
Peering through the Dark: An Owl’s View of Inter-job
Dependencies and Jobs’ Impact in Shared Clusters

Andrew Chung
Carnegie Mellon University

Carlo Curino
Microsoft

Subru Krishnan
Microsoft

Konstantinos Karanasos
Microsoft

Panagiotis Garefalakis
Imperial College London

Gregory R. Ganger
Carnegie Mellon University

Abstract
Shared multi-tenant infrastructures have enabled com-

panies to consolidate workloads and data, increasing data-
sharing and cross-organizational re-use of job outputs. This
same resource- and work-sharing has also increased the risk
of missed deadlines and diverging priorities as recurring
jobs and workflows developed by different teams evolve
independently. To prevent incidental business disruptions,
identifying and managing job dependencies with clarity be-
comes increasingly important. Owl is a cluster log analysis
and visualization tool that (i) extracts and visualizes job de-
pendencies derived from historical job telemetry and data
provenance data sets, and (ii) introduces a novel job valuation
algorithm estimating the impact of a job on dependent users
and jobs. This demonstration showcases Owl’s features that
can help users identify critical job dependencies and quantify
job importance based on jobs’ impact.
CCS Concepts

• Computer systems organization→ Cloud comput-
ing; • Software and its engineering → Scheduling.
Keywords

cloud computing; cluster scheduling
ACM Reference Format:
AndrewChung, Carlo Curino, Subru Krishnan, Konstantinos Karana-
sos, Panagiotis Garefalakis, and Gregory R. Ganger. 2019. Peering
through the Dark: An Owl’s View of Inter-job Dependencies and
Jobs’ Impact in Shared Clusters. In 2019 International Conference
on Management of Data (SIGMOD ’19), June 30-July 5, 2019, Am-
sterdam, Netherlands. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3299869.3320239

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00
https://doi.org/10.1145/3299869.3320239

1 Introduction
Large data-driven companies such as Microsoft operate

complex, unified data lakes to promote data sharing and to
minimize data-access barriers. At Microsoft, the internal Cos-
mos infrastructure consists of large clusters with tens of thou-
sands of nodes each, running more than 500 thousand jobs
daily, many of which consume data across organizational
boundaries [4]. In such shared infrastructures, the vast ma-
jority of the data are processed by recurring workflows, each
of which consists of a set of one or more inter-dependent
jobs typically encapsulating a logical business task. The loose
boundaries of data lakes, and thewidely shared nature of data
within, hastens the need for more principled management
of job and data dependencies.
In companies with many users and sizable shared data

repositories, job owners are seldom aware of who consumes
their jobs’ outputs, as their knowledge of job dependencies is
often limited by their scope of business interactions and con-
tracts. At the same time, seemingly harmless modifications
to upstream jobs (e.g., submission schedule, priority, and out-
put schema) can produce a ripple-effect on downstream jobs,
interrupting chains of inter-dependent jobs and workflows
and causing businesses significant amounts of damage. Such
obscure job dependencies often require co-dependent teams
to establish carefully negotiated service level agreements, a
counter-productive process towards the goal of a universal
data lake.
This demo showcases Owl, an end-to-end system that

extracts, analyzes, and visualizes job dependencies from hun-
dreds of terabytes of job telemetry and data provenance logs
generated by Microsoft’s Cosmos clusters daily. We will walk
attendees throughOwl’s job analysis workflow (§2) and show
how Owl can help solve the obscured dependency problem:
(1) Owl exposes job dependencies.Analyzing provenance
data, Owl reveals job dependencies within-and-across work-
flows (§3.2) that are otherwise hidden in popular workflow
visualizers [1, 2]. Owl also visualizes recurring job dependen-
cies (§3.3), enabling users to explore dependencymetrics (e.g.,
time-to-dependency, number of priority inversions) between
frequently dependent jobs and use these metrics to fine-tune
job hyper-parameters (e.g., priority, resources allocated).

https://doi.org/10.1145/3299869.3320239
https://doi.org/10.1145/3299869.3320239
https://doi.org/10.1145/3299869.3320239

(2) Owl evaluates jobs based on job impact. The poten-
tial of jobs to disrupt subsequent processes led us to de-
velop a concept of job importance based on a job’s historical
downstream dependencies. Using a novel algorithm, Owl
quantifies a job’s potential downstream impact (§3.4) in two
dimensions: (1) work impact measures a job’s effect on other
jobs and (2) user impact measures its effect on cluster users.
While other systems have tackled the woes of managing
the sharing of large amounts of data from the perspectives
of data curation, discovery, and provenance [3, 5, 6, 8], to
the best of our knowledge, Owl is the first to perform job
valuation by combining job telemetry with data provenance.

With a clear view of job dependencies and quantified mea-
sures of job downstream impact, users can optimize their
jobs with a better understanding of the consequences of
their modifications, while avoiding the disruption of “valu-
able” jobs. We conclude our demo by briefly discussing how
dependency-driven job importance can be used to make job
scheduling more efficient (§4).
2 Owl workflow

This section provides a brief overview of Owl’s Cosmos job
data analysis workflow. To extract job data, Owl relies on two
external components: (i) ProvMap provides single-hop file-
level provenance on Cosmos jobs in the form of the sets of
files consumed and produced by a job, and (ii) JobRepository
provides job-level telemetry such as run time, CPU-hours,
and data read/written.

Owl ingests file provenance from ProvMap and generates
single-hop job-to-job dependency relations using the last-
writer-wins policy1. Then, it analyzes logs from JobReposi-
tory to produce high-level job metadata (e.g., job recurrence
statistics andworkflow specifications). Using both single-hop
job dependencies and high-level job metadata, Owl infers
both workflow (§3.2) and recurring dependencies (§3.3).
Single-hop job dependencies are also used to iteratively

construct the job dependency graph. The graph, along with
processed job metadata, is used to evaluate job importance
based on the downstream impact (§3.4).
Finally, output generated is exported to a SQL database

for consumption by the front end. Intermediate output of all
steps above are written to Cosmos’s distributed file system.
3 Owl features
This section describes features that demo attendees will

be able to experience when interacting with Owl.
3.1 Background: representing dependency

Job dependencies can be represented as aweighted directed
acyclic graph (WDAG), where each vertex is an instance of
a job and each edge represents data-flow between a pair of

1Job A depends on B if A takes f , an output of B , as input. If both B and C
produce f , A depends on the job that last wrote to f before its start time.

job instances (where data is generated by the source and
consumed by the target vertex). The weight of an edge rep-
resents the reliance of a target job on a source job, and is
determined by a flexible weighting scheme. We use the equal
weighting scheme for our demo, where each source job is
viewed as of equal importance to a downstream target job.
In other words, if a job depends on N other jobs, it would
have N incoming edges, each weighted 1/N .
3.2 Workflow dependencies
Motivation. Users often submit workflows, or sets of inter-
dependent jobs, to complete complex business tasks. Al-
though these business tasks might similarly be achievable
with a single monolithic job, breaking the job into smaller
component jobs allows for improved code reusability, man-
ageability, and debuggability. These workflows are usually
managed by automated time-based job scheduling systems.

In a large organization like Microsoft, it is virtually impos-
sible for users to recognize all consumers of a job’s outputs.
Debugging workflows can therefore be a daunting task, as
workflows can include numerous job dependencies across
multiple workflows, each owned by a different team. The
lack of awareness of dependent jobs external to a workflow
can lead to job disruptions. For example, since a workflow
owner often only cares about the end-result of their work-
flow (i.e., when their business task completes), intermediate
jobs can be altered without warning as long as the pipeline
completes end-to-end. These seemingly harmless modifica-
tions can potentially cause external job failures unbeknownst
to the workflow owner due to inconspicuous inter-workflow
dependencies. Owl’s workflow view clarifies dependencies
within-and-across workflows.
Visual features. Owl’s workflow graph view allows users
to browse important properties of their workflows using an
interactive graph (Fig. 1). Graph vertices (workflow jobs) can
be resized proportionally to a selected job attribute to help
users identify outliers or anomalies. For instance, a user can
size vertices with respect to job runtime to identify execution
bottlenecks or with respect to CPU-time utilized to analyze
resource budget consumption. A standard Gantt chart shows
users when each workflow job is submitted and how long it
runs for during the workflow’s lifetime.
The inter-workflow dependency graph allows users to dis-

cover dependencies across workflows. With the graph, users
can easily identify owners and properties of upstream and
downstream workflows, as well as pinpoint problematic
cross-workflow job dependencies.

The workflow diff utility enables side-by-side comparison
between two executions of the same recurring workflow
using interactive graphs. It allows users to effectively identify
anomalies in workflow structures, such as when a workflow
instance executes more jobs than usual.

Figure 1: Workflow graph Shows the job dependency structure
within a workflow. Allows users to identify important jobs by auto-
sizing job vertices with respect to job execution attributes such as
CPU-time (depicted).

3.3 Recurring job dependencies
Motivation. Recurring jobs, or jobs that are repeatedly sub-
mitted over time to analyze fresh data, make up the ma-
jority (~60%) of CPU-time utilized in Microsoft’s Cosmos
clusters [7]. When recurring jobs depend on each other, a
recurring dependency is introduced and an implicit contract
is formed between the pair of jobs. Breaking the contract
in any way can potentially lead to service disruption down-
stream. It is thus in a job owner’s interest to understand
characteristics of upstream recurring jobs and be aware of
recurring jobs consuming the job’s output.
Visual features. Aside from showing basic recurring job
attributes (e.g., periodicity and distribution of job execution
properties), Owl’s recurring jobs view features a recurring
dependency graph (Fig. 2) that allows users to navigate and
analyze recurring dependencies and their statistics (also dis-
played in an interactive distribution chart), both upstream
and downstream.
With the dependency graph and statistics, users will be

able to discern important dependencies. For example, us-
ing the time-to-dependency statistic, users will be able to
see which upstream job their recurring job is frequently
waiting on and get a sense of their job’s deadline slack with
respect to the submission time of downstream jobs. Using
the percent-consumed statistic, determined by the number of
job instances consumed by a recurring downstream job over
the total number of job instances completed, users can get a
sense of which jobs upstream are critical to their job as well
as which jobs downstream their job is critical to.
3.4 Job impact
Motivation. Modifying job properties (e.g., output schema)
without considering job dependencies can cause a ripple ef-
fect downstream, leading to job delays or even failures. As
companies move towards universal data lakes that promote
heavy data sharing, altering jobs without breaking down-
stream dependencies becomes a difficult task.While avoiding
job disruption is always preferred, in a production setting it
is critical, as job failures can affect business continuity.

Figure 2:Recurring Job dependency graphDisplays the target
recurring job (center) and its upstream (left) and downstream (right)
recurring jobs. Hovering over an upstream/downstream link shows
statistics of the dependency.

To provide users a sense of how important a job is, in
terms of its potential effect on downstream operations, we
introduce the job impact score, derived from historical job
dependencies and telemetry logs. The job impact score allows
users to quickly discern how many downstream operations
their job affects, as well as which downstream operation, if
affected, will lead to the most potential operation disruption
further downstream.

There are two main facets to our job impact score: (1) the
work impact facet measures the impact of a job on down-
stream jobs in terms of historical CPU-time blocked (i.e.,
computation-hours that cannot proceed due to the upstream
job not completing by the submission time of the down-
stream job). (2) The user impact facet measures the impact of
a job on users in terms of the historical number of downloads
blocked (i.e., file views that cannot happen due to the up-
stream job failing to produce its output(s)). The remainder of
the subsection briefly walks the reader through our scoring
methodology and how Owl visualizes historical job impact.
Methodology: evaluating job impact.Owl presents a novel
method for quantifying different facets of job importance
fairly using jobs’ historical downstream dependencies. Each
job j starts out with a base score kj . The base score corre-
sponds to a job run statistic — for example, the statistic used
to compute work impact is CPU-time while the statistic used
to compute user impact is number of downloads. Other statis-
tics, such as bytes read/written, can easily be incorporated.
Downstream jobs contribute scores upstream, where the

amount of contribution a downstream job makes to an up-
stream job is determined by the edges on the path(s) between
the jobs and by the base score of the downstream job.

The impact score2 of a job j can be summarized as follows:
score (j) =

∑
d ∈Dj

min(1,
∑

p∈P(j,d)

∏
e ∈p

we) ∗ kd + kj , (1)

2Only deduping and summing the base scores of downstream jobs [8] is
inflexible and disproportionately promotes jobs with high degrees of fan-in.

Figure 3: Job utility function graph Shows the value (score) of
a job as a function of time-from-submission. The score displayed
is normalized to the score of the most valuable job in the hier-
archical queue. The red line displays the utility function of the
user-selected job, while the gray lines represent utility functions of
other instances of the same recurring job. The blue line sketches
the average score over time of the recurring job.

where Dj represents all downstream jobs of j (single-hop
or otherwise), P(j,d) represents all paths from j to d , we
represents the weight of a directed edge e on the path p, and
kd and kj represent the base scores of d and j, respectively.
Methodology: discovering dependencies.Computing the
job impact score (Eq. 1) requires discovering the transitive
closure of each job in the job dependency WDAG while
maintaining edge weights along the way. We use an iter-
ative bulk-synchronous-parallel algorithm to compute the
transitive closures.

Our algorithm starts out with single-hop job dependencies
provided by ProvMap. In each iteration, each vertex main-
tains a set of frontier vertices, denoting its set of furthest
“reachable” vertices in the iteration, and a set of base vertices,
corresponding to its set of reachable vertices that are not in
the frontier. Each vertex then expands its reach by 2x hops
by querying its frontier vertices for all of their reachable
vertices and updating its frontier and base sets correspond-
ingly. With the algorithm, a job would start out knowing its
dependencies directly downstream. It would then discover
dependencies two hops downstream in the first iteration,
four hops downstream in the second iteration, and so on.

The algorithm proceeds until no new vertices are discov-
ered in the frontier of any vertex, and can be shown to con-
verge in O (loд(diameter)) iterations. We deploy our algo-
rithm in Cosmos and run it with 2k parallel tasks, converging
in 10 iterations over a month of cluster data.
Visual features. The job view, aside from providing a sum-
mary of job statistics, features the job impact view.
Job impact is visualized in two graphs. (1) The job utility

function graph (Fig. 3) allows users to get a better sense of the
urgency of their jobs. Each drop in score on the red/gray lines
in the figure corresponds to the submission of a downstream
dependent job relative to the submission time of the selected

Figure 4: Interactive Sankey graph Shows how downstream
jobs contribute value upstream. Each vertex is a job, with the height
of the vertex representing relative job value. Hovering over a job
displays its name and value The root job (left) represents the user-
selected job. Clicking on leaf jobs (right) expands the graph further
downstream.

job. The magnitude of each drop corresponds to the value
of the submitted downstream job. Naturally, users would
want their jobs to complete before a downstream dependent
job with high value is submitted, hence enabling users to
infer a “deadline” for their jobs. (2) The Sankey graph (Fig. 4)
allows users to quickly identify important downstream de-
pendencies. The graph shows how value flows through job
dependencies, where the height of a vertex represents the
importance of a job, while the width of a flow between two
vertices measures how much value a downstream job con-
tributes upstream. For both graphs, users can select between
our two facets of job impact: work impact, which is measured
in CPU-hours, and user impact, which is measured in output
downloads by users.
4 Future work

Today,many systems schedule jobs based on user-provided
priority metrics without consideration of inter-job depen-
dencies and how to most effectively complete jobs that users
care the most about. Squinting a bit, we can see how the Owl
front end allows users to make these prioritizations manually,
via adjustments to job hyper-parameters. An intuitive direc-
tion for our future work is therefore to improve our current
dependency-based job valuation scheme and to incorporate
it in real job scheduling systems — driving these systems
toward an automated, data-driven prioritization scheme.
References
[1] 2019. Apache Airflow. https://airflow.apache.org/.
[2] 2019. Luigi. https://github.com/spotify/luigi.
[3] A. Bhardwaj et al. 2015. Datahub: Collaborative data science & dataset

version management at scale. In CIDR.
[4] C. Curino et al. 2019. Hydra: a federated resource manager for data-

center scale analytics. In NSDI.
[5] A. Halevy et al. 2016. Goods: Organizing Google’s datasets. In SIGMOD.
[6] J. M. Hellerstein et al. 2017. Ground: A Data Context Service. In CIDR.
[7] S. A. Jyothi et al. 2016. Morpheus: Towards Automated SLOs for Enter-

prise Clusters. In OSDI.
[8] R. Mavlyutov et al. 2017. Dependency-Driven Analytics: A Compass

for Uncharted Data Oceans. In CIDR.

https://airflow.apache.org/
https://github.com/spotify/luigi

	Abstract
	1 Introduction
	2 Owl workflow
	3 Owl features
	3.1 Background: representing dependency
	3.2 Workflow dependencies
	3.3 Recurring job dependencies
	3.4 Job impact

	4 Future work
	References

