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Abstract—The high performance computing (HPC) community
has been exploring novel platforms to push performance for-
ward. Field Programmable Logic Arrays (FPGAs) and Graphics
Processing Units (GPUs) have been widely used as accelerators
for computational intensive applications. Heterogeneous cluster
is one of the promising platforms as it combines characteristics
of multiple processing elements, to meet requirements of various
applications. In this work, we build a self-adaptive framework
for heterogeneous clusters, coupled with a customised wireless
network. A runtime cluster model is implemented to predict
throughput, power and thermal merits for heterogeneous clusters.
Cluster configurations are scheduled to improve cluster power
efficiency, as well as to reduce peak temperature of processing
elements. Results show that, for monitoring operations upon
heterogeneous clusters, the customised wireless network provides
stable and scalable performance for negligible overhead. A
high performance application is developed under the proposed
framework. Experiments show that this approach can improve
both power efficiency and energy efficiency of N-body simulation
for more than 15 times, while reducing device peak temperature
by up to 12

o

C.

I. INTRODUCTION

For highly parallel applications, GPUs and FPGAs greatly

outpace CPUs in arithmetic throughput, making them strong

candidates for high performance computing. The graphic-

optimised architecture of GPUs shows pervasive parallelism

by nature [1]. FPGAs blend customisability of application-

specific integrated circuits (ASICs) and flexibility of software.

Hardware architectures are customised at design-time and

runtime. Computational power of systems can be increased by

committing application kernels to specific accelerators. Major

areas for hardware accelerators include: signal processing,

physics simulation, cryptographic and finance modelling [2],

[3], [4]. To further increase the computational capacity of the

accelerated systems, heterogeneous processors are combined

to cooperate on a single application, and application workload

are distributed into multiple nodes. While cluster performance

can be improved to some extent, challenges remain for better

utilising the computational power of heterogeneous processing

elements.

First, the heterogeneity in hardware and software com-

plicates workload distribution and cluster synchronisation.

Variations in cluster status will impact processor performance.

The specific impact upon a processing element depends on

its hardware architecture and application characteristics. It

TABLE I
SERVICE COST OF AN HOUR OF DOWNTIME.

Business Service Cost

Brokerage Operations $6,450,000
Credit Card Authorization $2,600,000
eBay $225,000
Amazon.com $180,000
Package Shipping Services $150,000
Home Shopping Channel $113,000
Catalog Sales Center $90,000

would be extremely difficult for static designs to handle this

situation. For an application involving multiple heterogeneous

nodes, the computational capacity and the power consumption

of heterogeneous processing elements should be explored,

to improve cluster performance. Ideally, the cluster would

be dynamically reconfigured to stay at ”sweet point” of the

throughput/power curve, under various cluster status.

Second, besides throughput and power merits, stability

issues for HPC systems are getting more serious. Given a

large collection of nodes and intensive computation workload

put on the cluster, hardware failures become commonplace.

The mean time between failures (MTBF) for the ASCI Q

constellation at Los Alamos National Laboratory (LANL) is

less than 6.5 hours [5]. In the computing cluster of Google,

there are more than 20 reboots every day. The repercussion of

hardware failures for HPC clusters could be huge. As shown

in Table I, in 2003, one hour breakdown of HPC clusters can

cost up to 6 million dollars [6]. As indicated by the Arrhenius

equation, a 10oC increase in device temperature will double

its failure rate. Therefore, the device temperature should be

carefully controlled.

Third, the cluster should be aware of its current status to

be self-adaptive. A cluster model also needs to learn from

cluster information to update itself. Thus status packets should

be efficiently broadcast. Besides, interactions between the

monitoring network and high performance applications should

be minimised. Sacrificing cluster performance to integrate a

monitoring network is not acceptable.

The major contributions of this work include:

- A wireless network is customised and implemented in

FPGAs, as a monitoring network for the heterogeneous



cluster. Experiments show that the wireless network

performance scales linearly, without impacting cluster

performance.

- A runtime model is developed to predict cluster per-

formance in power, throughput and temperature aspects.

Based on this model, a scheduling algorithm is imple-

mented to adapt cluster configurations to varying cluster

status.

- A high performance application, N-body simulation, is

developed to evaluate the framework efficiency. Self-

adaptive support is integrated into the application. Exper-

iment results show improvements in cluster performance.

The rest of the paper is organised as following: Section II

reviews previous efforts in heterogeneous computing, mon-

itoring network and prediction models. Section III presents

the overview of the self-adaptive framework with hardware

and software architectures. A monitoring network, a dynamic

prediction model and a runtime scheduler cooperate to adapt

cluster configurations to status variations in heterogeneous

clusters. Section IV presents the customised wireless moni-

toring network. Section V presents the prediction model and

its corresponding scheduling algorithm. Section VI presents

experimental results and evaluates the proposed framework.

Finally, Section VII draws the conclusion.

II. RELATED WORK

FPGAs and GPUs as co-processors can offer significant

performance improvements for high performance applications.

FPGA-centric platforms have been widely developed, includ-

ing Berkeley Emulation Engine 2 (BEE2) [7], Maxwell [8],

Reconfigurable Computing cluster (RCC) [9] and Max station.

The performance gain comes from dedicated communica-

tion network, customised memory access and fully pipelined

data-paths. GPUs are preferred for high clock frequency

and massive amount of floating point units available on the

chip. Tokyo-tech Supercomputer and Ubiquitously Acces-

sible Mass-storage Environment (TSUBAME) contains 170

NVIDIA Tesla C1070 cards, increasing throughput from 56.43

TFlops to 77.48 TFlops [10]. Heterogeneous nodes involving

CPUs, GPUs and FPGAs have been reported recently. The

Quadro Plex (QP) cluster [11] consists CPUs and GPUs for

computing, and FPGAs for network operations. The Axel

cluster [12] is the first heterogeneous cluster where CPUs,

GPUs and FPGAs working concurrently for high performance

computing.

Implementing an efficient and scalable monitoring network

has always been a key challenge for the HPC community.

In 2004, a distributed monitoring network called Ganglia was

built in University of California, Berkeley [13]. Wired network

resources are utilised to monitor the system status of CPU-

centric clusters with small overhead. Recent developments in

wireless sensor network (WSN) enable system operators to

investigate the server room environment. The RACNet [14]

is a wireless sensor network for CPU-based data centres.

Temperature variations in server rooms are detected, and

operations of cooling systems are adapted to reduce their

power consumption. In 2009, a CPU status scheduler [15]

was proposed for a CPU-based Beowulf cluster, to reduce the

cluster peak temperature.

There have been various studies about optimizing and

configuring applications under performance constraints. In

2008, an application-aware power model [16] was proposed.

Based on voltage, frequency and parallelism of CPUs, the

model predicts performance at runtime. The model parameters

are obtained by empirical results. Energy and power saving

is achieved by optimisation from the model. In 2009, a

method [17] was proposed to trade-off the CPU performance

and power consumption by moving threads between cores.

The research presented in this paper provides a self-adaptive

platform to combine the monitoring network and the prediction

model, for heterogeneous clusters. Previous works are ex-

tended to the field of heterogeneous computing. Reconfigura-

bility of FPGAs is utilised to customise the wireless network.

The characteristics of heterogeneous processing elements and

high performance applications are tightly integrated into the

runtime model. The aim of our works is to show, for hetero-

geneous clusters, runtime properties can be explored for better

cooperation between the parallel devices.

III. SELF-ADAPTIVE FRAMEWORK

A. Framework Architecture

In a computing node of the heterogeneous cluster, there are

three processing elements: an AMD Phenom Quad-Core CPU,

an NVIDIA Tesla C1060 card and a Xilinx Virtex-5 LX330

FPGA hosted on an ADM-XRC-5t2 card [18]. All processing

elements have their own local memory banks to accelerate

local processing. Intra-node communication is supported by

PCIe system bus on mother board. CPU-based Ethernet net-

work is deployed in the cluster to execute inter-node com-

munication. Another inter-node communication channel is the

wireless network driven by FPGAs.

An appropriate software hierarchy is essential such that

high performance applications and the monitoring network can

cooperate properly in the heterogeneous cluster. As shown in

Figure 1, high performance applications are running under

message passing interface (MPI) framework. For computa-

tional intensive parts, parallel threads targeting at heteroge-

neous processing elements are instantiated under OpenMP

extensions.

Implemented in FPGAs, network drivers are running in

parallel with high performance applications. The network

driver consists of a digital base-band, a Medium Access

Control (MAC) layer and a network layer. Data interface

and control units are developed to support data flow between

CPUs, network drivers and peripheral circuits. On top of

the network layer, an application layer is built in the CPU.

Monitored information is processed at this layer. A scheduling

algorithm is implemented to update model coefficients, and to

schedule cluster configurations.
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Fig. 1. Software architecture of proposed framework.

B. Self-adaptive Computation

As discussed in Section I, the heterogeneity in hardware

architectures and varying cluster environment limits achievable

cluster performance. The self-adaptive framework presented

in this work is capable of adjusting cluster configurations

during runtime, to cover the heterogeneity and to adapt to

cluster status variations. The framework learns from impacts

of current and previous configurations, and predicts cluster

performance in the future. Workload distribution and device

concurrency can then be dynamically scheduled to provide

optimal cluster configurations under various situations.

The self-adaptive parts of the proposed framework include

a monitoring network, a dynamic prediction model and a

runtime scheduler. Hardware properties and application char-

acteristics are extracted into the model. Based on information

collected from the monitoring network, our runtime model

adapts its coefficients to the varying environment. Model

predictions enable the scheduler to dynamically reconfigure

the heterogeneous cluster. In the meanwhile, model constraints

will stabilise device temperature in a certain range. Further

details of the monitoring network and the prediction model

would be given in the sections that follow.

IV. WIRELESS MONITORING NETWORK

To be self-adaptive, the framework should be aware of its

application performance and hardware status. In our frame-

work, device temperature, throughput and power consumption

are gathered by a wireless monitoring network. The monitoring

network should be light-weight and efficient to minimise the

overhead for being self-aware. We refer overhead as resources

consumed for collecting status data and impacts upon appli-

cation performance. In terms of network performance, the im-

plemented network needs to provide fine-grained monitoring

upon cluster status variations. Monitoring resolution depends

on the time step of scheduling operations. Since the cluster is

scheduled every application iteration, gathering cluster status

at millisecond level can satisfy the monitoring resolution, and

the network overhead is acceptable. Length of the payload data

is 16 bytes, leaving the required bandwidth at around 1MHz.

Additionally, the network must be scalable such that the

proposed framework can be deployed to large-scale clusters.

In this work, we build a FPGA-driven wireless network for

the proposed framework. The novel aspects of the network

include: 1) Due to the broadcasting nature of wireless tech-

nology, the wireless network can be scalable for appropriate

topology. For complex scenarios such as multiple applications

running in cluster, various carrier frequencies can be instan-

tiated to isolate the communication channels and to increase

available bandwidth. 2) Driven by FPGAs, the implemented

networking operations will run in parallel with high perfor-

mance applications. Unlike CPUs and GPUs, there are always

unoccupied resources in FPGAs. The wireless network can

be customised to use these resources, eliminating resource

conflicts between monitoring network and high performance

applications. 3) Monitoring operations in heterogeneous clus-

ters have specific requirements and preferences. The network

layers can be customised for these to improve bandwidth

efficiency and to reduce consumed resources.

The physical layer of wireless network is mainly imple-

mented in an analogue front-end. Data packets are modulated

and demodulated at the carrier frequency, which varies from

2400MHz to 2498MHz. Upper layers input parameters, control

signals and packets into the front-end through a Serial Periph-

eral Interface Bus (SPI). Transmitter and receiver chains share

an external antenna. The filter parameters are configured such

that transmitter synthesisers and receiver synthesisers settle

at the same frequency. This allows fast turnaround between

transmitters and receivers. Temperature sensors attached to

processing elements are thermistors. Power consumption of

processing elements is measured with the current flowing

into them. Magnetic current transformers are used as current

sensors. Sensed information is sampled into the FPGA through

an Analogue-to-Digital Converter (ADC). A SPI controller are

implemented in the FPGA to communicate with the ADC.

With the dedicated communication channel between FPGAs

and peripheral circuits, the latency for sampling cluster status

is reduced.

1MHz

CRC16Payload DataLengthSOP2SOP1 P

Temp Temp TokenPower Power Perfor Perfor Sender

2.400GHz 2.401 GHz 2.402 GHz

Fig. 2. Physical layer and digital base-band of proposed network.



At the digital base-band, application throughput is measured

with digital counters. The measured throughput is combined

with sampled device temperature and power consumption, to

form payload data. The packet format is designed to provide

high communication stability and high data efficiency. As

shown in Figure 2, preambles, start of packet (SOP) and

payload length are inserted in front of the payload data. The

preamble is set as ”10101010”, a packet with such beginning

will be listened. SOP is used to further verify the listened

packet. The SOP is a 64-bit pseudo-noise code (PN code).

Received SOP fields are correlated with data stored in the

base-band. If the correlation is beyond a certain threshold,

the received packet is confirmed as a valid packet. At the

end of a packet, Cyclic Redundancy Check (CRC) is attached

to validate contents of the received payload. Direct Sequence

Spread Spectrum (DSSS) technique is used to improve the

immunity to noise in the server room. As a consequence,

bandwidth of the wireless network is reduced from 1Mbps

to 250Kbps. Sampled packets are put into a First In, First

Out (FIFO). When its MAC layer possesses control for the

communication channel, the packets are transmitted by the

front-end. Therefore, data sampling is isolated from network

operations. Received date are decoded and fed into PCIe

channels. A handshaking protocol is implemented to support

data transfers between FPGAs and CPUs.
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Fig. 3. MAC layer and network layer of proposed network.

At the MAC layer, an anti-collision algorithm is devel-

oped for medium access control. For a heterogeneous clus-

ter, the communication order can be predefined for a given

application. The purpose of our MAC layer is to share the

wireless channel with minimal overhead. In other words, the

latency introduced by the anti-collision algorithm should be

minimised. A token ring topology is implemented for our

monitoring network. As shown in Figure 2 and Figure 3,

sender identification and token are attached at the end of

the payload. If a head node is broadcasting control signals,

it occupies the wireless channel until all information has been

transmitted. In other scenarios, the sensor node possessing

the token will transmit status of the sensed node. A new

token is then generated for the following node indicated in

the network membership list. By consuming and generating

tokens one by one, cluster status can be gathered. This simple

algorithm ensures that the medium access can be decided

within several comparisons. The token ring topology enables

the node information for all involved nodes to be circulated

in the cluster, with a deterministic order.

On top of the MAC layer, a network layer is implemented

to manage the network topology, network membership and

network status during runtime. The token ring topology de-

pends on a predefined membership to loop through all involved

nodes. The initial network membership is synchronised with

MPI configurations. During runtime, the membership list can

be reconfigured to remove inactive nodes and to combine new

nodes. Therefore, the network topology can be dynamically

reconfigured. To ensure network stability, network status is

monitored at the network layer. Network status for a sensor

node includes initialising, receiving, transmitting and finalis-

ing. In certain cases, the token will be lost during transmission,

and network status can be used to build a time-out mechanism.

If a node takes too much time to receive a new token, the pre-

vious packet will be re-transmitted to restart communication.

The network layer is running in parallel with the other three

layers. Therefore, no additional latency is introduced.

V. SCHEDULING MECHANISM

A runtime model is essential for our self-adaptive frame-

work. With information collected from the wireless monitoring

network, time-varying coefficients in the dynamic model are

automatically updated. Application characteristics, hardware

properties and runtime variations are combined into the model

to generate proper predictions under current environment.

Based on the predictions, a scheduling algorithm is developed

to adapt cluster configurations to cluster status variations.

Previous works mainly focus on CPU-centric clusters, and

system optimisation is achieved by tuning hardware param-

eters for a multi-stage application [16], [17]. In our work,

application kernels are expanded onto heterogeneous com-

puting. The optimisation issue is how to better utilise the

heterogeneous resources in a single stage. Scheduling variables

include parallelism p(i,j) and workload ratio w(i,j) for every

processing element. We refer to each possible combination of

p(i,j) and w(i,j) as a configuration. The label (i, j) indicates

that it is the configuration for processing elements j of node i.

It is assumed that there are N nodes involved in the application,

and there are M processing elements in one node.

A. Basic Prediction Model

Throughput of a processing element (TH) depends on

application characteristics, hardware architectures and current

cluster status. Basic throughput prediction only considers static

situations. Throughput is expressed as a linearised function.

The heterogeneity in hardware architectures is covered by

different model coefficients.

TH(i,j) = THdy(i,j) · p(i,j) + ǫ(i,j,k) (1)

THdy is the throughput when only one kernel is running in

the specific processing element. It is the simplest scenario for

a processing element, as memory hierarchy is dedicated to the

single kernel, and no synchronisation is required for parallel

threads. When parallelism p(i,j) is increased, it will bring



overhead to protect data consistency and to share memory

bandwidth. The overhead is modelled as ǫ(i,j,k). The ǫ(i,j,k)
is modified for different parallelism, with k indicating current

parallelism. Power consumption P(i,j) is modelled with similar

strategy. Pdy(i,j) stands for dynamic power consumption of a

single kernel, and η(i,j,k) covers non-linear factors for power

consumption.

P(i,j) = Pdy(i,j) · pij + η(i,j,k) (2)

Temperature is previously modelled with thermal flow at

circuit level [19], [20]. In our model, the temperature problem

is investigated at system level, with temperature affected by

power dissipation and cooling systems. The temperature is

presented as sum of initial temperature, temperature increase

due to power dissipation and temperature decrease due to

cooling systems. Pov(i,j) presents overall power consumption

of a node. Static power consumption Pst(i,j) is measured

at initialisation phase of applications. The coefficients are

assumed to be static in the basic model.

T(i,j) = Tini + Tdi(i,j) · Pov + Tco(i,j) (3)

Pov(i,j) = Pst(i,j) + Pij(i,j) (4)

The static model is trained by running applications on an

isolated prototype machine. Single kernel design is executed

first to measure linear coefficients. All other possible config-

urations are mapped onto corresponding processing elements

to calculate the non-linear factors.

B. Runtime Model Extensions

For a static model, model coefficients are assumed to be

constant. Networking and computing resources distributed

to the application are considered as stable. In practice, the

heterogeneous cluster is shared by multiple applications. It is

impossible for cluster environment to satisfy such assump-

tions. The static model can provide an appropriate cluster

configuration initially. During runtime, the simplified functions

will introduce errors in predictions, limiting cluster perfor-

mance.

For throughput and power consumption, a runtime coeffi-

cients α is introduced to cover impacts of resource sharing. It

is updated according to errors between predicted values and

measured values. In the heterogeneous cluster, an application

is divided into Map and Reduce phase [21]. Reduce time

means the time consumed by reducing intermediate results

in parallel PEs into final results. Variations in communication

channel status are reflected by updating the reduce time.

TH(i,j) = (THdy(i,j) · p(i,j) + ǫ(i,j,k)) · α(i,j) (5)

Temperature coefficients are non-linear in the time dimen-

sion. The time-varying factors are combined into our model

by updating the model coefficients dynamically. Tdi and Tco

adapt themselves to approximate to the actual temperature

curve. Within a time step, measured temperature and power

consumption are processed to update Tdi. Tco is calculated

during the reduce phase. The coefficients are averaged for

predictions in the following time step.

T(i,j,t) = Tini + Tdi(i,j,t) · Pov + Tco(i,j,t) (6)

Tdi(i,j,t) = β(i,j,t) · tmap (7)

Tco(i,j,t) = γ(i,j,t) · t (8)

C. Model Constraints

With the dynamic model, cluster status can be predicted

under complex cluster environment. Constraints for model

parameters are necessary for making reasonable predictions.

Maximum parallelism for a processing element is limited by

available hardware resources. The scheduled parallelism and

workload ratio should be in certain range to ensure correct

configuration. Sum of the workload ratio w must be 1 for

appropriate data distribution.

{

pmax ≥ p(i,j) ≥ 0 :∀(i, j) ∈ {(1, 1)...(M,N)}
1 ≥ w(i,j) ≥ 0 :∀(i, j) ∈ {(1, 1)...(M,N)}

(9)

1 =

M
∑

i=1

N
∑

j=1

w(i,j) (10)

For parallel computing, execution time of distributed work-

load should be synchronised to eliminate cluster bottlenecks.

Computation time of a specific processing element can be

easily calculated. Memory access time tm refers to time

for data transfers between host memory banks and local

memory banks. Execution time of cluster can be divided into

execution time for Map phase tmap and execution time for

reduce phase tred. At cluster level, MPI_Barrier is used

to protect data consistency, thus ensuring equality of reduce

time tred. Since tm and tred are measured during runtime,

for a given parallelism p(i,j), the computation time tc and the

corresponding workload ratio w(i,j) can be calculated as:

f(w(i,j), tc) =

{

wij

THij
+ tm(i,j)

= ti
∑M

i=1

∑N

j=1 w(i,j) = 1
(11)

By synchronising the execution time, the number of scheduling

variables is reduced to one.

With the calculated tc and w(i,j), for a given parallelism

p(i,j), throughput, power consumption and temperature of a

processing element can be properly estimated. Peak temper-

ature of every processing element should be limited to an

acceptable level.

T(i,j) ≤ Tmax ij : ∀(i, j) ∈ {(1, 1)...(M,N)} (12)

D. Scheduling Algorithm

To utilise the predicted information, a scheduling algorithm

is required to pick the optimal cluster configuration for the next

time step. At cluster level, cluster power consumption P can be

accumulated from power consumption for involved processing

elements. Overall throughput is expressed as the reciprocal

of predicted cluster execution time t, as overall workload is



normalised to 1. Cluster power efficiency E is expressed with

the ratio between TH and P .

TH =

∑M

i=1

∑N

j=1 w(i,j)

t
=

1

t
(13)

P =

M
∑

i=1

N
∑

j=1

Pij : i ∈ {1...M}j ∈ {1...N} (14)

The scheduler is running in main thread under the MPI

platform, its scheduling algorithm is shown in Algorithm 1.

The time step in current model is set to be one application

iteration. When heterogeneous processing elements are work-

ing on distributed workload, sensed data are collected into

the application layer. Monitored cluster status is processed in

parallel with high performance applications. Events such as

device overheating, resource sharing and network saturation

are expressed as varying runtime coefficients. The scheduler

learns cluster status from the updated model. Achievable

computational capacity for each processing element is lim-

ited by temperature constraints. By scheduling with runtime

predictions and model constraints, the proposed framework

adapt itself to stay at the optimal level. The objective of our

scheduling algorithm is maximum power efficiency.

Algorithm 1 Scheduling Algorithm.

1: for i = 1 → N do

2: for j = 1 → M do

3: α(i,j) ⇐TH(p(i,j), w(i,j), tc(i,j));

4: Tdi(i,j) ⇐T(T(i,j), Tini(i,j), p(i,j), Pst(i,j), tmap);

5: Tco(i,j) ⇐T(T(i,j), Tini(i,j), tred);

6: pmax ⇐ T(Tmax, Tini, Tdiss);

7: end for

8: end for

9: for i = 1 → N do

10: for j = 1 → M do

11: for k = 1 → pmax do

12: (tc, w) ⇐ f(w, t);
13: Estimate TH , P , E;

14: Pick up Emax;;

15: end for

16: end for

17: end for

VI. RESULTS

The proposed framework is evaluated in this section. A high

performance application is developed under the self-adaptive

framework. Additional hardware resources, power consump-

tion and execution time are measured as framework overhead.

Bandwidth efficiency, stability and scalability of the wireless

monitoring network are compared with its wired counterpart.

Finally, cluster performance is measured to evaluate efficiency

of the self-adaptive framework.

TABLE II
N-BODY FPGA IMPLEMENTATION RESULTS.

resource non-adaptive self-adaptive difference

LUT 93862(45%) 94818(45%) 956 (0.46%)
FF 115822(55%) 117773(56%) 1951 (0.94%)
DSP 180(93%) 180(93%) 0 (0%)
BRAM 101(31%) 103(32%) 2 (0.6%)

A. Benchmark and Experiment Environment

N-Body simulation is commonly used to study interactions

between objects with gravitation. The simulation is an iterative

process where the 3D position and velocity vectors are updated

after combining the total force acting on every individual parti-

cle. N-body simulation is highly parallel. It is developed under

the proposed framework to evaluate its efficiency. Maximum

parallelism for CPUs, GPUs and FPGAs are 4, 10 and 10,

respectively. The CPU designs are compiled using ICC with

-fast and -O3 flags, linked against OpenMP and OpenMPI

libraries for intra-node and inter-node communication. The

GPU implementation is developed under CUDA environment.

The hardware designs are captured with VHDL descriptions,

running at 200MHz. The dynamic power consumption for a

full-speed design running in a heterogeneous node is 175.68W.

B. Framework Overhead

Integrating the self-adaptive facilities into high performance

applications will inevitably introduce overhead. In our frame-

work, the overhead includes power consumed by sensor front-

ends, hardware resources used by network drivers, and addi-

tional time spent on scheduling.

Supported by power modules within heterogeneous nodes,

sensor front-ends consume extra power for sensing and cir-

culating cluster information. For a 3.3V voltage supply, the

front-end runs with 0.04A current when transmitting data, and

with 0.01A current when receiving data. Maximum power con-

sumption for a sensor front-end is 0.132W. This is negligible

when compared with power consumption of a node.

The number of data-paths implemented in a FPGA chip is

limited by available DSP blocks. The wireless network driver

is customised to avoid resource conflicts. From Table II, we

can see that the network driver consumes no DSP block and

less than 1% of other resources. As the network driver is

implemented as isolated module, the operating frequency of

the high performance application is not affected.

The scheduling algorithm is running in serial with compu-

tational intensive kernels. Scalability of proposed scheduler

determines the number of nodes accommodated in the frame-

work. The scheduler execution time is shown in Figure 4.

It can be seen that the scheduler overhead scales linearly. If

maximum time consumed by the scheduler is set to be 10ms,

many nodes can be supported by our framework.

C. Network Performance

The performance of broadcasting cluster status either

through the wireless network or through MPI over Ethernet is

measured. We compare bandwidth efficiency, network stability
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and network scalability, when up to 8 nodes are involved.

In the Ethernet-based MPI implementation, the synchronous

MPI_Allgather model is used. The experiment results are

presented in Figure 5.

While Ethernet is running at Gbps level, its network per-

formance is limited by the overhead for packet formats and

protocol stacks. The wired network outperforms the wireless

network by 5 times, when there are 8 nodes in the cluster.

Given the huge difference in available bandwidth, the wireless

network shows better efficiency for broadcasting packets with

small payload.

In practice, the monitoring network and high performance

applications are running in the heterogeneous cluster simul-

taneously. Therefore, in the second scenario, the network

operations are integrated into high performance applications.

Driven by hardware, the wireless network runs in parallel with

applications, its network performance is not affected. The MPI

network operations generate computational workload in CPUs.

The conflicts in computational resources dramatically decrease

the performance of Ethernet. With only 250Kbps bandwidth,

the wireless implementation outperforms the wired network,

when more than 4 nodes are involved in the application. It

is reasonable to expect the speed-up will keep increasing

when cluster size further scales, as the computational workload

generated by network operations is proportional to cluster size.

In both scenarios, the communication time for broadcasting

data through the wireless channel scales linearly, while the

scalability of Ethernet over MPI depends on processor status.

Therefore, the efficient, light-weight and scalable wireless

monitoring network is suitable for our approach.

D. Cluster Performance

Finally, we investigate the cluster performance under the

proposed framework. To evaluate the self-adaptive design,

cluster performance for a static design is also measured. In the

static implementation, parallel devices run with full speed, and

workload is distributed according to their throughput measured

off-line. Figure 6 shows the execution time of both static

and self-adaptive designs, under varying cluster status. Cluster

execution time of the static design only reaches optimal level
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at several application iterations, when cluster status satisfies

assumptions of the static design. The self-adaptive design, on

the other hand, automatically adapt itself for cluster status

variations. Predications from the runtime model ensure that

the high performance application can stay at the optimal level

for current cluster status. Therefore, the proposed framework

can better utilise the available computational capacity of

heterogeneous processing elements.
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Figure 7 summarises cluster execution time, power effi-

ciency and energy efficiency. The static implementation is

used as a reference design. During runtime, the self-adaptive

applications are dynamically reconfigured to stay at the op-

timal level. It can be seen that the cluster reaches maximum

throughput and maximum power efficiency at different con-

figurations. Compared with the self-adaptive implementation

aiming at maximum throughput, the design staying at optimal

power efficiency level reduces cluster throughput by 28%.

After scheduling under the self-adaptive framework, the cluster

power efficiency and the cluster energy efficiency are increased

by 15.7 times and 16.3 times, respectively.

While cluster configurations are scheduled to improve clus-

ter performance, cluster stability is also increased. Under the

self-adaptive framework, computational capacity of processing
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elements will be dynamically reduced, as device temperature

is approaching its upper limit. GPUs are overheated when

static N-body simulation is running in the cluster. The device

temperature before and after scheduling are presented in

Figure 8. It can be seen that the peak temperature of overheated

processing element is reduced by 12oC. As indicated by the

Arrhenius equation, this halves the hardware failure rate.
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VII. CONCLUSION

In this paper, we presented a self-adaptive framework for

heterogeneous cluster. A customised wireless network is im-

plemented as a monitoring network for heterogeneous clusters,

and cluster configurations is dynamically scheduled, based on

the sensed data and a runtime model. Experiment results show

the wireless network provides stable and scalable performance,

with negligible overhead. The dynamic framework improves

power efficiency and energy efficiency of N-body simulation

by 15.6 times and 16.3 times, respectively, while the device

peak temperature is reduced by up to 12oC. Current and

future research includes performing extensive experiments to

support partial reconfiguration in FPGA for improving energy

optimization, exploring more complicated scenarios such as

running multiple applications in the heterogeneous cluster, and
extending the scheduling mechanism to support frequency and

voltage scaling.
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