
A Cost-Space Approach to Distributed Query
Optimization in Stream Based Overlays

Jeffrey Shneidman, Peter Pietzuch, Matt Welsh, Margo Seltzer and Mema Roussopoulos

Division of Engineering and Applied Sciences
Harvard University, Cambridge, MA, USA

hourglass@eecs.harvard.edu

Abstract— Distributed stream-based applications, such as con-
tinuous query systems, have networkscale and time character-
istics that challenge traditional distributed query optimization.
The optimization sub-problems of plan generation and service
placementshould be integrated to meet these challenges. These
tasks have typically been treated as independent sub-problems
because of the complexity of their integration. We suggestcost
spacesas one way to mitigate this complexity. We further consider
how cost spaces can be used to allow tractable multi-query
optimization.

I. I NTRODUCTION

In the beginning, Codd created the relation and the table [1].
And query optimization was without form, and void. But
researchers moved to address this void, and said, let there
be a query optimizer. And then (when networking came into
its own), there were distributed query optimizers [2], [3]. And
then followed a long period of relative rest.

This stable equilibrium of distributed query optimization
research has been punctuated by recent work in peer to peer
databases [4], continuous query systems [5], [6], and other
stream-based overlay networks [7]. This paper describes the
changes that must occur for distributed query optimization to
work well in a general stream-based overlay network (SBON).

An SBON describes an environment where data is streamed
from one or more producers to one or more consumers,
possibly via a set of services running in-network on additional
capable overlay nodes. This general definition is agnostic
to data model (relational, semi-structured, etc.) and service
model (database operator, application-injected code, etc.). The
distributed optimization problem is similar in every case: the
end-goal is to satisfy user queries, and when given the choice,
to do so in agood way with respect to some optimization
metric.

The SBON environment presents two challenges:The first
challenge is networkscale. Unlike the old database assump-
tion where operator services run at network endpoints, overlay
networks permit services to be placed on capable in-network
nodes.The second challenge istime. This challenge has two
components. First, whereas a typical database query is finite
and short-lived, queries in an SBON can run continuously.
Second, node and network characteristics (such as load and
latency) are dynamic.

These challenges have significant implications for dis-
tributed query optimization. In Section II, we describe how the
two sub-problems ofplan generationand service placement
are affected. While the traditional database approach separates

these problems to reduce each problem’s complexity, it is
known that this separation can yield sub-optimal decisions [8].
This tradeoff is unwarranted in the SBON setting. In Sec-
tion III, we introduce cost spacesas a way to reduce the
complexity of the optimization sub-problems to a point where
integrated plan generation and service placement is possible.
Cost spaces are metric spaces that allow nodes to express their
state by choosing appropriate coordinates. These spaces make
the service placement problem tractable and allow plan genera-
tion to consider a specific set of nodes. We conclude with open
research problems that follow from this integration and call for
new research efforts into large scale query optimization.

II. QUERY OPTIMIZATION IN SBONS

Classic distributed database query optimization has focused
on achieving good solutions to three problems:

Data placementconsiders where to place data so that it may
be efficiently queried in the future.

Plan generation creates a logical plan that contains the
identity and order of services that must be used to answer
a query.

Operator (service) placementconsiders how to place op-
erators efficiently on a set of physical nodes. We refer to
operator placement in an SBON asservice placementsince this
processing code may go beyond the confines of a traditional
database operator.

Some aspects of distributed query optimization are simpli-
fied in the SBON setting. Often an SBON is used to relay
real-time data from a particular data source to a series of
consumers, and no other source can provide this particular
data. For instance, live sensor readings from a volcano [9]
originate at a particular volcano; one cannot move mountains.
Often there is no data placement problem, and we disregard
this issue for the remainder of this paper. A second observation
is that there is no transaction processing in some stream-based
overlay networks. This paper considers systems where data is
never changed and re-published.

A. Plan Generation

Plan generation takes as input a user query and outputs a
logical plan to satisfy that query. The logical plan consists of
one or more data endpoints, possibly connected via services,
to a consumer. In relational databases, the data may be stored
in tables, and example services areJOIN and SELECT. In



these systems, table summary information is used to estimate
costs for performing different service orderings. A plan gen-
erator selects the least cost plan, which often has the effect
of minimizing application response time. Many distributed
optimizers use dynamic programming with pruning or some
other enumeration algorithm to perform plan selection [8].

The SBON model challenges traditional plan generation
in three ways. First, because of long-running stream-based
queries, a bad decision in plan generation means that bad
plans will cause long-term damage to system capacity and
performance. Second, the variable node and network dynamics
mean that over the course of a long-running query, an initial
plan may become invalid (or suboptimal) and require regen-
eration1. Third, long-running queries increase the likelihood
of encountering concurrent plans that can re-use parts of each
others’ plan trees. This is a double-edged sword: the long-
lived nature of queries introduces an optimization opportunity;
however, concurrent plans increase the complexity of the
optimizer as it must process the union of several plans. This
challenge has not been explored in older distributed query
optimizers, which “examine one query at a time in isolation
and form a plan as if it were the only work running in
the system.” [11] The long-lived nature of SBON queries,
combined with ways of limiting the complexity of this problem
(as in Section III-D), make this challenge more compelling.

B. Service Placement

Service placement takes as input a logical plan and outputs
a mapping of each logical service to a physical node in the
network. Traditional optimizers vary in how they assign a
cost to candidate placement decisions and select the least-
cost plan. Kossman gives a good overview of how different
models are used in the placement decision [8]. Again, dynamic
programming with pruning is often used for placement.

Current service placement algorithms are dramatically af-
fected by the SBON assumptions. The scale challenge is the
most obvious change. Distributed databases have previously
treated the network as an opaque transport. With the advent
of the overlay (e.g., PlanetLab [12]), optimizers are now able
to insert application logic into the networking infrastructure.
Whereas previous optimizers had a placement choice ranging
in the tens of nodes, the next generation overlay-aware opti-
mizers have hundreds or thousands of physical node choices.
This is the nail in the coffin for traditional service placement
techniques unless there is substantial guidance on where to
focus the search.

The next two SBON challenges are similar to those observed
in plan generation. First, the changing system dynamics over
the course of a long-running query mean that the initial
placement may become invalid (or suboptimal) and require
regeneration. Second, long-running queries increase the like-
lihood of being able to merge identical services (serving
different queries) into one physical service instance. As in plan

1There has been previous work on regenerating plans due to changing
node conditions [10], but our impression is that this has been viewed as an
optimization research niche. This niche view is probably correct in a short-
lived query, since there is little time to recoup the cost of re-optimization. In
a long-running query, recouping costs is less of an issue.
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Fig. 1. Example of inefficient two-step optimization.The decomposition of
Query Plan1 is less efficient than Plan2 but this becomes apparent only
after service placement.

generation, there has been little work on dynamic query opti-
mization in databases that takes these changes into account.

C. Why Integrate Query Optimization?

Many distributed databases perform plan generation and
service placement as atwo-step optimization[8, page 443].
The idea is to perform plan generation without considering
node or network state. Then, immediately before the plan is
executed, perform the service placement decision taking into
account current network characteristics.

Figure 1 shows an example of an inefficiency that can
be caused by separate plan generation and service placement
steps, even when optimizing a single query. In this example,
the distance between physical nodes corresponds to commu-
nication latency. A four-way join operator is decomposed into
three two-way joins (ServicesS1...3) and then placed in the
SBON. The plan generation phase picks Query Plan1 for the
decomposition, which turns out to be a poorer choice due to
the distribution of ProducersP1...4. Assuming the selectivities
of the two plans were roughly the same, Query Plan2 would
have resulted in a more efficient query placement, in that
the total data latency is lower. However, this only becomes
apparent after examining the network.

Some work in dynamic database query optimization has
attempted to blend the two optimization sub-problems. One
idea for common queries is to pre-calculate and store plans
and sub-plans in the database [13]. At compile time, each plan
is generated with a different set of network assumptions. Then,
when an expected query is issued, the optimizer examines cur-
rent network state and tries to find the pre-computed plan that
best matches current conditions. This approach is limited in
that the optimizer must guess which future node and network
states are relevant and worth pre-calculation. Furthermore, it
is only applicable to “common” anticipated queries where a
plan generation pre-calculation can be performed.

Integration of the two optimization sub-problems would
be ideal. Yet, earlier in this section, we observed how dy-
namic programming in plan generation can be overwhelmed



by concurrent queries, and how service placement may be
inundated both by concurrent queries and with new choices
brought about by increased network scale. We must address
these problems in order to proceed with an integration effort.

III. A C OST-SPACE APPROACH TOINTEGRATED

QUERY OPTIMIZATION

In this section, we propose a novel approach for an inte-
grated query optimizer, which considers the interdependency
of query plan generation and service placement. Our approach
is based on the idea of acost space, which captures service
placement costs in an efficient way (Section III-B). The cost
of service placement can then be used to guide query plan
generation, avoiding consideration of an intractable number
of possible query plans (Section III-C). Finally, pruning
within the cost space reduces the complexity of multi-query
optimization with a large number of concurrently running
queries (Section III-D).

In the following, we will refer to the instantiation of a query
in an SBON as acircuit. A circuit can containunpinned
services, which are services that can be placed, andpinned
services, which have a pre-defined network location.

A. Cost Spaces

A cost spaceis a multi-dimensional metric space that
expresses cost information for service placement decisions.
A point in this space corresponds to a physical node, where
each coordinate component represents an aspect of the cost
of using this node. Costs are eitherscalarsor vectors. CPU
load, memory consumption, and disk capacity are examples of
scalar costs because they are properties of a single node, and
can be represented in one dimension. Communication latency,
communication jitter, and available bandwidth are represented
as vector costs because they capture the relationship between
this node and other nodes in the network. Vector costs usually
require multiple dimensions for accuracy.

A sample cost space (using only vector costs) would be
a pure latency space[14], [15], where the distance between
coordinates is an estimate of communication latency. Even
though communication latency on the Internet violates the
triangulation inequality, it can be shown that such a metric
space can be constructed with only a slight error [16] while
using a small number of dimensions. Vector costs be calculated
in a distributed and iterative nature by constantly refining the
coordinates and correcting for network dynamism [17]. A node
calculates its scalar component using a weighting function
supplied by the deployer of the cost space. The function is
constructed to always be non-negative, where zero represents
an ideal value. As a simple example that could be used to
capture a node’s load, the weighting function could be the
squared function as in Figure 2; a node uses the square of its
current value as its coordinate in the appropriate dimension.

Cost spaces can be used to express trade-offs between
different basic costs. For example, an application may want
to create circuits that minimize latency, subject to a CPU load
constraint. This example is shown in Figure 2. This graph cap-
tures communication latency (x- and y-axes) and CPU load (z-
axis). The points in the space are physical nodes in an SBON
that is run on top of a simulated transit-stub network topology
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Fig. 2. Example of600 nodes in a3-dimensional cost space.Communication
cost is measured along the x- and y-axes and CPU load along the z-axis. The
CPU load dimension uses a squared weighting function to discourage the use
of overloaded nodes, such as nodea.

with 600 nodes. The distance in the x-y plane between two
nodes gives an estimate of the communication latency of the
two nodes. The height on the z-axis is proportional to the
squared CPU load on a node.

The semantics (dimensions, units, and weighting functions)
of a particular cost-space must be known by all nodes in
the SBON. The SBON can support multiple independent
cost spaces, each to suit different classes of applications. In
the remainder of this section, we will show how the circuit
optimizer can use this cost space for query plan generation
and service placement.

B. Service Placement

A cost space can be used to efficiently implement service
placement in an SBON. Each node in the SBON calculates its
own coordinate in the cost space.

The computation is done iteratively to adapt to changes
in the system. The goal of circuit optimization is to find a
placement of services that minimizes the overall cost of the
circuit in the SBON. This physical placement of services is
proceeded by two decision phases:

Virtual Placement. A service placement algorithm is used to
compute the coordinates of the ideal placement locations for
unpinned services in the cost space. Such virtual placement
decisions are computationally inexpensive as they do not
instantiate services.

An algorithm for scalable, decentralized virtual placement
of services in a cost space isRelaxation placement[7]. Relax-
ation placement uses a spring relaxation technique to minimize
the costs and approximate optimal placement locations in a
latency cost space with respect to global network utilization.
It models circuits as springs, such that the spring constant
equals the data rate transfered over the link and the spring
extension derives from the latency. Services are modeled as
massless bodies between springs: Pinned services have a fixed
location, whereas unpinned services can move freely. As a
result, the function minimized by Relaxation placement is
network utilization, expressed as the amount of data in transit
in the network. The iterative nature of Relaxation placement
allows it to adapt to changing network and circuit conditions.
The details of Relaxation placement are described in previous
work [7] and are outside the scope of this paper. Other virtual
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Fig. 3. Example of service placement in a cost space.Virtual placement
of a single unpinned service is performed in the vector dimensions, and the
coordinate marked with the star is chosen. Physical mapping attempts to find
the node closest to this starred coordinate, and finds nodeN2. Note that
while N1 is closer in latency space, its high load makes the node far away
when the entire cost space coordinate is considered.

placement algorithms could be based on a centroid calculation
or a gradient descent [18] within the cost space.

The virtual placement algorithm operates only over the
vector cost dimensions, since the ideal scalar components
will all be zero. This is illustrated in Figure 3, which shows
placement using the same type of cost space as in Figure 2.
Virtual placement is performed in the x-y plane since node
load does not affect the placement decision. Scalar dimensions
are used in the next phase that performs the physical mapping.

Physical Mapping.Any algorithm that uses a cost space to ob-
tain a good service placement location is faced with amapping
problem. The basic problem solved in physical mapping is to
find a physical node that is close to the coordinate calculated
in the virtual placement. This is a pragmatic interpretation of
the idealistic virtual placement; a placement coordinate from
the cost space must be mapped back to a physical node before
the actual placement of the service can be carried out.

One way to implement a mapping from cost space coor-
dinates to physical nodes is to use a decentralized catalog,
such as a distributed hash table (DHT) [19], that returns nodes
that are closest to a given coordinate. This requires each node
to stores its coordinates in the DHT after transforming its
multi-dimensional coordinate to a one-dimensional hash key
with a Hilbert curve [20], [21]. Due to the properties of DHT
routing [22], a look-up of a coordinate in the DHT then returns
the node with the closest existing coordinate in the system.

The mapping from cost space coordinates to physical nodes
introduces amapping error if there are no physical nodes
close to a desired coordinate. For example, in Figure 3, the
virtual placement chooses the star as the best coordinate for
the single unpinned service. Ideally, a physical node with zero
load would be present at the star’s coordinate. However, the
physical mapping finds the closest node to beN2, introducing
some error. The magnitude of the mapping error depends on
the dimensionality of the cost space and the distribution of
physical nodes within that cost space. However, experiments
have shown that for realistic topologies and latency cost spaces
this error remains small [7].

C. Plan Generation with Service Placement

As explained in Section II-C, integrating plan generation
and service placement improves the efficiency of query opti-

mization in an SBON. Plan generation and service placement
can be integrated in the following manner: When a query is
introduced into the system by an application, any node in the
network performs afull circuit optimization. As in traditional
database optimization, a set of candidate plans is created. But
in the integrated approach, each plan is virtually placed and
physically mapped using the desired cost space. This yields
exactly one candidate circuit per plan, with the cost of the
circuit representing the current node and network state. The
cheapest of these candidate circuits is selected as the circuit
and physically placed.

Over time, as network dynamics change, each node that
hosts part of a circuit is capable ofre-optimization. This is
a local procedure, where a node can re-run placement and
mapping for any service that it hosts. The result may be to
migrate the service to a cooperating node so that the best
nodes to host a service are consistently used. As part of re-
optimization, a node can perform limited plan re-writing as
long as it is running all affected services. This could involve
the reordering of services, the decomposition of existing
services into sub-services to reduce load, or the recomposition
of services to reduce network communication.

But it is also possible that a stronger form of re-optimization
is required. For instance, the selectivity estimates used to favor
one plan over another may change as a circuit matures. In this
scenario, a node can trigger the full circuit optimization while
the original circuit is still running. If warranted, a new parallel
circuit is deployed, cancelling the original less ideal circuit.

Service placement using a cost space provides a technique
to reduce the complexity of service placement. By reducing
this complexity, a query optimizer can consider thecombined
cost of a query plan and the best service placement for this
plan, selecting the plan and placement that have the smallest
total cost.

D. Multi-Query Optimization

To perform multi-query optimization, the state space that an
integrated query optimizer has to consider is much larger. If
there are many concurrent queries in the SBON, a new query
can potentially affect any of the existing queries byreusing
or transformingexisting services. One way to deal with this
enlarged search space of an integrated optimization approach is
to use the cost space to prune the search. Standard distributed
query optimization techniques can then rewrite the query plans
of individual queries and perform multi-query optimization.
This idea is based on the observation that query plans that
involve operators hosted on physical nodes that are far away
in the cost space are less likely to be useful and thus can be
ignored by the optimizer. For example, if a circuit only has
pinned services in the US, it is unlikely that reusing existing
services in Japan will minimize overall cost for the circuit.

When a new circuit is added to the SBON, the cost space
can be used for pruning multi-query optimization decisions in
different ways. A simple idea is to consider a smallregion in
the cost space. The optimizer will then process circuits that fall
within this region. For instance, for each unpinned service in a
circuit, one implementation could use the Hilbert DHT to look
up the closestn nodes that may already be running the same
service. This effectively searches around the hyper-sphere
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Fig. 4. Example of multi-query optimization in a cost space.The example
shows a multi-query optimizer only considering services within a radiusr of
a new service in a2-dimensional latency cost space.

surrounding each unpinned service. Other implementations
should be possible; this seems like an interesting area for
future research.

Figure 4 is an example of an integrated optimizer that
performs multi-query optimization for all circuits that fall
within a radius r of a new serviceS in a 2-dimensional
cost space. In this figure, a new circuit with ConsumerC
is added to the SBON in a2-dimensional cost space. First,
the query optimizer chooses a query plan for the new circuit
and calculates the desired placement coordinate for the new
ServiceS in the cost space. Next, it considers multi-query
plans involving all circuits that fall within a circle with
radius r, namely the circuit with ConsumerC3. Note that
the circuits with ConsumersC1 and C2 are outside of this
region of the cost space and are therefore ignored, reducing
the complexity of the multi-query optimization decisions. A
cheaper query plan and service placement is found by reusing
serviceS3, which leads to the final query plan that is created
in the SBON.

IV. RESEARCHCHALLENGES

Stream-based overlay networks require the integration of
query plan generation and service placement in order to avoid
inefficient circuit instantiation. We believe that the abstrac-
tion of cost spaces has the potential to enhance large-scale
query optimization with new scalable plan generation and
service placement techniques. Such techniques are necessary
for SBONs because enumeration-based query optimization
performs poorly in a large-scale system. Cost spaces help per-
form targeted pruning in such a way that placement decisions
with a high cost are discarded automatically. Multi-query plan
optimization can then focus on regions in the cost space that
are attractive from a service placement perspective.

However, there are open research challenges that must
be addressed. While we have experimented with latency
cost spaces and relaxation-based placement in simulation in
previous work [7], there is a need to investigate how the
dynamic behavior of the network and the data streams will
affect circuit optimization in practice. In addition, different,

higher-dimensional cost spaces will require the design of novel
decentralized implementations of cost spaces and scalable
query optimization algorithms that operate within these spaces.
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