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ABSTRACT
FPGA accelerators are capable of improving computation
and energy efficiency of many applications targeting a clus-
ter of machines. In this work, we focus on an FPGA ac-
celerated cluster system modified with a wireless network.
Comparing with conventional Ethernet based approaches,
the proposed system with wireless networking enables a light-
weight and efficient method for the FPGA devices to ex-
change information directly. Customisable monitoring facil-
ities are developed to support changing a distributed appli-
cation dynamically at run time. The N-Body simulation ap-
plication is used to demonstrate the effectiveness and poten-
tial of the proposed system. Experiments show that this ap-
proach can achieve up to 4.2 times improvement in latency.
By applying the proposed inter-FPGA wireless network to
the N-Body application, we achieve enhanced power effi-
ciency while fulfilling thermal constraints in all nodes.

1. INTRODUCTION

FPGA (Field Programmable Gate Array) devices are com-
monly used as accelerators for computational intensive ap-
plications. Popular areas for FPGA acceleration include:
digital signal processing, physics simulation, logic emula-
tion, cryptographic and finance modelling. To adapt the
rapidly growing algorithm complexity and data size, the HPC
(High Performance Computing) community has been ex-
ploring systems with multiple FPGA devices for a single
application. Recent studies also enable the collaboration
between heterogeneous accelerators in distributed applica-
tions [1].

Besides the computing capability, power and thermal mer-
its are critical for maintaining a stable and scalable pro-
duction environment. It is desirable to monitor and con-
trol these factors for every application such that the physical
constraints of the cluster platform are fulfilled. There are
various studies considering the power and energy efficiency
for individual FPGA accelerators. But a robust and scalable
solution for FPGA cluster is not readily available by the best
knowledge of the authors.

The aim of this work is to provide an adaptive frame-
work addressing this requirement with the focus on scaling
application to cluster platforms. This framework includes
means to measure the power and temperature of both FPGA
and CPU when the application is running. The collected in-
formation is transmitted to a control module promptly. Based
on the updated information, a mechanism is used to adjust
the configuration of the distributed application.

There are several challenges when realising this frame-
work. First, the time resolution must be high enough for
smooth application execution and responsive cluster man-
agement. Second, the impact on application performance
should be minimised while introducing the monitoring and
controlling functions. Also, the solution must be scalable
crossing multiple nodes in a cluster and multiple hetero-
geneous PEs (processing elements) in a node. Finally, the
framework should be seamlessly integrated to existing dis-
tributed applications.

The major contributions of this work include:

- A modular and customisable wireless network is in-
troduced to allow direct communication between FPGA
devices in accelerator clusters. Experiments show that,
for the proposed framework, the wireless network is
more suitable than the existing Ethernet channel.

- An adaptive framework with facilities for monitoring
operation of heterogeneous clusters is developed with
the ability to reconfigure the application at runtime for
achieving desirable power and thermal conditions.

- The N-Body simulation application is extended to em-
ploy these facilities to demonstrate the effectiveness
of the approach. Experiments results show quick re-
sponse and fine grained control using the proposed
framework.

2. RELATED WORK

FPGA technology has been used in wireless networks be-
fore. An example is an FPGA-based wireless local area net-
work [2], which allows flexible integration of hardware ex-



tensions to improve quality of service. The reconfigurabil-
ity of FPGA technology also enables improvement of power
efficiency; it has been shown that, for a Viterbi decoder [3],
run-time reconfiguration results in 69% reduction in decoder
power consumption over a non-reconfigurable implementa-
tion with no loss of decode accuracy.

The power and thermal issues in a cluster system have
been investigated. A wireless sensor network has been de-
veloped to monitor the power and temperature as part of a
cluster management system [4]. For clusters with FPGA and
GPU accelerators, a runtime workload scheduling frame-
work [5] has been proposed for Monte Carlo applications.

The research presented in this paper complements exist-
ing work described above. Our aim is to show, for the first
time, how a modular approach can be adopted to enable a
customisable wireless network to be used effectively for im-
proving performance and energy efficiency of a cluster with
FPGA-based accelerators.

3. FRAMEWORK OVERVIEW

There are two challenges when designing large-scale com-
puter clusters. First, an appropriate networking technology
needs to be found to support communication of not just data,
but also control and status information. Second, such net-
working technology needs to be integrated effectively in the
application with minimum overhead.

We propose an innovative framework based on wireless
network technology to address these two challenges. The
major novelty of our framework is a modular hardware ar-
chitecture that provides a unified data interface that can sup-
port: (a) multiple networking technologies including Giga-
bit Ethernet through the host CPU and also wireless net-
working through FPGAs; (b) user kernels which typically
consist of circuits that accelerate host applications; (c)cus-
tomisable monitoring facilities for collecting and analysing
status information about performance, temperature and power
consumption.

Figure 1 shows a prototype of the proposed framework
for a cluster with FPGA based accelerators. In this sys-
tem, an FPGA accelerator card is installed in each node
through the system PCIe interface. While the host software
communicates to each other through the Gigabit Ethernet,
the FPGA can communicate through an external wireless
module. We adopt the 2.4–2.5GHz frequency band, which
can support various wireless standards including high-speed
IEEE 802.11b and 802.11g, or simpler but slower standards
such as ZigBee. The wireless network cooperate comple-
mentary with existing Ethernet network to allow heteroge-
neous channels for direct inter-FPGA communication. The
FPGA card is also interfaced to a monitoring module with
temperature and power sensors attached to the CPU and FPGA
devices.
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Fig. 1. Cluster structure.

The software and hardware hierarchies are also shown
in Figure 1. For the external data flow, the MPI layer is
used for transferring application-specific data. The monitor-
ing and scheduling information is sent through the FPGA
driven wireless communication channel. For the internal
data flow, a unified register-based data interface is devel-
oped for the FPGA to enable efficient communication be-
tween FPGA modules and high-level application software.

The original user application is extended to include the
monitoring and scheduling modules for power and thermal
optimisations during runtime. The monitoring and schedul-
ing facilities are included as independent software modules
which can be interfaced to user application through C lan-
guage APIs, and support multiple networking technologies.
A soft processor core is used inside the FPGA to support
complex control of the wireless and monitoring modules.
This modular architecture hides the networking details and
monitoring facilities from the user kernels. Hence new user
kernels can be developed rapidly for various networks.

The framework can be customised at various levels, such
that the constraints and the controlling algorithms can be
changed by runtime reconfiguration. At physical layer, var-
ious sampling frequency, resolution, modulation and cod-
ing algorithms can be configured through the SPI interface.
At the medium access control (MAC) layer, packet format,
medium access algorithm and acknowledgement strategies
can be varied by configuring the unified register file in the
MAC module. At the network layer, a network node list is
kept. The node authentication, network membership man-
agement and timeout detection are implemented here.

4. FPGA DRIVEN WIRELESS COMMUNICATION

In most FPGA accelerated clusters, communication between
FPGA go through CPU-driven general purpose network. For
packets with small payload, this usually introduces large
overhead due to handshaking process, memory copying and
networking stacks in the operating systems. Some high per-



formance clusters [6, 7] also install direct connection be-
tween FPGA accelerators for higher bandwidth and lower
latency. We suggest that an additional wireless communi-
cation channel will be beneficial when power and thermal
information is to be circulated in the cluster.

In this work, the wireless network is used for transmit-
ting monitored data only. This type of information is usually
in form of small packet where application data are usually
in large chunks or streaming pipes. For these applications,
using FPGA driven wireless network has the following ad-
vantages: 1) It has lower and deterministic latency compar-
ing to the software base communication. 2) The manage-
ment information is separated from the application data for
easier integration. 3) It does not rely on any special FPGA
hardware feature such as in [6, 7] which both rely on the
RocketIO blocks in the Xilinx FPGA and require Infiniband
or SATA interface on the accelerator boards. 4) Wireless
networks support efficient broadcasting which could benefit
protocols or applications involving large amount of broad-
casting messages.

A commodity 2.4GHz wireless front-end is used in this
study as a rapid prototype. This is sufficient for cluster nodes
separate by a few meters in the server racks. In the labora-
tory environment, the application bandwidth is 1Mbps using
GFSK encoding. Due to the strong electromagnetic noise in
server room, the Direct Sequence Spread Spectrum (DSSS)
technique is used to improve the immunity to noise. The
DSSS encoding reduces the practical bandwidth to 125kbps.
Information is sent in packet format which has 5 bytes of
overhead for preamble, byte count and CRC checksum. To
avoid collision when multiple FPGA devices are trying to
send data at the same time, a token ring scheme is imple-
mented. In this scheme, an FPGA will send packet only
after it acquires the token.

Both the MAC layer control and the network manager
are implemented in the FPGA hardware as shown in Fig-
ure 1. The packet formatting and token checking are per-
formed in the MAC layer. The network manager provides a
control interface and transfers data on top of the MAC layer.
These two functions are controlled by a picoBlaze soft core
from Xilinx. Only one network manager is activated to sup-
port all FPGA accelerators involved in the distributed appli-
cation. Its main task is to detect transmission timeout and
newly available nodes in the network. When a node fails
to release the token within a given period, network manager
will discard the old token and generate a new one to resume
the network operation.

The information on this wireless network can be gener-
ated/consumed internally by the FPGA logic or externally
by the host software. To access the wireless modules from
the CPU side, the software interacts with a set of pre-defined
registers mapped to the system memory space. When the
FPGA internal logic interacts with the wireless control mod-

ule, a FIFO is used to avoid data lost.

5. POWER/THERMAL AWARE ADAPTATION

The monitoring modules include integrated performance coun-
ters and peripheral circuits to sense the temperature and the
supply current of PEs (Processing Elements). As the cur-
rent information is collected across a small resistor along
the 12V power line, a 18V battery supported op-amp is used
to amplify the differential inputs. By extracting the idle cur-
rent, we can get the dynamic power when running a specific
application. The performance of PEs is characterised by the
reciprocal of processing time for one unit workload in the
application.

In response to the cluster status variations, a cluster model
should be built to estimate the impacts of current configura-
tion on cluster performance. The power (P ), performance
(E) and temperature (M ) of a PE can be expressed as:

P = P0 + P1 × L

E = E0 × L× (1 − α)

M = M0 + (
w

E
) × β + L × γ

Varying parameters in our current model include parallelism
(L), workload (w) and overhead of parallel computing (α).
The Parallelism is the number of cores or threads running
concurrently in a PE. For the power consumption,P0 is the
power consumption in supporting multiple cores within a
PE. P1 is the power consumed by one core. In ideal sit-
uation, the performance,E, should scale linearly with the
parallelism,L. E0 is the performance for a single core.
The overhead parameter,α, is to model the additional op-
erations such as data distribution, data sharing and synchro-
nisation. Device temperature,M , is proportional to the ex-
ecution time and consumed power, withM0 indicating the
initial temperature. Theβ andγ are constant coefficients for
computation time (w/E) and parallelism(L), respectively.
By updating the model during run time, the cluster can es-
timate the status of every PE. This enables the scheduler to
make reasonable decisions on both node level and cluster
level. The scheduling mechanism is shown in Figure 2.

The node-level scheduling is executed under three major
constraints: maximum device temperature, maximum power
consumption and minimum performance. The parallelism
of CPU and FPGA will be varied if the measured statuses
failed to meet the constraints. Also, the sampled data are
used to update the model dynamically in the framework.
The reconfiguration parameters are then feed into the model
to estimate the temperature, power consumption and perfor-
mance for next iteration. The PE will then be rescheduled to
adapt these changes in the system. After scheduling of the
parallelism, the estimated performance will be used by the
node-level workload distributor to dynamically balance the



execution time of the heterogeneous PEs. As the maximum
performance of FPGA accelerators can be 20 times higher
than that of CPU, the CPU/FPGA workload ratio is varied
iteratively such that the distribution can converge when par-
allelism of PEs remains stable.
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Fig. 2. Adaptive Distributed Application Framework.

To prevent one single node from becoming the bottle-
neck of the cluster, the workload for every node is be allo-
cated dynamically. At cluster level, the workload distribu-
tion ratio is directly decided by the estimated node perfor-
mance to provide a quick reaction to node level scheduling.

Since every node has the status of all other CPU and
FPGA nodes, the workload redistribution can be done lo-
cally without global communication in the cluster. The mon-
itored data will pass through the corresponding communica-
tion I/O, such that it can be broadcast in the heterogeneous
communication channel.

6. THE N-BODY EXAMPLE

N-Body simulation is commonly used to study interaction
between objects with gravitation. The simulation is an iter-
ative process where the 3D position and velocity vectors are
updated after combining the total force acting on every in-
dividual particle. The computational intensive kernel of the
simulation is extracted and implemented in FPGA accelera-
tors in this work. The application is used to demonstrate the
efficiency of our proposed adaptive framework.

The computation of acceleration of an individual particle
is independent of that of other particles in the same iteration.

The accelerating technique is to explore this parallel charac-
teristic of the application. There are three levels of paral-
lelization in our design. Inside each PE, multiple particles
are processed concurrently to maximize the silicon utiliza-
tion rate. This is achieved by employing multiple custom
data paths in the FPGA accelerator and multiple concurrent
threads in the multi-core host CPU. At the node level, the
FPGA and CPU will process different groups of particles
concurrently. At the cluster level, the particles are divided
and assigned to multiple nodes.

The original design is presented in [1] where the work-
load is statically distributed for highest performance. This
scheme may not be desirable for power and thermal sensi-
tive platforms. In this work, the application is extended to
utilise the proposed adaptive framework presented in Sec-
tion 5. In the extended N-Body design, the power and ther-
mal management is done through controlling the degree of
parallelism of the N-Body in various levels. The principle
is to reduce the power consumption and heat dissipation by
reducing the computation effort in specific PEs.

To facilitate the adaptive framework, signals and control
logic are added to the FPGA implementation such that the
custom datapath can be enabled or disabled individually dur-
ing runtime. The dynamic power consumption of the FPGA
will be reduced as more parts are disabled and remain static.
The modules for wireless communication and status mon-
itoring are also inserted in the FPGA design. The worker
threads in the CPU implementation is also modified such
that the threads are created dynamically in each iteration.

The monitoring and scheduling functions are inserted in
the CPU main loop so that the workload can be redistributed
in each iteration. When the N-Body application is launched,
the workload is evenly distributed to all participating PEs
in the cluster with pre-defined parallelism parameter. The
monitoring thread constantly collects and records the power
and thermal information when the particles are processed in
the CPU and FPGA. Once the local workload is finished,
the control thread synchronises and transfers data to other
nodes. When all particle information is updated locally, the
next iteration can start. Just before starting the next itera-
tion, the workload and parallelism parameters are computed
according to the monitored information. In the N-Body ap-
plication, the number of active CPU threads and FPGA cores
are the major reconfiguration parameters. The size of parti-
cle group for local processing is also computed automati-
cally based on the expected performance of all PEs.

7. RESULTS

7.1. Environment and FPGA Results

The FPGA accelerator used in this work is the ADM-XRC-
5T2 card with a Xilinx Virtex-5 LX330T FPGA. The FPGA
design is synthesised using the Xilinx ISE 12.3 tool chain.



The distributed application running on the host CPU is com-
piled using GCC 4.2.3 and linked against OpenMP and Open-
MPI library for intra and inter node parallelization. The
cluster is running 64-bit Linux kernel (version 2.6.14). Three
of 16 nodes in the cluster are utilised in this study to realize
and evaluate the proposed framework.

The FPGA designs in this work are captured using VHDL
descriptions. Since the N-Body simulation kernel is tightly
coupled with the external memory interface, a single clock is
used for both the memory controller and the N-Body kernel.
In our 10-core N-Body implementation, the target operat-
ing frequency is 200MHz. The number of cores included
in the FPGA design is limited by the available DSP blocks
used in the floating point operators. Table 1 summarises
the implementation results reported by the Xilinx ISE tools.
The adaptive version includes the wireless and monitoring
drivers with the unified control interface. From the table, we
can see that the area overhead for the proposed framework
is less than1%.

7.2. Wireless Performance

Dedicated counters are implemented in FPGA for accurate
time measurement in our experiments. The performance of
broadcasting the monitored data either through the wireless
network or through the MPI over Ethernet is measured. We
compare the performance, in terms of the network latency
and the stability, when 2 or 3 nodes are involved and when
the parallelism of PEs is varied. The packet size is 176 bits,
with a 128-bit payload. The measured bandwidth is referred
as effective bandwidth.

In the Ethernet-based MPI implementation, the built-in
synchronousMPI_Allgather model is used. The asyn-
chronous communication model can potentially improve the
performance, but constraints on data update will limit the
framework granularity. In the wireless implementation, all
nodes receive all the broadcast packets, to avoid centralized
super-node, or multi-hop communication. This enables each
node to have the complete cluster status for reconfiguring
the local parts of the distributed application. Also, the clus-
ter performance can scale linearly as the number of nodes in
the cluster increases. The maximum and average time for a
broadcast operation, as well as the average bandwidth, are
recorded during 10 iterations of the N-Body simulation.

As mentioned in previous section, the bandwidth of the
wireless front-end is 125kbps when the DSSS coding is em-
ployed to increase immunity against the strong noise in server
room. Since the payload ratio is 16/21, the maximum achiev-
able bandwidth for the wireless network is 95kbps. As shown
in Table 2, where 2N8T means 2 nodes with 8 CPU threads,
the performance of the MPI implementation degrades signif-
icantly as the CPU is becoming occupied by the workload,
while the performance of the FPGA driven wireless network
is still near the maximum value even when all 10 cores are

Table 1. N-Body FPGA implementation results.
resource non-adaptive adaptive difference

LUT 93862(45%) 94818(45%) 956 (0.46%)
FF 115822(55%) 117773(56%) 1951 (0.94%)
DSP 180(93%) 180(93%) 0 (0%)
BRAM 17460(31%) 17556(32%) 96 (0.18%)

Table 2. Network Performance. (N: node, T: thread)
Tmax (us) Tavg (us) bandwidth (Kbit/s)

wireless
2N1T 2947.84 1472.67 86.92
2N8T 2957.92 1472.06 87.48
3N1T 2947.84 1468.04 87.19
3N8T 2957.92 1472.06 86.95

MPI over Ethernet
2N1T 1221.46 187.30 1366.80
2N8T 8185.90 1175.26 406.97
3N1T 3373.97 439.24 1784.46
3N8T 11039.13 6246.69 294.66

occupied. The fluctuation in FPGA wireless bandwidth is
due to the additional switch time for from receiver to trans-
mitter. It shows that the average latency for MPI is up to
4.2 times more than that of the proposed wireless network.
For the proposed framework, the performance of software-
driven wired network is limited by its small packet size,
heavy CPU loadings and cluster traffic in the cluster. Run-
ning in parallel and separately with the computing cores, the
wireless network is much more stable due to its hardware-
driven and broadcasting nature. Therefore, It is more suit-
able for the proposed framework to transmit application data
in wired network and circulate cluster status in wireless net-
work.

7.3. Adaptive N-Body Performance

As an example to demonstrate the adaptive framework, sta-
tus and performance of the nodes are shown in Figure 3 and
Figure 4. The power consumption and temperature infor-
mation are measured by the monitoring module. The tem-
perature constraint is set to50◦C for both FPGA and CPU.
In our experiment, Node 0 always has lower temperature
readings. After applying the adaptive framework, the FPGA
temperature is controlled at the50◦C level. The workload
ratio of FPGA and CPU is changed, in Figure 4, from 17:1
to around 7:1 by the adaptive algorithm as the parallelism of
FPGA is reduced to satisfy the temperature constraint.

Figure 5 shows the results of cluster-level scheduling.
The performance of PEs is measured as the processing time
for one particle. After 20 iterations, the cluster level sched-
uler dynamically redistributes the workload among the nodes.
Results show that this method improves the power efficiency
in Node 1 by21.7% when compared with the non-adaptive
implementation. It maintain the power efficiency when work-
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load is fixed on node level.
Figure 6 shows that energy efficiency is improved for

Node 1, and is slightly reduced for Node 0. While fur-
ther experiments are needed to confirm the overall trend, our
adaptive framework appears to have a negligible impact on
cluster energy efficiency while satisfying defined tempera-
ture constraints.

8. CONCLUSION

In this paper, we presented a novel framework for power and
temperature aware distributed application development tar-
geting FPGA accelerated clusters. This framework is based
on a wireless network which has not been used in previ-
ous FPGA clusters. Experimental results show that it is
more stable and suitable for the proposed adaptive frame-
work. Application developed in this framework can main-
tain the overall energy efficiency with power and thermal
constraints. Current and future research includes performing
extensive experiments to explore energy efficiency issues for
clusters with accelerators, supporting frequency scalingand
partial-reconfiguration in FPGA for improving energy opti-
mization, and extending our approach to cover various wired
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and wireless network technologies and applications.
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