to decide whether there
is a model for conjunction of all assertions

(declare-const a Int) ; example from Z3 documentation
(declare-fun f (Int Bool) Int)
(assert (> a 10))
(assert (< (f a true) 100))
(check-sat)

19

Z3 witnesses

• (get-model) constructs witness of satisfiability,
reports exception if no such model exists

(declare-const a Int) ; example from Z3 documentation
(declare-fun f (Int Bool) Int)
(assert (> a 10))
(assert (< (f a true) 100))
(check-sat)
(get-model)

sat
(model*
**(define.fun*a*()*Int
****11)
**(define.fun*f*((x!1*Int)*(x!2*Bool))*Int
****(ite*(and*(=*x!1*11)*(=*x!2*true))*0
******0))
)

20

Scoping in Z3
(declare-const x Int) ; example from Z3 documentation
(declare-const y Int)
(declare-const z Int)
(push)
(assert (= (+ x y) 10))
(assert (= (+ x (* 2 y)) 20))
(check-sat)
(pop) ; remove the two assertions
(push)
(assert (= (+ (* 3 x) y) 10))
(assert (= (+ (* 2 x) (* 2 y)) 21))
(check-sat)
(declare-const p Bool)
(pop)
(assert p) ; error, as declaration of p was removed from the stack

Each analysis in our tool wrapped in a push/pop frame
21

Predicate definitions in
Z3

• Our tool for Peal verification has text zone in
which such domain specifics can be added

DOMAIN_SPECIFICS
(declare-const amountAlicePays Real)
(declare-const numberOfMutualFriends Int)
(declare-const numberOfBobsFriends Int)
(assert (= lowCostTransaction (> 100.0 amountAlicePays)))
(assert (= enoughMutualFriends (< 4 numberOfMutualFriends)))
(assert (= enoughMutualFriendsNormalized
 (< numberOfBobsFriends (* 100 numberOfMutualFriends))))
(assert (= highCostTransaction (> amountAlicePays 1000.0)))

22

Possible Z3 answers
• Some theories and their combination are

decidable over first-order logic

• Even if not, conjunction of all assertions may
still be decided in instances

• “sat” means that conjunction has model

• “unsat” means that conjunction has no model

• “unknown” means Z3 does not know which is
the case

23

Explicit synthesis
• Generate verification condition Φ[cond] by

translating away all references to numerics

• Captures logical nature of condition

• Output is amenable to analysis with an SMT
solver

• SMT solver will correctly reflect logical
dependencies of predicates within/across
policies

24

Explicit synthesis for
pSet composition

• Induction on min/max compositions

• Encodes order properties of min/max

25

x < max(a,b)
iff (x < a) or (x < b)

25

Synthesis of defaults
• pol = op((q1 s1) ... (qn sn)) default s

• reflect whether default is possible or not

26

non-default case

26

Synthesis of defaults
• default s consistent with threshold:

conjunction of all negated qi as one disjunct

• otherwise, ensure at least one qi be true

• reflect whether default is possible or not

27

consistent

inconsistent

27

Polarity of synthesis
• want witnessing sets of predicates to be closed

under supersets

• X contained in Y implying op(X) <= op(Y)
means op is monotone; in that case

• X contained in Y implying op(Y) <= op(X)
means op is anti-tone; in that case

28
28

Monotone: op is max
• pol = max((q1 s1) ... (qn sn)) default s

• th < pol if for some qi inequality th < si is true

• last slide: reduce pol <= th to th < pol case

29
29

Anti-tone: op is min
• pol = min((q1 s1) ... (qn sn)) default s

• pol <= th if there is some qi with si <= th

• now reduce th < pol to pol <= th case

30
30

Monotone: op is +
• let pol be +((q1 s1) ... (qn sn)) default s

• sort predicates qi in pol by ascending score order, e.g.
the vector [0.1, 0.2,0.2,0.3,0.5]

• want to find minimal index sets {i,...,j} of predicates
whose score sum is greater than 0.5 (“0.5 < pol”), say

• here: M1 = {{4,5}, {3,5}, {2,5}, {2,3,4}, {1,3,4}, {1,2,4}}

• explore from highest score, expand only if partial sum
ti = s0 + ... + si can get current mass over threshold 0.5

31
31

Computing all minimal
index sets: M1

call enumOne({},0,n+1,+) for n rules where ti = s0 + ... + si

32

 aggregation operator

 explore indexes less than this
 unit of +

 current index set

32

Example trace
th = 0.5, s = [0.1,0.2,0.2, 0.3, 0.5], t = [0.1,0.3,0.5,0.8,1.3]

33
33

Non-default formula for +
• pol = +((q1 s1) ... (qn sn)) default s

• sort rules so that s0 <= s1 <= ... <= sn

• use enumerateOne to generate M1 below

34
34

Anti-tone: op is *
• let pol be *((q1 s1) ... (qn sn)) default s

• Need: scores in [0,1]; so multiplication * is anti-
tone; sort scores in pol by descending order

• find minimal index sets {i,...,j} of qi whose score
sum is <= th; M2 = set of such minimal index sets

• explore from lowest score, recurse only if partial
product ti can get current mass below threshold th

35
35

Computing all minimal
index sets: M2

call enumTwo({},1,n+1,*) for n rules where unit = 1
enumTwo only reverses “th” comparisons of enumOne

36
36

Example: Z3 code
• policies b1, b2 composed with max,

satisfiability of “cond” explored
cond = pSet <= 0.5

b1 = min ((q1 0.2) (q2 0.4) (q3 0.9)) default 1
b2 = + ((q4 0.1) (q5 0.2) (q6 0.2)) default 0

pSet = max(b1, b2)

(declare-const q4 Bool) ... ; declare variables/functions
(assert (and (and (or q1 q2 q3) (or q1 q2)) (or (and (not q4)
(not q5) (not q6)) (not false)))) ; synthesised formula in red
(check-sat) ; directive to check for satisfiability
(get-model) ; extraction of witness if satisfiable

37
37

Parse tree of assertion
cond = pSet <= 0.5

b1 = min ((q1 0.2) (q2 0.4) (q3 0.9)) default 1
b2 = + ((q4 0.1) (q5 0.2) (q6 0.2)) default 0

pSet = max(b1, b2)

38

 max <= 0.5

inconsistent
default score

 qi with
si <= 0.5

consistent
default score

 make +
monotone

 M1 empty

38

Naming mechanisms
• use simple naming mechanism for all

syntactic categories: policies, policy sets,
conditions, and analyses

• E.g. we actually bind condition names to
formulas in asserts, as in

39

(assert (= cond (and (and (or
q1 q2 q3) (or q1 q2)) (or (and
(not q4) (not q5) (not q6)) (not
false)))))

39

DEMO of web app

40
40

Non-random
benchmark

• Majority voting: pol = +((q1 1/n) (q2 1/n) ... (qn 1/n))
default 0

• synthesis of 0.5 < pol generates exponentially many
disjuncts in set M1

• e.g. for n=27, synthesized formula 0.5 GB !

• satisfiability checks easy, size of formula is real
issue here: choose(n,ceilint(n/2)) many terms

• explore space-time trade-offs: symbolic synthesis
41

41

Symbolic synthesis
• Hybrid approach: synthesis of min and max

composition of rules still done explicitly --
linear in input size

• Synthesis of conditions for policy sets makes logical
decomposition into conditions for policies explicit

• But synthesis of conditions for policies
symbolically encodes operational semantics with
auxiliary real variables

42
42

Simple example
• a policy composed with +

• b2 = + ((q4 0.1) (q5 0.2) (q6 0.2)) default 0

• declare real variables b2_score_qi for each predicate
qi in b2

• assert that these variables have desired operational
value

• exploits that + (respectively *) has semantic unit 0
(respectively 1)

43
43

Declaring rule effect

44

(declare-const b2_score_q4 Real) ; reals for b2
(assert (implies q4 (= 0.1 b2_score_q4)))

(assert (implies (not (= 0.0 b2_score_q4)) q4))

(declare-const b2_score_q5 Real)
(assert (implies q5 (= 0.2 b2_score_q5)))

(assert (implies (not (= 0.0 b2_score_q5)) q5))

(declare-const b2_score_q6 Real)
(assert (implies q6 (= 0.2 b2_score_q6)))

(assert (implies (not (= 0.0 b2_score_q6)) q6))

b2 = + ((q4 0.1) (q5 0.2) (q6 0.2)) default 0

44

Declaring policy effect

• effect of policy (here b2) is function of
condition, here cond2:

45

(declare-const cond2_b2 Bool)
 (assert (= cond2_b2 (or

 (and (< 0.6 0) (not (or q4 q5 q6))) ; default case
 (and (or q4 q5 q6) ; non-default case

 (< 0.6 (+ b2_score_q4 b2_score_q5
 b2_score_q6))))))

b1 = min (...) ...
b2 = + ((q4 0.1) (q5 0.2) (q6 0.2)) default 0

cond2 = 0.6 < min(b1,b2)

45

Symbolic synthesis
• Z3 input code linear in size of Peal conditions

• space/time tradeoff: e.g. for majority voting

• explicit synthesis could only deal with n=27
for majority voting

• symbolic synthesis generates and verifies
equivalent condition for n=5000 in seconds!

46
46

Outline of presentation
• Motivation

• Peal: pluggable evidence aggregation language

• Generating verification conditions for Peal

• Experimental results

• Future work and conclusions

47
47

Experiments
• All experiments test: Z3 code generation and Z3 analysis both

take less than five minutes?

• Server funded by this Intel project: 24-core, Linux, 48-GB RAM;
generated random analyses one single core, here is an example:

48
48

First experiment
• Don’t report results on * aggregation of rules in policies

for these experiments, see Tech Report for details

• Analyzed sole policy with min or max composition:
handle about 2 million rules within five minutes

• Sole policy for + composition: explicit synthesis can
handle around 150 rules within five minutes

• Sole policy for + composition: symbolic synthesis can
handle about six-thousand(!) rules within five minutes

49
49

First experiment +
Domain Specifics

• Repeated first experiment but added domain-specific
constraints: linear inequalities, and model of method-call
graph with in-degree at most 1

• Analyzed sole policy with min or max composition: handle
about 7000 (2-million before) rules within five minutes

• Sole policy for + composition: explicit synthesis can handle
around 130 (150 before) rules within five minutes

• Sole policy for + composition: symbolic synthesis can handle
about two-thousand (6000 before) rules within five minutes

50
50

Second experiment
• How many policies analyzable in 5 minutes where each policy

has x/10 rules and x was 5-minute bound on number of rules
from First Experiment (e.g. x = 200,000 for min and max)

• min or max composition: handle about 50 policies with about
200,000 rules within five minutes

• + composition: explicit synthesis can handle around 18,000
policies with 14 rules within five minutes

• + composition: symbolic synthesis can handle 24 policies with
about six-hundred rules within five minutes

51
51

Third experiment
• How many policies n with n rules each can we

handle within five minutes?

• min or max composition: handle about 2000 to 3000
policies with that many rules each within five minutes

• + composition: explicit synthesis can handle about
100 policies with 100 rules each within five minutes

• + composition: symbolic synthesis can handle about
160 policies with 160 rules each within five minutes

52
52

Alice/Bob example
• cond1 = 0.5 < pSet different from cond2 = 0.6 < pSet

• pretty printed explanation extracted from explicit
synthesis analysis (colors added manually):

53

Result of analysis [name1 = different? cond1 cond2]
cond1 and cond2 are different

For example, when
highCostTransaction is false
enoughMutualFriendsNormalized is true
lowCostTransaction is true
enoughMutualFriends is true
aFriendOfAliceUnfriendedBob is false
cond2 is false
cond1 is true
numberOfBobsFriends is 5
amountAlicePays is 2.0
numberOfMutualFriends is 5

53

Alice/Bob explanation
• 0.5 < pSet true, 0.6 < pSet false because

• all predicates in b1 false, so b1 returns 0.6

• first two predicates in b2 true, so b2 returns at least 0.6

• don’t care about value of aFriendVouchesForBob

• so pSet = min(b1,b2) returns 0.6

54
54

Future work
• Comprehensive experimental evaluation

• Case studies that make use of this tool

• Extension to non-constant or negative scores and
metrics: symbolic synthesis allows for this

• Independent verification of reported Z3 models,
shortening of models for symbolic synthesis

• Implementation of more complex analyses (e.g.
computing “threshold spectrum” of policy set)

55
55

References

56
56

Thank You

57

Questions?

57

