
Path Optimization in Stream-Based Overlay Networks

Peter Pietzuch, prp@eecs.harvard.edu

Jeff Shneidman, Jonathan Ledlie, Mema Roussopoulos, Margo Seltzer, Matt Welsh

Systems Research Group – Harvard University Division of Engineering and Applied Sciences

Intel Research, Berkeley – November 2004

Volcano Monitoring

- Logging seismic activity of a volcano (Tungurahua in Ecuador)
 - Sensors (Motes) sample lowfrequency infra-sound
 - Many sensors survey the physical structure → mountain tomography

- Need to get data to users
 - Goals

- Satellite up-link from base station at volcano
- Fuse data from ground sensors and satellites
- Push queries into network
- Collaboration between research institutions

Emergency Medical Care

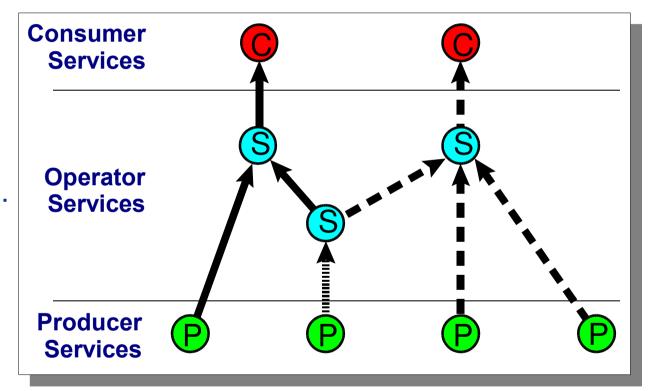
- Sensor support for medical applications
 - Motes attached to patients collect vital sign data (pulse ox, heart rate, EKG, ...)
 - PDAs carried by EMTs receive data and enter field reports

- Ambulance correlates with patient records at hospital
- "Generate a list of the top 10 most critical patients at a disaster site."
- Characteristics
 - Real-time stream data
 - Many heterogeneous data sources
 - Partial network connectivity

Application Features

- Large number of distributed data producers
- In-network, real-time processing of data streams
 - Leverage the resources in the network
 - Aggregation close to data producers
- Multiple applications sharing data producers
- Need for a reusable and efficient Internet infrastructure for distributed data collection and processing
 - Scalable, distributed, fault-tolerant implementation
 - Optimization techniques for efficient resource utilization
 - Fast deployment of novel applications
 - Stream-Based Overlay Network

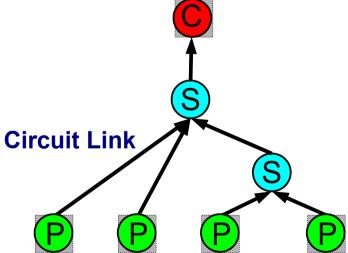
Overview


- Part I: Stream-Based Overlay Networks
 - Circuits
 - Services
 - Hourglass prototype
- Part II: Data Path Optimization
 - Placement Problem
 - Relaxation Placement Algorithm
 - Evaluation
- Conclusions

Part I: Stream-Based Overlay Networks

 Stream data from producers to consumers with in-network processing

Services


- Consumer
 - Apps, users, ...
- Producer
 - Sensor nets, DBs, ...
- Operator
 - Filter, join, aggregation, ...
- Circuits
- Features
 - Overlay network of nodes using the Internet
 - Connection-oriented: applications establish circuits
 - Efficient data transport through overlay network

Circuits

- Data paths in the overlay network
 - Established by applications to satisfy data need
 - Equivalent to logical query expression
 - Trees with a single consumer services as root

Services & circuit links can be shared across circuits

Services

- Generic Service Model
 - No single data model
 - Support relational, semi-structured, binary, ...
 - No fixed set of operators
 - User-defined services for different applications
 - Assumptions about properties of operators
 - Selectivity, aggregation, ...
- Services Classes
 - Pinned Services

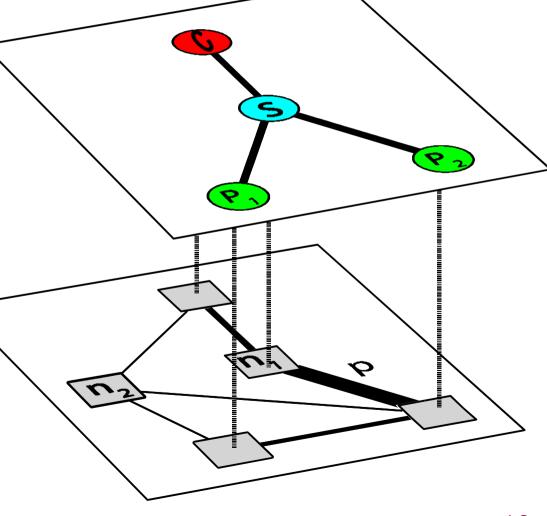
- come with predefined locations at nodes
- e.g. Producer & Consumer services, storage-backed, ...
- Unpinned Services (S)
 - can be instantiated at different locations
 - are placed or unplaced

The Hourglass System

- Prototype implementation of an SBON
 - TinyDB sensor networks as Data Producers
 - Semi-structured data model with XML-defined circuits
 - Deployed on ModelNet, PlanetLab, and the Internet
- Support for disconnected operation
 - Circuits may cross network boundaries
 - Services are part of Service Providers (SPs)
 - Disconnection between SPs is transparent to application
 - Buffer Services are instantiated on demand

Part II: Path Optimization

Where are unpinned services placed in the SBON?


Placements have costs

Optimization problem

Cost functions

Application costs

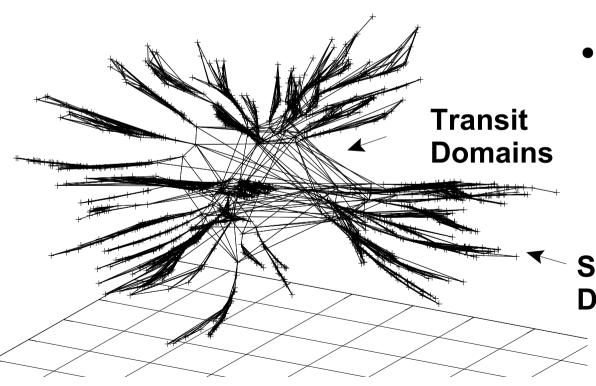
- Path delay in circuit
- Jitter in circuit
- Global costs
 - Network utilization
 - Links, routers, ...
 - Resource contention
 - Node stress
 - Link stress

Placement Problem

- Service placement should reflect underlying physical network topology
 - Bandwidth-Latency (BW-Lat) product for network utilization
 - Amount of traffic in transit in the network
 - Avoid long latency links when possible

∑ BW * Lat

- Search for optimal solution too expensive
 - Traditional optimization approaches exponential in number of services
 - Also require global knowledge of nodes & links
 - Instead, strive for efficient, approximate solution
- Requirements for placement algorithm in SBONs
 - Scalable with decentralized implementation
 - Adaptive to changing network and stream conditions
 - Efficient placement decisions with respect to cost functions


Relaxation Placement

- Latency information crucial for cost of placement
- Solve the problem in a virtual latency space

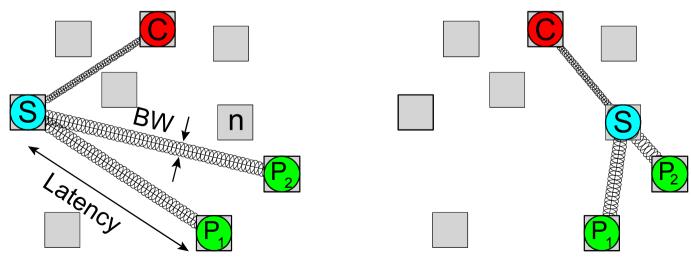
- 1. Calculate placement solution in latency space
 - Use spring relaxation to approximate best placement location in latency space
- 2. Map solution back to physical space
 - Locate physical node closest to computed solution

Latency Space

- Every node has an artificial latency coordinate
- Metric space with distance ≈ communication latency
- Efficient encoding of global topology knowledge

- Scalable implementation (Vivaldi [Dabek04])
 - Adaptive with little probing overhead
 - Good latency prediction

Stub Domains

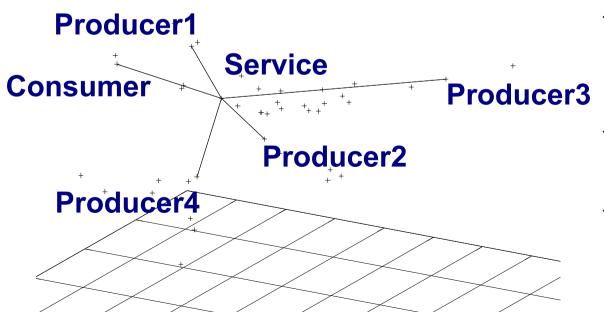

Transit domains at center; stub domains at edges

Spring Relaxation

- Model circuits as a network of springs
 - Spring extension = latency of circuit link Lat
 - Spring constant = bandwidth of circuit link BW
- Minimize network utilization:

$$\Sigma$$
 [BW * Lat]²

- Springs "pull" according to bandwidth usage
- Take selectivity and fan-in of services into account

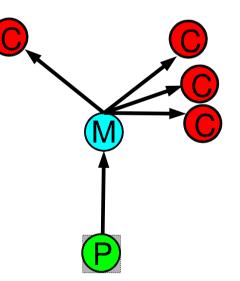


Before relaxation

After relaxation

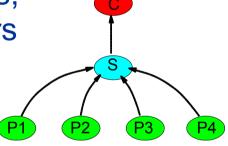
Relaxation Algorithm I

- Each unpinned service executes the Relaxation algorithm
 - Service determines its updated coordinate in relation to its circuit neighbors
 - After convergence, the unpinned service may migrate to a different physical node
- Use DHT to map virtual coord. to closest physical node


- Use Hilbert curves to map 4-d latency coord. to 1-d DHT key
- DHT routes to closest existing latency coord.
- Consider k-closest nodes and find possible placement

Relaxation Algorithm II

- Mapping error from latency to physical space
 - Error is less than 13% for transit-stub and 5% for PL topology of network diameter
- Advantages
 - Decentralized implementation
 - No global state about all nodes or circuits
 - Local knowledge only
 - Little probing overhead for latency information
 - Adaptable to changes in circuit structure and network conditions


Cross-circuit Optimization

- Relaxation placement makes placement decisions involving multiple circuits
 - Consider circuit graph as network of springs
 - Placement decision for a new circuit may influence previous placements
- Simple form of cross-circuit optimization: Multicast (M/C) Services
 - Producers reused among multiple services
 - A circuit analyzer inserts M/C services on demand
 - Place M/C service close to consumers
 - Placed like other services using Relaxation placement

Evaluation

- Experimental Set-up
 - Experiments in discrete-event simulator
 - PlanetLab and Georgia Tech transit-stub topologies
 - 1000 simple circuits with 4 pinned producers,
 1 unpinned service, and 1 pinned consumers
- Evaluation Goals
 - Network utilization (BW-Lat product)
 - Application delay penalty (Delay Stretch)
 - Resource contention (Node stress)

Placement Algorithms

• 7 Placement algorithms in simulator:

Optimal Placement at optimal node

- exhaustive search for optimal solution

Relaxation Placement found by Relaxation algorithm

- centralized implementation

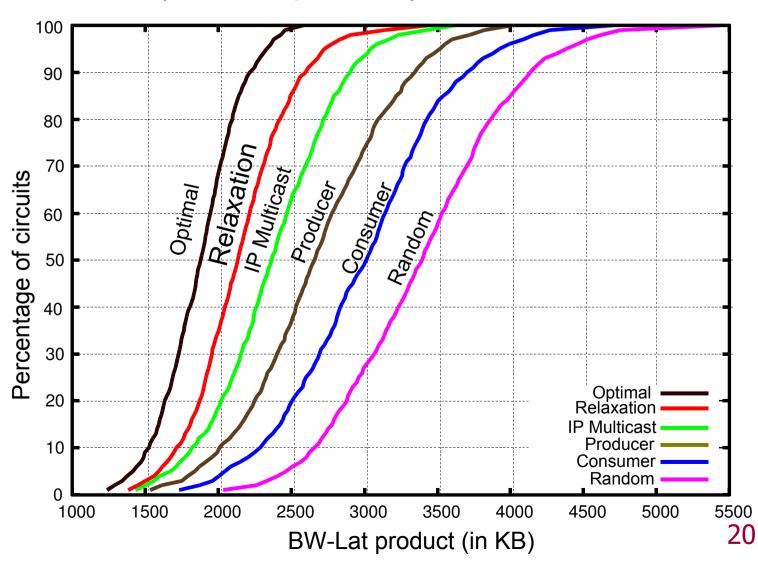
IP Multicast Placement at IP Multicast routers

- requires network support

Producer Placement at producer node

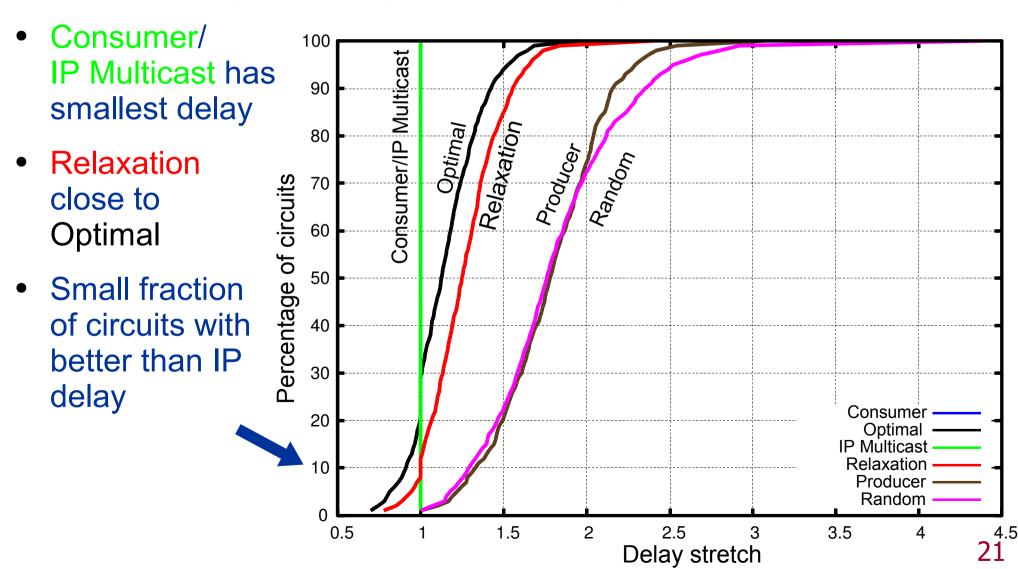
- some stream-processing systems, e.g. Borealis

Consumer Placement at consumer node

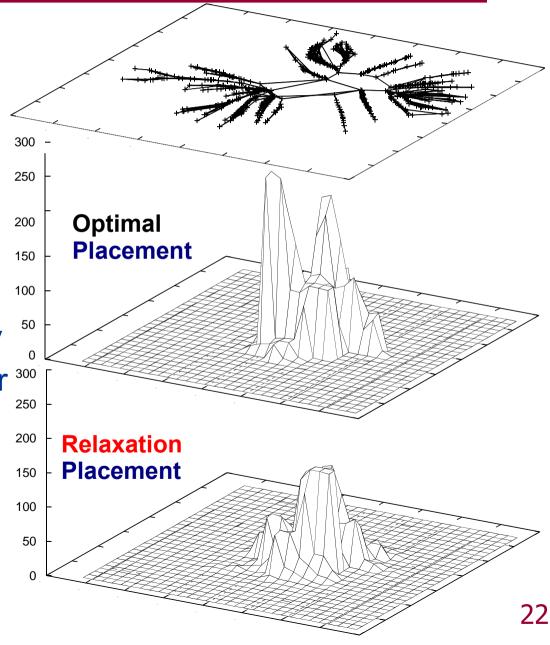

- centralized data warehouse

Random Placement at random node

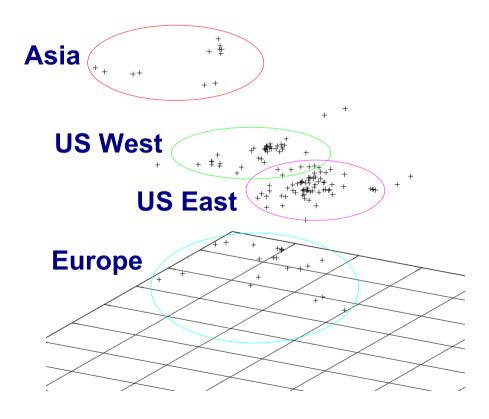
- worst case comparison


Network Utilization

- CDF of traffic in transit (BW-Lat product) for 1000 circuits
- Relaxation close to Optimal
- IP Multicast reduces hops not latency
- Producer better than Consumer

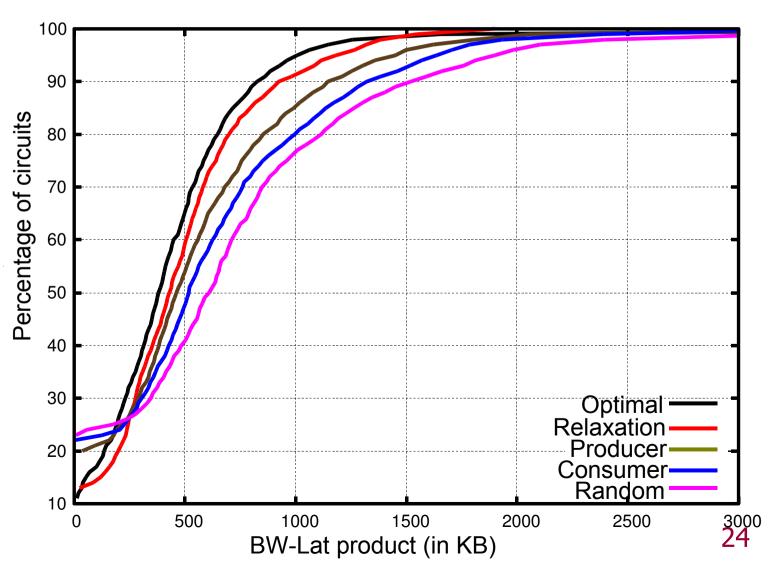

Application Delay Stretch

CDF of delay stretch (ratio of optimal) for 1000 circuits


Resource Contention

- Distribution of service placement
 - Load-balancing?
- Transit-domains more popular for service placement
 - Traffic goes there anyway
 - Enable transit domains for service placement
- Maximum number of placed services
 - Spreading the load
 - "Power of 2 choices"

PlanetLab Results


- Validated transit-stub results with PlanetLab topology
- Used simulator to place circuits off-line with all-pairs ping data
- Deployed circuits with Hourglass for application delay measurements

PlanetLab in latency space

Network Utilization - PlanetLab

- CDF of traffic in transit (BW-Lat product) for 1000 circuits
- Similar results for transit-stub topology
- Small fraction of measurement anomalies in all-pair ping data

Related Work

- Distributed Stream Processing
 - Medusa/Aurora/Borealis (MIT): Stream processing with load management; market-based optimization; networkaware placement [Ahmad04]
 - IrisNet (Intel Research): M/W for sensor apps; hierarchical node organization; semi-structured data model
 - PIER (Berkeley): Distributed database based on DHT
 - Grid (OGSA): Large-scale resource sharing
 - **DistCED** (Univ. of Cambridge): Pattern detection in steams
- Distributed Query Optimization:
 - Mariposa (Berkeley): Economic approach to query opt.
- Sensor Network Programming
 - Cougar (Cornell), TinyDB (Berkeley): relational data model; limited optimization capabilities

Future Work

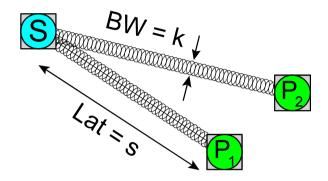
- Fully-decentralized implementation on PlanetLab
 - Adaptable to network dynamics and circuit evaluation
 - Convergence results for distributed relaxation
 - Investigate circuits used by realistic applications
- Explore potential of cross-circuit optimization
 - Large-scale circuit optimization
 - "Traditional" distributed query optimization techniques
 - Service decomposition and service reuse
 - Dynamic circuits
 - Discovery of pinned services
 - Modify pinned services depending on demand

Conclusions

- SBONs enable future sensor applications
 - Service placement is a crucial problem in SBONs
 - Efficient network utilization is important
- Relaxation Placement
 - Spring relaxation technique in latency space
 - Scalable decentralized implementation
 - Supports cross-circuit optimization
- Evaluation
 - Relaxation placement is close to optimal in terms of network utilization
 - Low delay penalty
 - Need for load-balancing mechanisms

Any Questions?

The Hourglass Project


http://www.eecs.harvard.edu/~syrah/hourglass hourglass@eecs.harvard.edu

Peter Pietzuch

http://www.eecs.harvard.edu/~prp prp@eecs.harvard.edu

Backup Slides

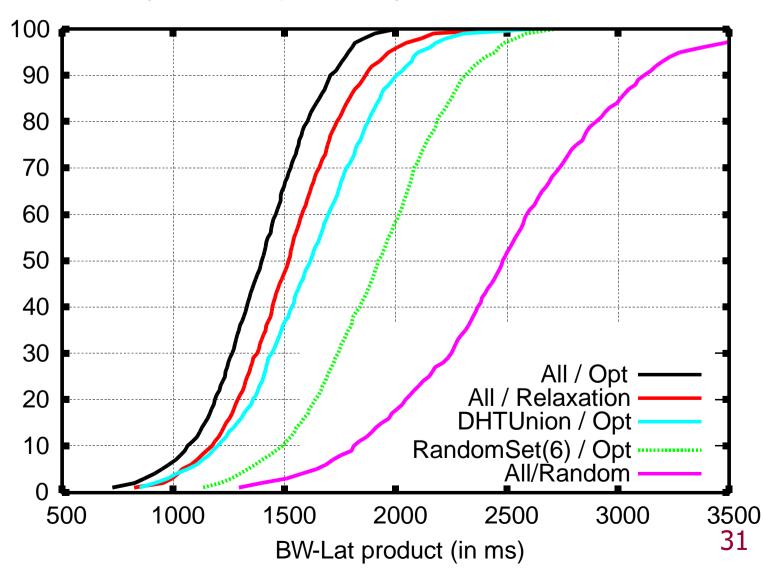
Spring Model

Network of springs tries to minimize potential energy E

$$F = \frac{1}{2} * k * s$$

 where k is the spring constant and s is the spring extension

$$\Sigma E = \Sigma F * s$$
$$= \Sigma \frac{1}{2} * k * s^{2}$$


where E is the potential energy

$$\Sigma$$
 [BW * Lat]²

Cost function for placement

Network Utilization – DHT Placement

- CDF of traffic in transit (BW-Lat product) for 1000 circuits
- DHT picks
 node along the
 DHT routing
 paths
- Low quality of candidate set
- RandomSet considers 6 random nodes

Related Work II

- Distributed Stream Processing
 - Astrolabe (Cornell): Hierarchical attribute aggregation for DS management; Gossiping for faster attribute propagation
 - Grid (OGSA): Large-scale resource sharing
- Distributed Query Optimization: limited amount of distribution
- Service Discovery: DHT-based solutions