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ABSTRACT
Rust has risen in prominence as a systems programming language
in large part due to its focus on reliability. The language’s advanced
type system and borrow checker eliminate certain classes of mem-
ory safety violations. But for critical pieces of code, teams need
assurance beyond what the type checker alone can provide. Verifica-
tion tools for Rust can check other properties, from memory faults
in unsafe Rust code to user-defined correctness assertions. This pa-
per particularly focuses on the challenges in reasoning about Rust’s
dynamic trait objects, a feature that provides dynamic dispatch for
function abstractions. While the explicit dyn keyword that denotes
dynamic dispatch is used in 37% of the 500 most-downloaded Rust
libraries (crates), dynamic dispatch is implicitly linked into 70%. To
our knowledge, our open-source Kani Rust Verifier is the first sym-
bolic modeling checking tool for Rust that can verify correctness
while supporting the breadth of dynamic trait objects, including
dynamically dispatched closures. We show how our system uses
semantic trait information from Rust’s Mid-level Intermediate Rep-
resentation (an advantage over targeting a language-agnostic level
such as LLVM) to improve verification performance by 5%–15×
for examples from open-source virtualization software. Finally, we
share an open-source suite of verification test cases for dynamic
trait objects.

CCS CONCEPTS
• Software and its engineering → Formal software verification; •
General and reference → Verification; • Theory of computa-
tion → Verification by model checking.
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1 INTRODUCTION
Rust has made significant inroads as a popular safe systems pro-
gramming language over the decade since its release. Stack Over-
flow has named Rust the “most loved language” every year since
2016.1 One of the language’s main selling points is its focus on
reliability—the ownership type system is a success story of pro-
gramming languagememory safety research breaking into themain-
stream. The borrow checker eliminates certain high-impact classes
of bugs, including null pointer dereferences, use-after-frees, and
most forms of leaked memory. A team writing safety- or security-
critical code, though, may seek an even higher level of assurance
than what the current type system alone provides.

While Rust’s type system rules out most memory safety bugs
in checked safe code, there remain many ways for execution to
go wrong. The language provides an “unsafe” dialect that allows
programmers to bypass restrictions to regain more expressivity
for lower-level regions of code. Even in safe Rust regions, the type
system does not rule out dynamic panics from out-of-bounds or in-
dexing errors (for example, consider the well-type-checked snippet
let v = vec![1, 2]; v[3]). Finally, engineers may want assurance
of functional correctness—the ability to assert specific properties
about the result of a program under all possible inputs.

We are building an open-source tool, the Kani Rust Verifier (Kani),
for sound, bit-precise symbolic analysis of Rust programs—initially
motivated by use cases at AmazonWeb Services (AWS). In our previ-
ous work on symbolic correctness proofs of production C code, we
found that (1) embedding specification into proof harnesses similar
to unit tests, and (2) integration with existing developer workflows
were key to broad impact on software engineering teams [5]. To this
end, one of our primary goals with the Kani project is to support
enough of the Rust language surface to seamlessly integrate into
large, existing projects. In Section 4.2, we show how Kani performs
on components of the open-source Firecracker virtual machine
monitor,2 which provides virtualization for two publicly-available
serverless compute services at Amazon Web Services: Lambda and
Fargate [1].

We have found an unexpected challenge in Rust language cov-
erage to be correctly modeling dynamic dispatch through virtual
1https://stackoverflow.blog/2020/06/05/why-the-developers-who-use-rust-love-it-
so-much/
2https://firecracker-microvm.github.io/
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method tables. Rust does not have classes or class inheritance like
other object-oriented languages; rather, traits are the primary mech-
anism for defining interfaces and abstracting over implementations.
The official Rust blog states:3

The trait system is the secret sauce that gives Rust
the ergonomic, expressive feel of high-level languages
while retaining low-level control over code execution
and data representation.

By default, trait method calls are monomorphized—that is, the com-
piler statically resolves which concrete function to call at each
function call site (see Section 2.1).

However, users can add a dyn keyword to gain the expressivity
of dynamic dispatch to trade-off dynamic runtime for improved
code size and compilation times (see Section 2.2). Further, Rust’s
closures, or anonymous functions, can also be dynamically dis-
patched through trait objects. As we show in Section 4.1, 37% of the
500 most popular Rust crates (packages) explicitly invoke dynamic
dispatch in their source code, and 70% implicitly include code that
uses it.

Despite Rust’s minimal runtime, supporting these dynamic trait
objects is challenging because (1) they require non-trivial dynamic
dispatch semantics that are not explicitly specified in any Rust doc-
umentation, and (2) they require heavy use of function pointers,
which can be challenging for static analysis and symbolic execu-
tion algorithms [16, 18]. While dynamic trait objects are easy to
avoid in hand-crafted verification examples, their use in the Rust
standard library and throughout realistic, real-world crates moti-
vates providing full support within our Kani tool. We have also
seen in practice that faithfully modeling dynamic trait semantics
causes our verification times to become intractable due to the large
number of function pointers. In Section 3.3, we show how Kani
leverages semantic information about traits to restrict the number
of possible targets for function pointers, moving a Firecracker proof
from intractable to completing successfully in 16 minutes.

Verification for Rust is a growing field, but to the best of our
knowledge, Kani is the only symbolic model checking tool that
targets Rust’s Mid-level Intermediate Representation (MIR) and can
reason about dynamic trait objects and dynamic closures. Other
verification tools that target MIR either do not provide soundness
guarantees over symbolic inputs (MIRI [15], MIRAI [9]) or do not
support all cases of dynamic traits (Prusti [2], CRUST [23], Crux-
MIR [10]); other tools target LLVM-IR and thus do not leverageMIR-
level type information (SMACK [3], SeaHorn [11], RVT-KLEE [21]).

Kani is implemented as a backend for the Rust compiler that uses
a mature, industrial-strength model checking tool—the C Bounded
Model Checker (CBMC) [6]—as a verification engine. Kani trans-
lates Rust’s Mid-level Intermediate Representation (MIR) into Goto-
C, CBMC’s C-like intermediate representation. Specifications in
Kani are written as Rust-source-level assert!(...) statements, with
simple extensions to specify assumptions and nondeterministic
symbolic input (Section 3.1). Kani can be invoked on individual
Rust files or on crates with the Cargo Rust build tool. In addition
to the user-added assertions, Kani checks for arithmetic overflow,
out-of-bounds memory accesses, and invalid pointers. CBMC per-
forms bounded unrolling of loops and recursion in the program,
3https://blog.rust-lang.org/2015/05/11/traits.html

but Kani by default is run with assertions that guarantee that if
code is verified, loops are sufficiently unrolled (via an assertion that
any iterations beyond the unrolling bounds are unreachable).

In this paper, we identify dynamic trait objects as an essential
language feature for Rust verification tools to tackle in order to
enable use on large, real-world Rust projects. Our contributions are
as follows:

(1) We describe the Kani Rust Verifier, an open-source bit-precise
symbolic model checker for Rust programs. We show that
covering dynamic trait objects semantics is necessary to
reason about real-world Rust, and we identify nuanced in-
teractions between dynamic dispatch and the Rust borrow
checker that must be correctly modeled by tools that target
Rust’s Mid-level Intermediate Representation (MIR).

(2) We show how Kani uses MIR-level semantic information
about traits to restrict possible targets for function point-
ers, which pose a well-known performance challenge for
symbolic execution tools.

(3) We provide a case study on the open-source Firecracker
repository that shows that function pointer restrictions un-
lock a previously intractable proof, with verification per-
formance (under 20 minutes) suitable for use in continuous
integration.

(4) We share an open-source suite of verification test cases for
dynamic trait objects and compare the results of several
related tools.

2 RUST TRAIT OVERVIEW
Traits are a core Rust language feature for specifying when types
should share a common interface. By default, Rust uses a monomor-
phization process to concretize each possible method implemen-
tation with a specific type. But, programmers can instead opt-in
to dynamic dispatch when they use a trait to trade-off runtime
performance with improved code size and compilation times.

2.1 Traits and Monomorphization
To understand dynamic dispatch, we first describe Rust’s default
static dispatch techniques for trait objects. We start with a moti-
vating example which defines an interface for objects that have an
integer count method:

1 trait Countable { fn count(&self) -> usize; }

We can implement this trait for two data structures, the Rust stan-
dard library’s Vec and our own custom Bucket struct:

1 impl Countable for Vec<i8> {
2 fn count(&self) -> usize { self.len() }
3 }
4 impl Countable for Bucket {
5 fn count(&self) -> usize { self.item_count }
6 }

Now, we can use the Countable type to refer to any object that
implements the trait:

1 fn print_count<T: Countable>(obj: T) {
2 print!("Count = {}", obj.count());
3 }

This implementation specifies that the function takes a generic type
T that must implement the Countable trait. Lower-level languages

https://blog.rust-lang.org/2015/05/11/traits.html
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like assembly do not, of course, support generics. How, then, does
the compiler resolve line 2 of print_count into an actual function
call jump (that is, which count implementation should be called)?

By default, the Rust compiler uses monomorphization: it creates
a specialized print_count function for each concrete type. This
process happens at theMIR level, but the effect is roughly equivalent
to this Rust source code:

1 fn print_count_vec_i8(obj: Vec<i8>) {
2 print!("Count = {}", obj.count::<Vec<i8>>());
3 }
4 fn print_count_bucket(obj: Bucket) {
5 print!("Count = {}", obj.count::<Bucket>());
6 }

Monomorphization means that every function that uses a generic
type bound must be duplicated for every possible implementation.

2.1.1 Closures as dynamic trait objects. Closures are anonymous
functions that can capture (and if specified, mutate) values in the
environment where they are defined. Each closure has its own
unique concrete type (that is, even closures that share the same
signature do not share a concrete type.) This creates a difficulty:
what type should be used when a closure is passed into a higher-
order function, such as map? Rust solves this using traits: all closures
must implement at least one of three standard-library-defined traits:
FnOnce, FnMut, or Fn, depending on whether they consume, mutably
reference, or immutably reference the captured environment (see
Section 3.2.4).

For example, we could define a function that takes in an item
cost and a closure to calculate the price of that item with tax:

1 fn price<T: Fn(f32)->f32>(cost: f32, with_tax: T)
2 -> f32 { with_tax(cost) }

To call this function, we simply specify the closures we want as the
second argument:

1 let tax_rate = 1.1;
2 price(5., |a| a * tax_rate); // Price is: 5.5
3 price(5., |a| a + 2.); // Price is: 7

Rust will monomorphize the code at compile time to call the right
implementation (we use [closure@...] to represent the closure
environment, which stores the tax_rate in the first closure and is
empty in the second):

1 fn see_price_closure@main:1(cost: f32) -> f32 {
2 closure@main:1([closure@main:1], cost)
3 }
4 fn see_price_closure@main:2(cost: f32) -> f32 ...

2.1.2 The costs of traits. With this monomorphization strategy,
developers pay no run-time efficiency cost compared to code that
manually specifies each implementation without using generics
or abstraction. However, monomorphization can have undesirable
effects: an increase in code size and compilation time, especially as
the number of possible implementations grows.

Verification tools can often avoid reasoning about monomor-
phization by consuming Rust code after monomorphization com-
pletes, either by running MIR’s default monomorphizer or by tar-
geting a lower-level of code in compilation, such as LLVM IR. From
the perspective of a verification tool, it is feasible to handle Rust
code with statically dispatched trait objects by instead using only
the monomorphized, concrete functions.

2.2 Dynamic Trait Objects
To trade-off runtime efficiency with improved code side and com-
pilation time, developers can use dynamic trait objects to opt in to
dynamic dispatch (and out of monomorphization). For example, us-
ing our same Countable trait, a developer could have this alternative
implementation of print_count:

1 fn print_count(obj: &dyn Countable) {
2 print!("Count = {}", obj.count());
3 }

To pass a trait object to this function, developers need to cast it as
a dynamic trait object:

1 print_count(&Bucket::new(1) as &dyn Countable);

Here, the dyn keyword expresses that this object should havemethod
calls dynamically dispatched. That is, the Rust compiler will use a
different strategy to answer the question: “which implementation
should obj.count() call?”

Rather than creating a new function signature per concrete type
for print_count, the Rust compiler will use a single instance of
print_count that takes a single type that can represent all objects
that implement Countable. In Rust, this type is an instance of a fat
pointer—a double-wide pointer type that represents both data and
essential metadata. Fat pointers for dynamic trait objects consist
of a data pointer to the object itself and a pointer to the virtual
method table (vtable) [7] that maps trait-defined methods to their
implementations.

2.2.1 Rust’s implementation using vtables. Rust Mid-level Inter-
mediate Representation (MIR) uses abstract trait types, so it is
up to each backend to implement vtables as they lower to their
corresponding lower-level representation. Because vtables require
jumps to a dynamically computed address, they can potentially be
exploited in security attacks (e.g., in C++ [13]), and hence their
precise implementation has security implications. Although Rust’s
informal specification does not specify the exact vtable layout, MIR
provides utility functions for building vtables of a specific form.
When we lack documented semantics for how Rust treats dynamic
trait objects, we use the canonical LLVM backend as a reference.
Our descriptions are based on Rust 1.55.0, the latest version of the
compiler at the time of writing.

In the canonical LLVM backend for the Rust compiler, vtables
have a specific layout that contains object metadata (the size and
alignment of the data) as well as pointers for each method imple-
mentation. Every vtable includes a pointer to the concrete type’s
drop (destructor) method implementation. The remainder of the
vtable contains pointers to the concrete implementation of all meth-
ods defined by that trait. A new vtable is defined at compile time
for every cast statement between a unique pair of concrete object
type and trait type, and stored in a new global variable. Dynamic
trait objects that share the same concrete type can thus share the
same vtable.

The vtable for our Countable example is (conceptually):

sizeof<Bucket> 8

align<Bucket> 8

&Bucket::drop 0x7ffe02d0ba88

&Bucket::count 0x7ffe02d0ba90
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Figure 1: Architecture of Kani. Unfilled indicates the Rust compiler with the canonical LLVM backend; filled indicates Kani. IR
is Intermediate Representation. Kani translates Rust’s MIR to CBMC’s C-like Goto-C language, uses MIR type information to
emit function pointer restrictions, and outputs a successful verification, a failure with a counterexample trace, or a timeout.

The fat pointer for our &Bucket as &dyn Countable object would
have one pointer to the Bucket and one pointer to the vtable above.
Calls to methods that take self then can pass the data pointer as
self. For example, print_count would be implemented as roughly:

1 fn print_count(obj: &dyn Countable) {
2 print!("Count = {}",
3 *(obj.vtable.count)(obj.vtable.data));
4 }

For dynamic closures, the data half of the fat pointer points to the
closure’s environment. The vtable consists of the same size, align,
and drop metadata, then pointers to functions defined for Fn, FnMut,
and/or FnOnce.

2.2.2 Summary. Dynamic trait objects allow developers to compile
code with dynamic objects that carry metadata specifying which
trait implementations of methods to call, rather than statically dupli-
cating code through monomorphization. Dynamic trait objects are
used throughout the Rust standard library, so even if programmers
do not opt-in to dynamic dispatch within their own source code,
they are likely to pull in Rust source that constructs and uses vta-
bles (see Section 4.1). Rust’s dynamic dispatch poses a challenge for
verification both because how to implement them is not precisely
specified by the Rust language definition, and because function
pointers require pointer analyses that are a known challenge for
symbolic reasoning [16, 18].

3 METHODOLOGY & IMPLEMENTATION
3.1 The Kani Rust Verifier
Architecturally, Kani is implemented as code generation backend
to the rustc compiler (Figure 1).4 Instead of translating to machine-
code (e.g., via the LLVM compiler infrastructures for the standard
backend or Cranelift for an experimental debug backend), Kani
translates to Goto-C, the C-like intermediate representation for
CBMC [6]. Kani then invokes CBMC on the generated goto program,
which ultimately runs symbolic execution and discharges formulas
to an off-the-shelf SAT or SMT solver (by default, MiniSAT [8]).

3.1.1 Properties checked and soundness. Kani by default checks for
memory safety (pointer type safety, invalid pointer indexing in un-
safe code, slice/vector out-of-bounds), arithmetic overflow, runtime
panics, and violations of user-added assertions. Users can addi-
tionally specify assert! and kani::assume statements using Rust
4https://rustc-dev-guide.rust-lang.org/backend/backend-agnostic.html

syntax. To reason about all possible inputs, users specify variables
as non-deterministic symbolic inputs using a special generic kani::
any<T>() function. We use sound to indicate that Kani never misses
violations of the checked properties in the rustc-produced binary
execution on some input. We have made the conscious choice when
developing Kani to prioritize soundness over completeness, so Kani
fails prior to verification if it encounters a Rust language feature
it does not yet support. Kani currently focuses on sequential Rust
and thus fails on any concurrency constructs. Kani also fails on
some compiler intrinsics, including a subset of SIMD (vector single
instruction, multiple data) operations.

While CBMC can act as a bounded model checker, Kani uses it
for unbounded verification. By default, CBMC is bounded because
it requires either a heuristic or a user-specified unrolling bound to
unroll each loop and set of recursive function calls. When symbolic
execution reaches the specified bound, CBMC defaults to inserting
an assume(false), which stops further exploration of the execution.
However, CBMC provides an unwinding-assertions flag that asserts
that any loop iteration beyond the specified bounds is unreachable.
Kani enables this flag—this causes us to be potentially incomplete
on programs where the bounds cannot be specified, but provides an
assurance of soundness for all cases where Kani returns “SUCCESS”.

3.1.2 Choice of input representation. The Rust compiler translates
a Rust program between a series of increasingly low-level represen-
tations, as shown in Figure 1. One of the key architectural choices
when designing a Rust verifier is what level of representation the
verification tool should take as input. Each level has both advan-
tages and disadvantages for verification. On the one hand, each
step lower in the representation tends to use a smaller set of more
uniform constructs. Defining a formal semantics is therefore easier
at lower levels. Tools such as SMACK operate at the LLVM inter-
mediate representation (LLVM-IR) level, which has the additional
benefit of allowing a shared verification backend between different
languages, such as C and C++.

On the other hand, lower-level representations lose information
about the original structure of the program and hence about the
original intent of the programmer. For example, the compiler may
give implementation-defined semantics in a lower-level represen-
tation to an operation that is undefined behavior at a higher level.
We have found that the Rust Mid-level Intermediate Representation
(MIR) to be an effective interface for verification. MIR is a (fairly)

https://rustc-dev-guide.rust-lang.org/backend/backend-agnostic.html
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clean and compact representation that retains most of the seman-
tic Rust type information. Kani invokes monomorphization before
analysis takes place, so we do not explicitly need to reason about
generic constructs. As we demonstrate in Section 4.2, MIR’s rich
type information is crucial to enabling high-performance verifica-
tion of dynamic trait objects.

3.1.3 The need for bit-precision. unsafe Rust code can both read
and modify objects as a collection of raw bytes, bypassing the
borrow checker and type system. For example, Rust code can use
transmute to reinterpret bytes of one type as bytes of another or
use raw pointer indexing to directly view and modify the bytes
of a type. These features are used for performance and portability
benefits in production Rust code, including in the Rust standard
library.

For example, the standard library’s OsStr implementation notes:
1 /* FIXME: `OsStr::from_inner` current
2 implementation relies on `OsStr` being
3 layout-compatible with `Slice`... */
4 pub struct OsStr { inner: Slice, }

In order to verify such code, it is necessary that the bitwise layouts
used by Kani match those used by the Rust compiler itself. While
relying on implementation details like this is undefined behavior
for source-level Rust code, the standard library is able to rely on
stronger implementation-level guarantees from the Rust compiler.
Kani’s CBMC backend provides the bit-level reasoning necessary
to handle such cases.

3.2 Dynamic Trait Objects in Kani
Goto-C (and C) do not have native support for method dispatch,
so Kani must lower MIR to C in a manner that removes traits but
maintains the same semantics. Our primary strategy is to follow the
LLVM backend’s vtable implementation, emitting Goto-C instead
of LLVM IR.

3.2.1 vtable construction. Dynamic objects are created at cast sites,
where a concrete type is cast to a dyn type explicitly or implicitly.
Like the LLVM code generation backend, Kani keeps a cache of
vtables that constructs a new vtable for every unique concrete
object, trait type tuple. Vtables generated by Kani are Goto-C structs
that map the metadata identifier to the corresponding data.

Naming vtables fields was less straightforward than we antic-
ipated. In the LLVM code generation backend, vtables are global
allocations without named fields (rather, each individual element is
accessed through pointer arithmetic). To keep our generated Goto-
C code more debuggable by Kani developers (and counterexample
traces more readable for users), we opted to use a struct with named
fields (because each field is the size of one pointer, the memory
layout is the same). An earlier version of Kani mapped the method
name to the method implementation function pointer. However,
we found this failed to handle cases where an object implemented
two traits with the same method name.

Unlike some other languages, Rust allows a type to implement
two traits with identically-named methods (regardless of whether
their signature is the same):

1 trait A { fn is_odd(&self) -> i32; }
2 trait B { fn is_odd(&self) -> bool; }

3 impl A for i32 { ... };
4 impl B for i32 { ... }
5 trait C : A + B {}
6 impl C for i32 {}
7 // The vtable for x has two 'is_odd' entries
8 let x: &dyn C = &3 as &dyn C;

To resolve this ambiguity, Kani now uses the index of the item in
the vector returned from a Rust MIR API call—vtable_entries—to
uniquely identify methods. We confirmed this strategy in informal
public discussions with Rust compiler developers.5

Specifically, we create a new vtable when we see a cast from
a sized pointer type to an unsized (non-slice) pointer type, where
we have not already created a vtable for this concrete type, trait
type pairing. At construction, we iterate over the Rust compiler’s
new (June 2021) vtable_entries6 results. We construct size and
alignment using the Rust compiler’s API for layout and drop reso-
lution.7 For each method defined explicitly for that trait type, we
add an entry indexed by position in the canonical vtable_entries.

3.2.2 Virtual calls through vtables. Dynamic dispatch occurs when
a statement calls a method on a dynamic trait object.

At the MIR level, we construct a dynamic call through a vtable
when we encounter a virtual call terminator. We obtain the object’s
self pointer and vtable pointer by accessing the respective compo-
nents of the fat pointer. We use the index idx provided by the vir-
tual call object to determine the vtable method—which corresponds
with the index into the vector returned by the Rust compiler’s
vtable_entries.

3.2.3 Casts of dynamic objects. Rust does not currently support
general dynamic trait upcasting (see Section 6): i.e., one cannot cast
an object of type &dyn Foo to one of type &dyn Bar even if one is
a subtype of the other (unlike, for example, Java subtyping). The
underlying reason is that Rust prefers to stay as close to zero cost
abstractions8 as possible—giving users high level language features
without sacrificing performance. Totally generic trait upcasting
would require modifying or rebuilding vtables (or additional pointer
indirection), imposing a runtime cost.

Kani initially encoded the assumption that dynamic trait objects
could thus not be the source of cast statements.Whenwe tested Kani
on the standard library, Kani found violations of this assumption
when handling types like &dyn Error + Send. Looking more into
the Rust documentation for traits, we found:

The Send, Sync, [...] and RefUnwindSafe traits are auto
traits. Auto traits have special properties. [...]

Because auto traits like Send have no associated methods, the un-
derlying vtable does not need to change when a cast involves only
auto-traits. The Rust compiler therefore allows adding and remov-
ing auto traits in dynamic trait objects casts, breaking Kani’s initial
assumption. To reason about the Rust standard library as-is, verifi-
cation tools must be able to handle this type of cast.
5https://rust-lang.zulipchat.com/#narrow/stream/144729-wg-traits/topic/.E2.9C.94.
20object.20upcasting/near/246857652
6https://doc.rust-lang.org/nightly/nightly-rustc/rustc_trait_selection/traits/fn.
vtable_entries.html
7https://doc.rust-lang.org/stable/nightly-rustc/rustc_middle/ty/layout/trait.
LayoutOf.html,https://doc.rust-lang.org/beta/nightly-rustc/rustc_middle/ty/
instance/struct.Instance.html#method.resolve_drop_in_place
8https://blog.rust-lang.org/2015/05/11/traits.html

https://rust-lang.zulipchat.com/#narrow/stream/144729-wg-traits/topic/.E2.9C.94.20object.20upcasting/near/246857652
https://rust-lang.zulipchat.com/#narrow/stream/144729-wg-traits/topic/.E2.9C.94.20object.20upcasting/near/246857652
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_trait_selection/traits/fn.vtable_entries.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_trait_selection/traits/fn.vtable_entries.html
https://doc.rust-lang.org/stable/nightly-rustc/rustc_middle/ty/layout/trait.LayoutOf.html
https://doc.rust-lang.org/stable/nightly-rustc/rustc_middle/ty/layout/trait.LayoutOf.html
https://doc.rust-lang.org/beta/nightly-rustc/rustc_middle/ty/instance/struct.Instance.html#method.resolve_drop_in_place
https://doc.rust-lang.org/beta/nightly-rustc/rustc_middle/ty/instance/struct.Instance.html#method.resolve_drop_in_place
https://blog.rust-lang.org/2015/05/11/traits.html


ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Alexa VanHattum, Daniel Schwartz-Narbonne, Nathan Chong, and Adrian Sampson

3.2.4 Closure signatures. Our initial implementation of dynamic
trait objects in Kani (which, like the current version, prioritized
soundness over completeness) failed to verify due to a CBMC
pointer error on the following input:

1 let f: Box<dyn FnOnce(i8)> = Box::new(|x| {
2 assert!(x == 1);
3 });
4 f(1);

A nearly-identical version of this case with Fn replacing of FnOnce
verified successfully. The root issue was a surprisingly subtle inter-
action between Rust’s borrow checker and dynamic dispatch.

The Rust documentation includes the following:
Use FnOnce as a bound when you want to accept a
parameter of function-like type and only need to call
it once. If you need to call the parameter repeatedly,
use FnMut as a bound; if you also need it to not mutate
state, use Fn.

FnOnce thus has provides a method signature thatmoves ownership
of its self type by taking it by-value: fn call_once(self, args:

Args)-> Self::Output; This allows the Rust borrow checker to give
errors on attempted reuse such as:

‘f‘ moved due to this call. This value implements
‘FnOnce‘, which causes it to be moved when
called

In comparison, Fn has this method signature: fn call(&self, args

: Args)-> Self::Output;. Both Fn and FnOnce are used for dynamic
dispatch via vtable calls, using the self parameter as one argument.
This is the root cause of our verification failure—the machinery we
have described for closures and vtables requires that the vtable’s
self argument be a pointer to an object.

Rust uses a vtable shim to work around this mismatch:
1 /*`<T as Trait>::method` where `method` receives
2 unsizeable `self: Self`...The generated shim
3 will take `Self` via `*mut Self` - conceptually
4 this is `&owned Self` - and dereference the
5 argument to call the original function. */
6 VtableShim(DefId),

However, the full translation is not complete at theMIR level: before
code generation, backends must be sure to correct the function call
signature, for example from the Rust compiler:

1 if let InstanceDef::VtableShim(..) = self.def {
2 // Modify `fn(self, ...)` to `fn(self: *mut Self, ...)`

Backends can either disregard the MIR function signature and use
a separate fn_abi_of_instance, or apply this same correction to
the MIR function signature. Verification tools can reasonably make
either choice—but using the MIR function signature alone in this
case will lead to incorrect results.

3.3 Leveraging Trait Semantics for Function
Pointer Restrictions

One of Kani’s key advantages over more language-agnostic ver-
ification tools is that it can exploit Rust’s semantics to improve
verification completeness and performance. While other tools (i.e.,
SMACK [3], RVT-KLEE, RVT-SeaHorn [21]) that work at the level

of LLVM IR must work with vtables as opaque allocations gener-
ated by the standard Rust backend, Kani can offer a more direct
interpretation of dynamic dispatch that allows us to combat path
explosion in the verification state space. At the MIR level, we have
access to rich trait information; by the time Rust is lowered to
LLVM, traits are gone and replaced by non-specific LLVM pointer
types which are more difficult to reason about. Specifically, Kani
uses information about dynamic trait object creation (at object cast
sites) and use (at function call sites) to restrict the set of possible
targets for vtable function pointer calls.

3.3.1 The verification challenge of dynamic dispatch. In general,
indirect function calls pose a scalability challenge for program
verification due to the pointer analysis involved [16, 18]. Before
running symbolic execution, CBMC removes all function pointers
by lowering them to conditional if blocks between possible target
functions. By default, CBMC considers all functions in the code
generation unit of the correct function signature to be possible
targets (this is sound when CBMC is run with pointer checks, which
verify that all pointers are to objects of the correct type.)

In a simple case, this permissive approach works well. Consider
two functions with the same signature:

1 fn a(x: i32) -> bool { x == 2 }
2 fn b(x: i32) -> bool { x != 0 }

When a pointer to a function of this type is used, for example,
(*f)(2) CBMC’s algorithm conceptually emits the following:

1 if (f == &a) a(2);
2 else if (f == &b) b(2); // ...

CBMC can then use standard symbolic execution techniques for
conditional control flow to soundly reason about this code.

This strategy becomes problematic when run on large code bases
that pull in numerous dependent crates. Every dynamic trait object
uses a function pointer every time a method is called, because each
trait-defined method call is resolved through a vtable entry. The
number of possible function pointer targets especially proliferates
for calls to drop—the destructor function. Every object’s drop func-
tion signature shares a shape: a method that takes a single self

parameter and returns the unit type (analogous to a void return
in C). When the self type is something from the standard library,
such as std::io:Error, the number of possibilities skyrockets. In
Section 4.2, we show how such a case can lead to hundreds of
possible targets, rendering this approach to verification intractable.

3.3.2 Restricting call destinations using Rust semantics. We recog-
nized that, with Kani’s semantic understanding of traits at the MIR
level, we have a much more precise notion of which implementa-
tions vtable function pointers could target. In particular, we can
guarantee (short of the user using unsafe to transmute the vtable
memory) that a call through a vtable will be one of the trait-defined
methods for that trait type that we have encountered during code
generation. To maintain soundness even under unsafe memory
transmutes, we assert!(false) if the actual function pointer does
not match one of our identified possibilities. This also allows us to
soundly under-approximate possible targets by not explicitly ac-
counting for casts between trait types, as described in Section 3.2.3.

We implement function pointer restrictions by tracking possible
implementations (at object cast sites, when the vtable is built) and
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uses of vtable pointers (at function call sites). For the first, we build
a map that builds a set of possible implementations (in our case,
symbol names for each Goto-C function) keyed by the tuple of
trait type and method index for vtables of that trait type. For call
sites, we build a list of structs with trait name, method index for
vtables of that trait type, and information for identifying that call
site in CBMC. Because dynamic dispatch calls can occur across
crate boundaries, we emit a file with this information for each
crate (using a stable unique hash for trait types). Finally, after code
generation, we combine the per-crate data by iterating over the
list of call sites and looking up the possible implementations we
have found for that trait index tuple. When there are no possible
implementations (possible in functions that are never invoked), we
emit the empty set.

Kani combines the restrictions for each Rust dependency and the
crate itself into an auxiliary JSON file to be consumed by CBMC as
function pointer restrictions. We have seen CBMC times drop by
an order of magnitude with this restriction strategy, as we describe
in the next section.

4 EVALUATION
For our evaluation, we used an Amazon EC2 m5d.4xlarge instance
with 16 cores and 64GB of memory, running Ubuntu 20.04.2.9

4.1 Prevalence of Dynamic Trait Objects
We conducted a simple empirical study to estimate the prevalence of
dynamic trait objects in the 500most downloaded crates on crates.io,
the Rust package repository. We found that while only 185 of these
500 crates (37%) use the explicit dyn keyword within their source
code, 349 (70%) include at least one vtable when compiled with
rustc.

We downloaded the top 500 crates sorted by greatest number
of downloads on October 2, 2021. To estimate the implicit use of
dynamic trait objects, we invoked a debug build of the Rust com-
piler via cargo build and searched the debug output for the line
get_vtable, which is logged at vtable use. This is likely an over-
estimate of the dynamic trait objects that are actually used in func-
tionality a user might want to verify for these crates, but it does
provide an indication of how often verification tools that integrate
with Cargo will encounter linked dynamically-dispatched code.

4.2 Case Study: Firecracker
As a real-world case study, we consider how two different variants
of Kani—one without vtable function pointer restrictions, and one
with—perform on examples from the open-source Firecracker hy-
pervisor. This case study highlights the challenges in moving from
small, standalone verification examples to proofs that sit alongside
large scale codebases.

Implemented in Rust, Firecracker provides the underlying virtu-
alization technology for two publicly-available serverless compute
services at Amazon Web Services: Lambda and Fargate [1]. A core
characteristic of serverless computing is multitenancy, meaning
that multiple customer workloads (e.g., functions or containers)
may run on the same hardware. Consequently, Firecracker is crucial
for ensuring the isolation of customer workloads.
9https://github.com/avanhatt/icse22ae-kani

1 pub trait BusDevice: AsAny + Send {
2 fn read(&mut self, offset: u64,
3 data: &mut [u8]);
4 fn write(&mut self, offset: u64, data: &[u8]);
5 }

Figure 2: The BusDevice trait used for explicit dynamic dis-
patch in Firecracker’s serial device.

1 fn serial_harness() {
2 let mut serial = SerialDevice {
3 serial: Serial::new( ... ) };
4 // Model arbitrary input as symbolic
5 let bytes: [u8; 1] = kani::any();
6 let mut buf = [0x00; 1];
7 // Call functions-under-verification
8 <dyn BusDevice>::write(&mut serial, 0u64, &bytes);
9 <dyn BusDevice>::read(&mut serial, 0u64, &mut buf);
10 assert!(bytes[0] == buf[0]);
11 }

Figure 3: Our proof harness for simple read/write function-
ality. kani::any() is an Kani construct that returns a non-
deterministic, symbolic value of the inferred type.

4.2.1 Firecracker Serial Device. Firecracker provides console em-
ulation for a guest virtual machine by emulating a serial device
(16550A UART). The guest virtual machine sends and receives bytes
by writing and reading to device registers mapped into the guest
memory. Since read and writing to a device through memory is
a common interface, Firecracker defines a trait BusDevice which
defines write and read methods (Figure 2). Multiple devices are
wrapped in a Bus container which maps address ranges to a partic-
ular device and routes write and read requests as dynamic calls to
the underlying device.

Verification task. We aim to demonstrate a simple proof harness
using the serial device behavior in loopback mode, where bytes are
read and written to the same port. Firecrack’s serial device specifies
that only a single byte can be read or written in a given call. Figure 3
shows a small proof harness that checks that for any single byte
we can write through the dynamically-dispatched call, the same
byte is read back. Kani checks this user-added assertion, as well
as memory safety, arithmetic overflows and division by zero, and
pointer safety.

Function pointer restriction. With our function pointer restric-
tions enabled, Kani identifies exactly the correct function pointer
to call for both read and write. In Kani without function pointer
restrictions, CBMC’s default function pointer strategy finds 8 possi-
ble calls for each of read and write. For example, the call for write
includes these two options, which are from an entirely different
module of Firecracker but are included because they share the same
function signature:

1 if(v.vtable->6 == Block_VirtioDevice_read_config)
2 goto __CPROVER_DUMP_L12;
3 if(v.vtable->6 == Block_VirtioDevice_write_config)
4 goto __CPROVER_DUMP_L12;

crates.io
https://github.com/avanhatt/icse22ae-kani


ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Alexa VanHattum, Daniel Schwartz-Narbonne, Nathan Chong, and Adrian Sampson

1 pub fn parse(
2 avail_desc: &DescriptorChain,
3 mem: &GuestMemoryMmap,
4 ) -> result::Result<Request, Error> { ... }

Figure 4: parse, our function-under-verification.

For this simple illustrative case, Kani runs in 4 minutes and 4
seconds with the restrictions and 4 minutes and 13 seconds without,
representing a modest 5% speedup (with a tradeoff in code size
increasing from 1.14GB to 1.20GB due to the auxiliary restrictions
files). In the next example, we show how implicit vtable calls can
cause far worse performance differences.

4.2.2 Firecracker Block Device Parser. For our next function-under-
verification, we consider the emulated block device available to
guest Virtual Machines (VM)s for storage (i.e., reading and writ-
ing to disk). The device is visible to the guest VM through MMIO
(memory-mapped IO), using the virtio API [22]. The guest VM allo-
cates a set of virtqueue data structures in guest memory to support
generic data transport between the guest and hypervisor. Each en-
try in a virtqueue is a descriptor: a pointer with metadata, such as
length and read/write permissions, to a buffer in guest memory. De-
scriptors can be chained so that multiple buffers can be transported
in a single transaction. For the block device, a read (respectively,
write) transaction consists of three descriptors pointing to three
buffers, containing (1) the request type and disk sector, (2) the data
buffer to be filled/read, (3) a status byte returned by the device. The
primary task of the emulated block device is to parse and execute
guest transactions that it receives through this interface.

Verification task. Isolation between guest VMs requires that no
input from a guest, no matter howmalformed, can cause Firecracker
to panic. Figure 5 gives a straightforward proof harness for the
parse function of the block device (Figure 4). The parse function
is responsible for taking the raw untrusted bytes of descriptors
from guest memory and returning either a request object or an
error. We use symbolic inputs (generated with kani::any() on line
3) to model input from the guest as well as to over-approximate
data values read from the guest memory. Successfully verifying
this proof harness using Kani shows that the block device has no
runtime panics under any guest behavior.10 Kani can be used to
verify deeper functional properties, in addition to panic freedom—
for the purpose of this case study, we note that even this simple
harness is intractable without MIR-level type reasoning.

Although the code-under-verification never uses the dyn key-
word to explicitly invoke a dynamic trait, the parse function returns
the type result::Result<Request, Error>, where Error is a custom
enum devices::virtio::block::Error. As shown in Figure 6, one
enum value uses the standard library type std::io::Error, which
is implemented using traits. When the returned object goes out
of scope (when block_proof_harness returns), Rust automatically
inserts a call to destruct the object with std::ptr::drop_in_place.
This drop_in_place function uses a dynamic trait object of type
Drop, which is routed through the object’s vtable.
10Running this proof with the default set of Kani flags gives spurious pointer check
errors (which we are investigating), so the results in this section are for Kani with
pointer checks disabled.

1 fn block_proof_harness() {
2 // Model arbitrary descriptor from guest as symbolic
3 let desc : DescriptorChain = kani::any();
4 // ..., call function-under-verification
5 match parse(&desc, /*...*/) {
6 Ok(req) => {},
7 Err(_) => {},
8 }
9 }

Figure 5: Our proof harness for parse.

1 pub enum devices::virtio::block::Error {
2 // Guest gave us a descriptor that was too short
3 DescriptorLengthTooSmall,
4 // Getting a block's metadata fails for any reason
5 GetFileMetadata(std::io::Error),
6 // ...
7 }

Figure 6: The error type used in the Result returned by parse.

Impact on verification. Even in this simple case, the hidden use of
dynamic trait objects poses a huge challenge for verification with
CBMC—std::io::Error is so commonly used within Firecracker
and its dependencies that CBMC identifies 314 possible function
targets for this virtual call to drop. Each of these functions must then
be unwound for symbolic execution. CBMC’s symbolic execution
engine was unable to complete this unwinding within a four hour
timeout (and hence never even reached the stage of discharging
the actual proof obligations to a satisfiability solver).

Our trait-based function pointer restrictions allow our proof
harness for parse to terminate successfully in 16 minutes—at least
a 15× improvement in verification performance. Code size again
increases slightly, from 0.96GB for the proof harness without re-
strictions to 1.02GB for the successful proof. For the problematic
call to drop on std::io::Error, Kani correctly identified that the
GetFileMetadata(std::io::Error) type is never used in this har-
ness or function-under-verification. That is, Kani emits 0 possible
functions that could actually be the target of the precise Error type
in this context, rather than the extremely permissive 314 possible
options. Since Kani soundly replaces the call to drop with assert(

false), verification of the test case also serves as verification of the
function-pointer restriction set. As an additional sanity check, we
modified the function-under-verification to non-deterministically
return a std::io::Error in some cases, which caused Kani to fail
with spurious, false positive verification errors. Our manual inspec-
tion of these failures indicates that they do not affect soundness,
but we are investigating them as a top priority.

4.3 Dynamic Dispatch Test Suite
In developing Kani, we have produced a suite of over 40 verifica-
tion test cases for dynamic trait objects. This test suite has been
open source throughout its development.11 We encourage other
developers of Rust verification tools to use and modify these test
cases as they add more support for dynamic trait objects. Our full
11https://github.com/model-checking/kani

https://github.com/model-checking/kani
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Tool Kani Crux-MIR RVT-SH RVT-KLEE SMACK
Focus Soundness Soundness Soundness Bug-finding Soundness
Test name Code snippet

Simple trait, pointer &3 as &dyn T ✓ ✓ ✓ ✓ ✓

Simple trait, boxed Box::new(o) as Box<dyn T> ✓ ✕ ✕ ✓ ✕

Auto trait, pointer &3 as &dyn Send ✓ ✕ ✕ ✓ ✓

Fn closure, pointer $||{} as &dyn Fn ✓ ✕ ✓ ✓ ✓

FnOnce closure, boxed Box::new(||{}) as Box<FnOnce> ✓ ✕ ✕ ✓ ✕

Generic trait, pointer trait T: S<i8> + S<u8> ✓ ✕ ✓ ✓ ✓

Explicit drop, boxed impl Drop for T...Box<dyn T> ✓ ✕ ✓ ✓ ✕

Explicit drop, pointer impl Drop for T...&dyn T ✓ ✓ ✓ ✓ ✓

Table 1: Dynamic trait object test cases, per tool (✓ is supported, ✕ is unsupported). Kani is this work. Crux-MIR is anMIR-based
“static simulator.” RVT-SH (RVT-SeaHorn), RVT-KLEE, and SMACK all start with LLVM IR; respectively, they are a model
checker, a bug finder, and a Boogie-based verifier. Prusti and CRUST did not support any form of dynamic trait object.

suite includes versions of the functions-under-verification that are
expected to succeed and versions that are expected to fail.

Table 1 shows our understanding of other tools’ support for a
subset of test cases. We used the following versions:

• SMACK: version 2.8.0.
• Crux-MIR: commit hash 3451423.
• Rust Verification Tools: commit hash b179e90.
• Prusti: rustc 1.56.0-nightly (3d0774d0d 2021-08-18).
• Crust: no longer actively developed, the paper specified that
dynamic traits were unsupported [23].

5 TRUSTED COMPUTE BASE & LIMITATIONS
Kani is designed as a sound verifier with respect to the properties
checked, but because neither MIR nor Goto-C currently have formal
semantics, the full Kani toolchain itself is not formally verified.
Kani’s trusted compute base includes our translation from MIR to
Goto-C, CBMC itself, and the backend SAT or SMT solver.

Compared to some other Rust formal methods tools, Kani’s use
of Rust syntax for assertions and assumptions limits us to a smaller
space of expressible properties. Supporting richer specifications—
including support for first-class loop invariants, explicit existential
quantifiers, and modular verification—is future work.

6 DISCUSSION & FUTUREWORK
In this paper, we have outlined how a language feature that is
thought to be well-understood—dynamic dispatch—can pose unan-
ticipated verification challenges. Prior efforts to formalize Rust
semantics have (reasonably) focused on other unique language fea-
tures, primarily the borrow checker. For example, the RustBelt[14]
project’s 𝜆𝑅𝑢𝑠𝑡 “omits some orthogonal features of Rust such as
traits (which are akin to Haskell type classes)”. The Oxide: Essence
of Rust[24] paper similarly references Haskell type classes and
does not see traits as an “essential part of Rust”. We have a slightly
different goal than this prior work: because we want to embed
verification of Rust in real world codebases, we needed to wrangle
with the semantics of trait objects, and we found that doing so
was far from trivial. From this, we can argue a point broader than
just Rust—verification tool designers should be prepared to model

the complex and subtle ways all language features interact. This is
especially true when languages provide a standard library that is
not formally specified but uses the desired language feature.

Trait upcasting coercion. Rust has an in-progress proposal to
add a trait upcasting coercion feature for dynamic trait objects.12
This language feature would allow developers to cast between
dynamic trait object types as long as the source type is a subtrait
of the destination type. Implementing such coercions requires a
more complicated vtable strategy, since they require the underlying
vtable to change. Kani could be extended to support these trait
coercions once they are enabled by default in Rust. To do so, we
would need to extend our vtable generation and method lookup to
model the Rust compiler semantics, whichwill likely be vtables with
a nested structure that can require multiple pointer indirections.
This would also be additional motivation to extend our existing
strategy for restricting function pointers to include directed type
cast information.

7 RELATEDWORK
MIR-based verification. Other tools target Rust’s Mid-level Interme-
diate Representation; but to our knowledge no other tool provides
sound verification of symbolic inputs and supports the breadth of
dynamic trait objects.

CRUST [23] is a similar bounded model checker for Rust that also
uses the CBMC tool as a verification backend. However, CRUST ex-
plicitly does not support dynamic trait objects or dynamic dispatch
and is no longer being actively developed.

Prusti [2] is a Rust compiler plugin built on the Viper verification
infrastructure that can verify user-added specifications, as well as
the absence of panics. Like Kani, Prusti leverages MIR type infor-
mation to improve verification results. Prusti has a more expressive
language for proof annotations than Kani, including supporting
loop invariants that allow verification of programs Kani cannot
currently verify. However, Prusti has limited support for unsafe
code and does not support dynamic trait objects (our tests fail with

12https://rust-lang.github.io/dyn-upcasting-coercion-initiative/CHARTER.html

https://rust-lang.github.io/dyn-upcasting-coercion-initiative/CHARTER.html
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compiler errors). A recent extension to Prusti adds additional sup-
port for closures; however, to our knowledge, this extension does
not handle dynamic closures [25].

Crux-MIR is a symbolic execution that similarly targets Rust’s
MIR [10] using Galois’ Crucible verification infrastructure. Crux-
MIR can verify simple cases of dynamic dispatch through &dyn

pointer references. However, the tool fails with unimplemented
for boxed dynamic objects (e.g., Box<dyn T>) and dynamic closure
objects (e.g., &dyn Fn()-> i32).

Facebook’s experimental MIRAI is an abstract interpreter for
MIR [9]. MIRAI explicitly prioritizes a low false-positive rate for
bugs rather than a low false-negative rate, and thus does not claim
to provide sound verification.

LLVM-IR based Rust verification. Several LLVM-based tools have
been extended to better support Rust code. As we showed in Sec-
tion 4.2, the generality of supporting Rust at the LLVM IR level
comes with the downside of being unable to apply Rust-type-level
semantic understanding. However, LLVM-backed solutions tend to
be less dependent on supporting changes to Rust, which currently
evolves more quickly than LLVM.

The SMACK toolchain has been used to verify Rust by using the
existing rustc backend to produce LLVM IR [3]. SMACK’s toolchain
was initially designed to primarily support Clang as a frontend and
thus required changes (primarily to alias analysis) to support Rust
programs. Further, SMACK’s handling of the Box datatype requires
that the box type be Sized, which seems to render the tool unable
to reason about boxed dynamic closures.

Google Research’s Rust Verification Tools (RVT) Project [21]
aimed to build on a range of existing verification tools, from prop-
erty testing to symbolic execution. Their tool supports multiple
symbolic execution engines, each based on LLVM IR. RVT includes
a KLEE [4] backend that can cover our full test suite of cases. How-
ever, KLEE is designed with a focus toward bug finding rather than
unbounded, sound verification. RVT’s SeaHorn backend uses the
SeaHorn Verification Framework [11] and provides sound verifica-
tion, but fails on some boxed closure test cases.

Analyzing virtual calls. Indirect function calls posewell-known prob-
lems for program analysis in general because identifying the code
being invoked entails pointer analysis [16, 18]. Symbolic execution
tools, for example, sometimes resort to requiring user annotations to
handle indirect calls [20, Section 3.4] [17]. In languages with built-in
support for virtual calls, such as object-oriented languages, optimiz-
ing compilers typically attempt devirtualization, opportunistically
replacing indirect calls with direct calls when pointer information is
sufficient, to make programs more analyzable [12, 19]. The function-
pointer restriction technique in this work (Section 3.3) resembles a
form of devirtualization that relies solely on type information from
Rust’s trait system, with the goal of improving model-checking
efficiency and precision.

8 CONCLUSION
For verification of Rust to be deployed in large-scale projects, tools
need to reason about the dynamic trait objects that are pervasive
throughout the Rust standard library. In this paper, we demon-
strated how our model-checking tool, Kani, successfully translates

Rust’s dynamic trait semantics. We show that by targeting Rust at
the Mid-level Intermediate Representation level rather than LLVM-
IR, we can leverage trait-based type information to improve verifica-
tion time up to 15×. Our Firecracker case study highlights how this
semantic understanding of traits unlocked previously intractable
verification results. We encourage the other verification projects to
use and build on our open-source suite of tests for dynamic dispatch,
and we look forward to working with the Rust community to build
an ecosystem where developers can verify functional correctness
of security- and safety-critical Rust programs.
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