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Abstract—In this paper we describe the design and imple-
mentation of ACaZoo1, a key-value store that combines strong
consistency with high performance and high availability. ACaZoo
supports the popular column-oriented data model of Apache
Cassandra and HBase. It implements strongly-consistent data
replication using primary-backup atomic broadcast of a write-
ahead log, which records data mutations to a Log-structured
Merge Tree (LSM-Tree). ACaZoo scales by horizontally partition-
ing the key space via consistent primary-key hashing on available
replica groups (RGs). LSM-Tree compactions can hamper perfor-
mance, especially when they take place at RG primaries. ACaZoo
addresses this problem by changing RG leadership prior to heavy
compactions, a method that can improve throughput by up to
40% in write-intensive workloads. We evaluate ACaZoo using
the Yahoo Cloud Serving Benchmark (YCSB) and compare it
to Oracle’s NoSQL Database and to Cassandra providing serial
consistency via an extension of the Paxos algorithm.

I. INTRODUCTION

The ability to perform large-scale data analytics over huge
data sets has in the past decade proved to be a competitive
advantage in a wide range of industries (retail, telecom, de-
fence, etc.). In response to this trend, the research community
and the IT industry have proposed a number of platforms to
facilitate large-scale data analytics. Such platforms include a
new class of databases, often referred to as NoSQL data stores,
which trade the expressive power and strong semantics of long
established SQL databases for the specialization, scalability,
high availability, and often relaxed consistency of their simpler
designs.

Companies such as Amazon [1] and Google [2] and open-
source communities such as Apache [3] have adopted and
advanced this trend. Many of these systems achieve avail-
ability and fault-tolerance through data replication. Google’s
BigTable [2] is an early approach that helped define the space
of NoSQL key-value data stores. Amazon’s Dynamo [1] is
another approach that offers an eventually consistent repli-
cation mechanism with tunable consistency levels. Dynamo’s
open-source variants Cassandra [3] and Voldemort [4] combine
Dynamo’s consistency mechanisms with a BigTable-like data
schema. These systems use consistent hashing to ensure a good
distribution of key ranges (data partitions, or shards) to storage
nodes.

Eventual consistency works well for applications that have
relaxed semantics (such as maintaining customer carts in

1ACaZoo combines the names of the two systems it derives from: Apache
Cassandra and Apache ZooKeeper.

online stores [1]) but is not an option for a broad spectrum of
applications that require strong consistency. When embarking
on the ACaZoo project we decided to target strongly-consistent
sharded data-intensive applications, a large and growing class
of applications. One of our design goals for ACaZoo was to use
a standard data model and cross-platform API. We thus opted
for the Apache Cassandra/HBase column-oriented data model
and the Cassandra Thrift-based API. Another design goal was
to use a consistent-hashing based scheme for shard partitioning
due to its simple implementation and lack of a centralized
metadata service. Finally, we wanted to leverage a Log-
structured Merge (LSM)-Tree [5] based storage backend due
to its benefits over B+-tree organized schemes in organizing
local storage, combined with a consistent replication scheme.

LSM-Trees is a particularly attractive indexing scheme
used in a variety of systems (Bigtable [2], HBase [6], Cas-
sandra [3], Hyperdex [7], PNUTS [8], etc.). In ACaZoo we
decided to combine LSM-Trees with a strongly-consistent
primary-backup (PB) scheme (ZAB [9], also found at the core
of Apache ZooKeeper). A well known limitation of primary-
backup schemes however is the requirement to go through a
single master of the replica group (RG) for both read and
write operations. Besides being a scalability limitation (which
can be addressed by sharding over several RGs), performance
can be hampered at times by periodic background activity
at the master. Implementations of LSM-Trees are prone to
such a challenge, especially under write-intensive workloads,
as compaction operations aiming to merge data files into a
smaller set drain server CPU and I/O resources.

In this paper we propose a solution to this problem that
leverages the fact that compaction schedules of the nodes in
a RG usually have little overlap (we experimentally validated
this claim but could also enforce it if needed). Our solution
ensures that the RG master is never a node that undergoes
significant compaction activity. We achieve this by forcing
a reconfiguration of an RG when the master is about to
start a heavy compaction. Finally our solution ensures that
the impact of reconfigurations on overall performance is low.
This is achieved by rapidly propagating the change to clients,
piggybacked as responses to standard RPCs. Our experiments
show that compaction activity at the master hurts performance
and that compaction-aware RG reconfiguration policies can
lead to a significant performance improvement.

In ACaZoo we also apply an orthogonal optimization,
client-coordination of I/O requests, as a means of reducing
response time and relieving servers from forwarding I/O traffic.



This method has been investigated and has been shown to
provide benefits in previous systems (Amazon Dynamo [1] and
Petal [10] are but a few of them). The drawback of this scheme
is the need to rapidly update a large and potentially dynamic
client population. Configuration services such as ZooKeeper
and Chubby can fill this need, operating in either pull (clients
call into the service) or push (service notifies clients) mode.

Our key contributions in this paper are:

• A high-performance data replication primitive com-
bining the ZAB [11] protocol with a single-node
implementation of LSM-Trees [5]; while in principle
similar to previous data replication approaches such as
SMARTER [12] and BookKeeper [13], ACaZoo com-
bines log replication with checkpointing using LSM-
Trees [5] and addresses the associated challenges.

• A novel technique that addresses the impact of LSM-
Tree compactions on write performance by forcing
reconfigurations of RGs, changing leadership prior to
heavy compactions at the master. Our experiments
show that this technique can improve throughput by
up to 40% in write-intensive workloads.

The rest of the paper is organized as follows: In Section II
we relate ACaZoo to other work in the field. In Section III
we describe the overall design and in Section IV we provide
details of our implementation. In Section V we present the
results of our system evaluation and in Section VI directions of
ongoing and future work. Finally in section VII we conclude.

II. RELATED WORK

Our system is related to several existing distributed NoSQL
key-vale stores [1]–[3] implementing a wide range of seman-
tics, some of them using the Paxos algorithm [14] as a building
block [10], [15], [16]. Most NoSQL systems rely on some form
of relaxed consistency to maintain data replicas and reserve
Paxos to the implementation of a global state module [10],
[16] for storing infrequently updated configuration metadata
or to provide a distributed lock service [15]. Exposing storage
metadata information to clients has been proposed in the past
[1], [10], [17], although the scalability of updates to that state
has been a challenge.

There have recently been several approaches to high per-
formance replication within a local area network environ-
ment (a datacenter). SMARTER [12] implements a highly-
available data store using an optimized Paxos-based replicated
state machine and has demonstrated performance close to
hardware limits and 12%-69% better than primary-backup
versions. SMARTER replicates a periodically-checkpointed
stream store whereas ACaZoo’s storage backend and check-
pointing mechanism is based on Cassandra’s implementation
of LSM Trees [5]. Cassandra recently (as of version 2.0) im-
plemented a linearizable consistency mode using an extension
of the Paxos protocol to reach consensus at each insert or
update request [18]. As is validated by our experiments, this
implementation (termed Cassandra Serial) incurs a significant
performance penalty in write-intensive workloads.

A recent work that proposes explicit replication of LSM-
Trees is Rose (Sears et al. [19]). Rose shares our goal of lever-
aging LSM-Trees’ superior write performance in a replication

context; they however focus more on the benefits of data com-
pression and less on the performance impacts of compaction.
Google’s BigTable can be credited with bringing LSM-Trees
to the forefront since their inception in 1996 [5] and Apache
HBase for contributing an open source implementation, in both
cases over a distributed replicated file system. While similar in
principle, ACaZoo differs from these two systems in its explicit
management of replication as opposed to implementing a serial
LSM-Tree and relying on an underlying layer for replication.

Several systems have experimented with sharding and
replication over open-source storage engines such as MySQL,
including Google’s F1 [20], LinkedIn’s Espresso [21], and
Facebook’s TAO [22], with varying results. F1 faced a problem
with rebalancing data partitions under expanded capacity (and
eventually opted to use Spanner [23]), whereas Espresso
attempted to address these problems by avoiding partition
splits (by overpartitioning), mapping several partitions to a
single MySQL instance, and modifying MySQL to be aware
of partition identities on log updates. Espresso uses timeline
consistency (asynchronous or semi-synchronous replication)
whereas F1 is a strongly-consistent system (synchronous repli-
cation).

Perhaps the closest approaches to ours are Scatter [24], ID-
Replication [25], and Oracle’s NoSQL database [17]. All these
systems use consistent hashing and self-managing replication
groups. Scatter and ID-Replication target planetary-scale rather
than enterprise data services and thus focus more on system
behavior under high churn than speed at which clients are
notified of configuration changes. Oracle NoSQL leverages
the Oracle Berkeley DB (BDB) JE HA storage engine and
maintains information about data partitions and replica groups
across all clients. A key difference with our system is that
whereas Oracle NoSQL piggybacks state updates in response
to data operations, our clients have direct access to ring state
in the CM, receive immediate notification after failures, and
can request reconfiguration actions if they suspect a partial
failure. We are aware of an HA monitor component that helps
Oracle NoSQL clients locate RG masters after a failure, but
were unable to find detailed information on how it operates.

III. DESIGN

The ACaZoo system architecture is depicted in Figure 1.
The data model it supports, which derives from that of Apache
Cassandra, HBase, and BigTable has the general structure
shown in Figure 2. A unit of data (or cell) has the following
coordinates: (row key, column family name, column qualifier,
version). We use a consistent hashing mechanism [1] to map
each row key to a replica group (RG) via the circular ring
shown in Figure 1. Each RG is associated with a unique
identifier that hashes to a point on the ring. Similarly each row
key hashes to some point on the ring. A row key is assigned
to the RG that maps nearest to it (clockwise) on the ring.

The state being replicated is a write-ahead log (WAL)
recording mutations to a set of LSM-Trees as shown in
Figure 3. The replication algorithm being used is a two-
phase primary-backup atomic broadcast found at the core of
Zookeeper [26] (ZooKeeper Atomic Broadcast or ZAB [11]),
a distributed coordination service. All accesses go through the
master, ensuring order. In terms of durability, ACaZoo supports



Fig. 1. The ACaZoo architecture
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Fig. 2. ACaZoo/Cassandra data model

two modes of operation2: (1) writes considered durable when
on disk and acknowledged by a quorum of replicas; or (2)
writes considered durable when in memory and acknowledged
by a quorum of replicas (while replicas periodically flush their
memory buffers to disk). The second mode offers a strong
level of consistency with a slightly weaker (but sufficient for
practical purposes) notion of durability [27]. Once an update
is committed, each node independently applies it to a memory
buffer (the memtable) and periodically flushes it to an indexed
file (the SSTable). SSTables should be periodically compacted
(a task similar to a merge sort) to improve read performance.

A key feature of ACaZoo is its ability to monitor periodic
node activities and to effect a change in leadership when a
heavy upcoming compaction or other resource-intensive activ-
ity at a leader of an RG is expected to hamper performance
of the entire group. In the current prototype, the number
of SSTables awaiting compaction at a node is used as a
measure of the intensity of an upcoming compaction at that
node (Section IV-B provides implementation details). Figure 4
shows a 3-node RG whose leader is about to start a compaction
(the proximity of a node to compaction is metaphorically

2Corresponding to the batch and periodic modes described in Section IV-B
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depicted as the temperature of that node). At that point, the
leader triggers an election. ACaZoo adapts the ZAB weighted-
vote leader election algorithm as follows: Votes of nodes that
undergo compactions carry zero weight. Nodes that are not
undergoing a compaction, vote for themselves with a positive
weight inversely proportional to the accumulated amount of
compaction work. As a result, the node that is the furthest
away from compaction is elected new leader of the RG.

The ring state is stored on a Configuration Manager (or
CM) depicted in the upper right of Figure 1. The CM combines
a partitioner (a module that chooses unique identifiers for
new RGs on the ring) with a distributed coordination ser-
vice (we use ZooKeeper/ZAB again here). The CM contains
information about all RGs, such as addresses and status of
nodes (master or follower), and corresponding identifiers. Any
change in the status of RGs (new RG inserted in the ring or
existing RG changes master) is reported to the CM via RPC.
The clients can query the CM to identify the current master
of an RG or ask to be notified of any changes.

IV. IMPLEMENTATION

The ACaZoo implementation forks off the Apache Cassan-
dra NoSQL system. It preserves the Thrift-based Cassandra
client API for compatibility with existing Cassandra applica-
tions but otherwise extends Cassandra in several important



Fig. 5. ZooKeeper

ways: First, it replaces its eventually-consistent replication
mechanism with a strongly consistent implementation using
ZooKeeper ZAB [11] to replicate the LSM-Tree WAL. Second,
ACaZoo addresses the performance impact of LSM-Tree com-
pactions at RG leaders via appropriate reconfiguration actions.
Third, it uses client-coordinated I/O in conjunction with a
configuration management service. Section IV-A describes
ZooKeeper at a high level, Section IV-B describes the inter-
nals of ACaZoo, and Section IV-C describes the ZooKeeper
implementation of ZAB and optimizations we have applied to
it.

A. ZooKeeper

Zookeeper implements a hierarchical namespace of fixed-
size objects (referred to as znodes) accessed via a filesystem-
like API. The Zookeeper namespace is organized as a hash-
table memory structure kept consistent across a set of servers
called Quorum Peers (QPs). The set of QPs is referred to as
a cell. A cell is organized as a single leader and a number
of followers as shown in Figure 5. Each request (otherwise
known as a proposal) towards a znode corresponds to a
transaction with a specific ID (referred to as a zxid) eventually
committed into a Commit Log. Consistency is achieved via
the ZAB atomic-broadcast protocol [11]. Znodes do not map
to persistent locations on disk. Instead, the entire namespace is
periodically serialized and snapshotted to disk. Zookeeper can
thus recover znode state by loading the most recent snapshot
and running its commit log, up to the most recent committed
transaction. The total amount of data Zookeeper can store is
bounded by the physical memory of the least-provisioned node
in the system.

The leader is connected to each follower through direct
FIFO channels (implemented as TCP streams) in a tree pattern.
TCP connections between QPs in the chain are persistent
across proposals. Each leader receives proposals from clients,
moves them out of sockets, forwards them to all followers and
then writes them to disk. Upon receiving a proposal, a follower
writes it to disk and then acknowledges with the leader.
The leader commits a proposal and responds successfully to
clients only after it has received ACKs from a majority of
followers. To avoid overload the leader uses an application-
level flow control protocol (i.e., stop receiving data from TCP
sockets) to throttle clients when the queue of outstanding (not

Fig. 6. ACaZoo storage server

yet committed) proposals exceeds a configurable threshold. A
group commit protocol comes into action to avoid the cost of
flushing dirty buffers to disk at each operation.

B. ACaZoo

The ACaZoo single-node storage backend (with the ACa-
Zoo modifications over base Cassandra highlighted in bold)
is depicted in Figure 6. We start by describing the put (write)
path in base Cassandra (”put path in Cassandra” in Figure 6).
A put is first recorded as a mutation in the WAL and then
written to an ordered per-Column Family memory structure
called a Memtable. When the Memtable is full, it is flushed
to disk as an SSTable. Mutations represent changes to one or
more tables (all belonging to the same keyspace) and refer
to the same partition key. They are deltas rather than full
representations of a cell. More information on the original
Cassandra implementation can be found in Lakshman et al. [3].

An ACaZoo storage server extends base Cassandra by
integrating with the core of a Zookeeper server (Figure 6, left)
that is used to replicate the Memtable WAL across servers. The
two modules interact at three internal interfaces: Cassandra
invokes ZooKeeper’s PrepRequestProcessor stage (described
in Section IV-C), ZooKeeper calls Cassandra’s WAL insert in-
terface, and ZooKeeper notifies Cassandra of a leader election
outcome. Both modules run as a single process (daemon) that
starts and manages the ACaZoo storage server.

An ACaZoo replication group (RG) comprises a (config-
urable) number of such storage nodes. At startup of each RG,
elections are being held to elect a leader node. The Cassandra
code at that node is notified of the result and assumes the
handling of read/write requests. The RG leader is responsible
for invoking the ZAB agreement protocol on each put (upper
left corner of Figure 6). Internally, ZAB takes the contents of
a put operation (the mutation) and replicates it as the contents
of a persistent znode treated as SEQUENTIAL (associated with
a global sequence number appended to its name). As soon
as the proposal is committed, the mutation is inserted into
the ACaZoo WAL of all nodes that learn of the commitment
and then applied to the local LSM-Trees. The znode and
associated commit log entry can be erased as soon as the
ACaZoo WAL acknowledges it. Reducing ZooKeeper state has
the benefit that periodic snapshot operations are inexpensive.



ZooKeeper currently requires manual deletion of old snapshots
and commit logs by an operator; this is something we intend
to automate in ACaZoo.

Gets (reads) are handled by the leader, first looking up its
cache and then (in case of a miss) its local LSM-Tree. Just
as in Cassandra, ACaZoo uses SSTable indexes and Bloom
Filters to reduce I/O overhead in case of a read miss. In a RG
reconfiguration, a new leader is expected to start with a cold
cache and therefore clients will experience the related warm-
up phase. Note that this issue is intrinsic to any replication
system where a single leader handles all read activity.

During early testing of our prototype we noticed that ap-
plying mutations in each replica’s LSM-Tree was not sufficient
to make the new state visible to clients. The reason was that
metadata for these mutations were not being updated in the
process. We solved the problem by forcing a reload of the
local database schema on each put so that the schema gets
rebuilt according to the current state. This was a lightweight
fix that does not impact performance.

In terms of durability, ACaZoo (inheriting from Cassandra)
can be configured for either periodic or batch writes to its
commit WAL. Periodic (the default mode) initiates write I/Os
as soon as they appear in the execution queue and acknowl-
edges them immediately with clients. Another thread peri-
odically (as specified in commitlog_sync_period_in_ms)
enqueues a sync-to-disk operation on the execution queue.
The batch mode offers stricter durability by group-
ing multiple mutations over a time window (defined
by commitlog_sync_batch_window_in_ms) and executes
them in a batch. After each batch, it performs a sync of the
commit WAL and then acknowledges the writes with clients.

We have two optimizations in mind to further improve the
I/O performance of our prototype. One optimization has to
do with avoiding a redundant commit step in ZK and the
Cassandra WAL. Another has to do with further integrating
the prepare disk write with the WAL (so that the data is not
written twice to disk). Based on our performance results we
believe that these optimizations are not critical and defer their
implementation to a future edition of our prototype.

Masking the impact of SSTable compactions

In ACaZoo, LSM-Tree compaction activities that are ex-
pected to impact a RG leader (and thus the entire RG) are
detected and acted upon. Our implementation inherits Cassan-
dra’s compaction thresholds (by default a compaction is sched-
uled as a low priority task as soon as there are 4 same-sized
SSTables but can be delayed –due to resource constraints– up
to the point there are 32 such SSTables, when a compaction
is forced). Our implementation intercepts compaction trigger
events at RG leaders (disabling Cassandra’s AutoCompaction
feature) and performs a leader election (demoting it to a
follower) before allowing compaction to proceed. Variability in
node activities –especially under resource constraints– means
that compactions are in effect unsynchronized across nodes.

In Section III we described the ACaZoo leader election
process (also shown in Figure 4). We currently support two
election policies: choosing a random non-compacting node
excluding the current leader (RANDOM policy), or choos-
ing the next non-compacting node in some sequence (round

robin, RR policy). When the leader is nearing the point of
having to perform a compaction, it sends an election event
(a NEW LEADER proposal in ZooKeeper terminology, Sec-
tion IV-C) to followers. A new leader is elected as soon as a
quorum commits to following him. Normally during leader
election, ZooKeeper nodes broadcast their votes containing
their current epoch, last transaction seen, and preferred leader.
By default the preferred leader in that vote is themselves; nodes
that are up to date have more chances to win. In ACaZoo, the
node triggering the leader election is voting for someone else
according to the policy (RANDOM or RR). ACaZoo followers
that have a low anticipated compaction load respond positively
to the leader election according to the policy.

During the election, which typically lasts between 200-
500 ms the outgoing leader keeps accepting requests. When
a new leader is elected, the previous leader returns a CUSTOM
EXCEPTION with the identity of the new leader in RPCs. Thus
the identity of the new leader is rapidly propagated to the
requesting clients. An alternative path to learn of leadership
changes is through ZooKeeper watch event notifications.

A caveat here is that frequent leadership changes can
hurt performance. To avoid this situation, we estimate the
compaction load of a server at all times (taking into account the
amount of data that need to be compacted) and decide to trigger
a leader election only when that load exceeds a configurable
threshold (and thus expected to be a hard hit on performance).

Client-coordinated I/O and configuration management

ACaZoo clients are allowed to maintain ring state and
thus be able to route operations appropriately rather than
through a (possibly random) server. They obtain that state by
connecting to the Configuration Manager (CM), the integration
of a ZooKeeper cell and a Cassandra partitioner that jointly
maintain RG identities and tokens, leader and follower IPs,
and the key ranges on the ring. We decided to use actual IP
addresses rather than elastic ones due to the long reassignment
delays we observed with the latter on certain Cloud environ-
ments. Each RG stores its identifier and token in a special
Zookeeper znode directory so that a newly elected RG leader
can retrieve it and identify itself to the CM.

In more detail, CM creates a ZooKeeper directory named
system_state and a znode in it for each token range in the
system. A new leader, aware of the token range it represents
modifies the state of the corresponding znode to store infor-
mation about its RG. We additionally store in system_state
information about the RG followers and other system state
to empower clients with the ability to take action as soon as
possible when a failure occurs. The CM exports two RPC APIs
to storage nodes: register/deregister RG, new leader for RG;
and a get ring info API to both storage nodes and clients.

ACaZoo clients have the option to either use the exposed
CM API or request notifications of any changes by setting
watches3 on the ZooKeeper system_state znode. The CM is
responsible for maintaining this znode up to date by monitoring
the ring state using a JMX API. The CM thus learns of a new
RG joining the ring or a new leader election in an existing RG
and triggers watch notifications.

3A watch is a request by a client to receive a notification by a ZooKeeper
server should there be any modification to the referenced znode.



C. ZooKeeper data path and optimizations

This section provides insight to the internals of the
ZooKeeper server system architecture. While important for
understanding the operation of the ZAB protocol, its efficiency,
and the integration of ZooKeeper into ACaZoo (Section IV-B),
this is not prerequisite reading and the reader can skip to
Section V. ZooKeeper has a staged event-driven architecture
(Figure 7). Each QP is structured as a sequence of Request
Processors that operate in a pipelined fashion. Each RP is
associated with a thread that performs operations on its input
passing over the result to the next RP via a shared FIFO queue.
The requests are passed by reference through the queues.
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The lifecycle of a proposal comprises the following steps:
The client sends a request to the leader by invoking the Cre-
ateTxn API. A thread (NIOServerCnxn) allocates a new buffer
in which it copies the proposal’s data payload. The leader may
decide to throttle clients if it is running low on the number of
available pre-allocated buffers. The leader queues the request
into the FIFO queue of the PrepRequestProcessor stage. The
PrepareRequestProcessor encapsulates the client request into a
Quorum Packet and queues it into the queue of ProposalRP
which run in the same context. ProposalRP will broadcast
the quorum packet using another thread (FFQSender), which
handles message transmission to all peers. The proposal is
then passed to SyncRP, which appends it to the Commit Log.
SyncRP periodically flushes written proposals to the disk using
group commits. SyncRP passes the proposal on to CommitRP,
which is responsible for counting ACK messages sent by QPs
for this proposal. QPs may ACK a proposal only after they
ensure that it has been successfully flushed to disk. When
the leader receives a majority of ACKs it sends a COMMIT
message to all QPs over the chain and the proposal is applied
on receiving the COMMIT message. When a proposal is
committed, the FinalRP stage sends a reply back to the client.

Followers have a simple structure in which a FFQRouter
thread performs equivalent tasks to the leader’s FFQSender.
FFQRouter is spawned when the follower receives a
NEW LEADER message and is responsible for listening for
new incoming TCP connections. It passes its output to the
FFQConsumer thread, which decides if this message should
be consumed or not based on its FollowerEpoch field. If the
message is from a previous epoch (i.e., stale), it rejects it,
otherwise it consumes it. If the message is a PROPOSAL it
appends it to the Commit Log and then sends an ACK message
to the leader. If the message belongs to any other category it
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Fig. 8. ACaZoo without RG leader changes

appends it to the commit log and performs the appropriate
proposal-specific action to it.

Optimizations

Writes to the ZK commit log use a group-commit mech-
anism. To achieve high I/O throughput the system needs to
ensure efficient operation all the way to the disks. In a heavily
write-intensive setup the filesystem buffer-cache should be
continuously writing to disks to avoid stalling for too long
at the periodic sync operation. The standard operating system
setup (in Linux and other general-purpose operating systems)
is to delay (defer) writes. We had to change the standard
behavior by tuning the thread responsible for destaging data
from the buffer cache to disk to be invoked whenever there
is anything in the buffer cache to be written. Note that this
optimization requires platform-specific knowledge and is thus
testimony to the fact that despite improved support in Java [28]
it is not always possible to achieve fully platform-independent
systems software in Java alone.

V. EVALUATION

Our evaluation platform (unless stated otherwise) is the
Flexiant FCO cloud with virtual machines (VMs) having 2
CPUs, 2GB memory, and a 20GB remotely-mounted disk.
Certain performance-intensive experiments were performed
on a similarly configured private OpenStack-based cloud to
minimize interference with concurrently executing workloads.
The version of Apache Cassandra used is 2.0.l, Apache
Zookeeper is 3.4.5, and the Oracle NoSQL database is 2.1.54.
We chose the Oracle NoSQL commercial database as one
point of comparison to ACaZoo since it closely relates to
it in several aspects (key-value store with similar API and
data model, sharding over replica groups, primary-backup
replication, client routing of I/O requests, Java implementation)
but differs from it in the use of a B+-tree storage organization
vs. ACaZoo’s LSM-Trees.

Our load generator is the Yahoo Client Serving Benchmark
(YCSB) [29] version 0.1.4, which can be configured to produce
a specific access pattern, I/O size, and read/write ratio. YCSB
performs 1KB accesses (it creates and accesses a single table
with one column family comprising ten columns of 100-byte
cells) with configurable read/write ratio using Zipf (featuring
locality) or uniformly-random probability distributions.
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Fig. 9. ACaZoo with RG leader changes (RANDOM policy)

A. Performance impact of LSM-tree compactions

We first quantify the performance impact of LSM-tree
compactions on an ACaZoo RG of three storage nodes with
a fixed leader (no RG leader changes). Figure 8 depicts
the throughput of a write-intensive workload (YCSB with
64 threads performing 100% writes) over time. We observe
that at 45′′, 75′′, and 113′′ performance drops briefly but
drastically due to memtable flushes taking place. From 143′′-
165′′ a compaction task is seen to have a significant and
enduring impact on system performance. This compaction task
involves 4 SSTables and takes 22.34 sec to complete for a
total of 310MB of data compacted (an effective throughput
of 8.5 MB/s). Besides Memtable flushes and compaction
activities, Java garbage collection is seen to have infrequent
but measurable impact on performance.

Insert operations are indeed resource intensive due to mes-
sage deserialisation, Memtable flushes, compactions, and in-
tensive memory use. Through iostat monitoring we observed
that our VMs are nearly always CPU-bound, turning I/O-bound
when the amount data processed grows significantly. While
we believe that this picture can be somewhat improved by
increasing the allocation of resources to servers (e.g., assigning
an additional disk spindle dedicated to the commit WAL as
well as additional CPU cycles) this increases system cost and
may not always be an option in large-scale deployments.

We next evaluate the performance improvement from RG
leader changes. Figure 9 depicts YCSB throughput with 64
threads and a 100%-write workload under the RANDOM
leader change policy. We observe the impact of Memtable flush
events at 48′′, 85′′, 121′′, and 199′′. There is also a new leader
election at 157′′ just before the leader starts a compaction
task. At that point, the client experiences a short (100ms)
interval of unavailability (throughput drops to 0 ops/sec) and
then continuing on with the new leader. This can be contrasted
to the long (about 23 sec) interval of performace degradation
due to compaction observed in Figure 8. In Section V-C we
show that when the master is compacting, the probability that a
majority of RG nodes simultaneously compacting is low (and
decreasing with RG size). Therefore a RG leader change is
expected with high likelihood to produce a configuration that
can make progress.
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Fig. 10. YCSB throughput: 100% reads
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Fig. 11. YCSB throughput: 50% reads, 50% writes

B. Performance of single replication group

We next compare the performance of a single ACaZoo
RG of three storage nodes to an equivalent setup of Oracle
NoSQL, and two Cassandra setups of three storage nodes in
a ring with replication factor 3: a setup with quorum consis-
tency reading/writing 2 out of 3 replicas (termed Cassandra
Quorum) and another similar setup performing linearizable
writes [18] (termed Cassandra Serial). Cassandra Quorum -
a relaxed consistency system- is configured conservatively so
as to approximate the semantics of the other three systems. We
evaluate all systems under a YCSB workload of 256 concurrent
threads with three different operation mixes (100/0, 50/50,
0/100 reads/writes) on a private OpenStack based cloud with
VMs having 2 CPUs, 2GB memory, and a 20GB remotely-
mounted disk. We test ACaZoo both with and without RG
leader changes using the RANDOM policy, to evaluate the
performance improvement from enabling this feature. The
database created by YCSB contains 106 1KB records for a
total of 1GB of data.

ACaZoo performs reads from the master replica only, just
as Oracle NoSQL does (Oracle calls this absolute consistency).
As discussed in Section IV-B, ACaZoo and Cassandra can
be configured for either periodic (relaxed durability) or batch
(strict durability) writes to their commit WAL. Oracle NoSQL
is configured to perform writes in WRITE NOSYNC mode, i.e.,
it initiates them as soon as they arrive at replicas but syncs
them to disk only when a buffer of configurable size fills up
(similar to the batch mode of ACaZoo and Cassandra).

Figure 10 depicts YCSB throughput during a read-only
workload. The small database size relative to VM memory
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Count Longest Average Total
(#) (sec) (sec) (sec)

Compaction (RA) 11 78.44 17.96 197.64
Memtable flush (RA) 53 - - -

Garbage Collection (RA) 197 0.91 0.148 29.33
Compaction (RR) 12 72.65 15.94 191.39

Memtable flush (RR) 52 - - -
Garbage Collection (RR) 192 0.85 0.147 27.84

TABLE I. TASKS DURING A 100%-WRITE YCSB WORKLOAD

means that reads are mostly cached. ACaZoo performs on
par with Oracle NoSQL, while Cassandra trails due to the
requirement to read from two rather than one replica. We
omit Cassandra Serial from Figure 10 since its performance
is identical to Cassandra Quorum (the two systems share their
read path). ACaZoo with RG leader changes does not lead to
a performance improvement in this case due to the absence of
writes (and therefore significant compaction) activity.

As the share of writes increases into the mix, performance
drops for all systems. We observe in Figures 11 and 12
that ACaZoo in batch mode outperforms Oracle NoSQL (for
both the 50%/50% and 100%-write mixes). We attribute the
difference to the better pipelining of I/O operations in ACaZoo
compared to Oracle NoSQL (we have empirically determined
that BerkeleyDB JE –the underlying Oracle NoSQL storage
engine– allows a single outstanding batch write transfer be-
tween replicas at a time). For 50% reads, 50% writes (Fig-
ure 11) ACaZoo with RG leader changes outperforms standard
ACaZoo by 25% and 20% for batch and periodic operations.
For 100% writes (Figure 12) ACaZoo with RG leader changes
outperforms standard ACaZoo by 40% and 33% for batch
and periodic operations respectively. Cassandra Serial trails all
systems due to the need for four roundtrips between replicas
in each put transaction [18]. Results with the RR policy are
nearly identical to those with the RANDOM policy leading us
to conclude that both are equally effective in our workloads.

To get a deeper understanding of the intensity of com-
pactions and other periodic tasks in ACaZoo we logged these
activities on the (initial) leader node during a 20-minute 100%-
write workload (results are shown in Table I). Although the
leader will change during the course of the run, the events
are representative of the activity taking place at each of the
nodes in a RG. The recorded events in a typical run with the
RANDOM policy (depicted as RA) included 11 compactions,
53 Memtable flushes, and 197 Java garbage collections. It is
interesting to note that garbage collection events are brief;
compactions however are long and very intensive. The longest

compaction lasts for more than a minute and merges more
than 700MB of data. Results with the ROUND ROBIN policy
(depicted as RR in Table I) are similar; a slight difference
is that RA spends more time on garbage collection and
compaction in this run (the two are related: a larger compaction
(700MB in RA lasting 78′′ vs. 600MB lasting 72′′ in RR) leads
to a longer garbage collection in RA).

C. Time correlation of compactions across replicas

In this experiment we observe compaction events on all
replicas of an ACaZoo RG in configurations of 3, 5, and
7 nodes. Our goal is to determine the degree of overlap of
compaction events in different replicas over a long (90 minute)
workload. We use YCSB with 256 threads producing a 50%
read, 50% write mix for 60 minutes, then switch to a 100%
write mix for 30 minutes. The ACaZoo configuration used
has the RG leader-change feature disabled. Our goal is to
determine the probability P that at any point in time only
a minority of nodes in the RG are simultaneously compacting
and therefore there is a majority that can make progress.
Because of significant non-determinism in the system we
expect that in practice P (expressed in Eq. (1)) would be non-
zero.

P ( Any minority in RG compacting ) = 1 −
P ( No compactions in RG ) −
P ( Any majority in RG compacting )

(1)

Figures 13–15 depict the time breakdown per 10-minute
interval between the following three states: No compaction
anywhere in the RG; some (any) minority of RG nodes com-
pacting simultaneously; a quorum of RG nodes compacting
simultaneously. The fraction of time spent in the second of
those states is a measure of P . Going from 3 to 7 nodes in an
RG, P ranges (on average) from 21% (for 3 nodes) to 32%
(5 nodes) to 44.5% (7 nodes), indicating that the RG leader-
change technique is expected to be increasingly effective with
larger RG sizes. The average probability that a quorum of
RG nodes compacts simultaneously (the regime where the RG
leader-change technique does not help) diminishes from 23%
(3 nodes) to 13% (5 nodes) to below 12% (7 nodes). We note
that if a higher degree of non-determinism is desirable, it could
be achieved by using different configurations (e.g., min/max
compaction thresholds) for each replica.

D. Availability of RG under leader failure

In this section we compare the availability of a RG
when the leader fails, comparing ACaZoo to Oracle NoSQL
Database under a YCSB read-only Zipf-distributed workload
produced by 64 threads. Figure 16 shows an outage of about
3.24 sec from the time the leader of the RG crashes until
service resumes at the YCSB client. This interval breaks down
to the following segments: (a) 1.19 sec between the time the
leader crashes until the client notices; (b) 2 sec until the
client establishes a connection with the new leader and restores
service. Interval (a) further breaks down into: (1) 220 ms for
the RG to reconfigure (elect a new leader); (2) 970 ms to
propagate the new-leader information (e.g., its IP address) to
the client through the CM.



0

10

20

30

40

50

60

70

80

90

100

 

1 2 3 4 5 6 7 8 9

P
er

ce
n

ta
g

e 
o

f 
1

0
-m

in
u

te
 i

n
te

rv
al

Time interval (x10 min)

Quorum of nodes compacting
Any minority compacting

No node compacting

Fig. 13. ACaZoo RG of 3 nodes
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Fig. 14. ACaZoo RG of 5 nodes

In Figure 16 we observe ACaZoo performance ramping
up from about 1300 ops/100ms to about 1900 ops/100ms as
the RG leader cache warms up. The initial cache hit rate is
expected to be low since the leader’s data cache can only fit
about 15-20% of the database during the load phase preceding
each YCSB run. We observe the same ramp-up phase after a
failover since the new leader also starts with a cold cache.

Figure 17 shows YCSB throughput under Oracle NoSQL.
The client-observed outage in this case is about 3.5 sec. Oracle
NoSQL starts from about half the throughput of ACaZoo (700
ops/100msec) and again from that level on after a failover.
We also observe a more noisy behavior in Oracle NoSQL’s
throughput curve compared to ACaZoo. We believe that both
observations are due to ACaZoo’s use of a highly effective key
cache (inherited from Cassandra) in addition to its standard
data cache, which aids it in directly locating rows in SSTables
in case of data cache misses, reducing its indexing overhead.

E. Impact of client-coordinated I/O

In this final experiment we quantify the performance ben-
efit due to client-coordination of requests. We run a YCSB
read-only workload over a cluster of six RGs and observe
improvement of 26% and 30% in average response time and
throughput respectively, compared to server-coordination of
requests (Table II summarizes our results).
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Fig. 15. ACaZoo RG of 7 nodes
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Fig. 16. YCSB throughput of ACaZoo under leader failure

VI. FUTURE WORK

Efficient elasticity and data re-distribution is an important
research area that we plan to focus on next. A brute force ap-
proach of streaming a number of key ranges to a newly joining
RG is a starting point but our focus will be on alternatives that
exploit the underlying replication mechanism (as in Lorch et
al [30]). The immutability (write-once) characteristics of LSM-
Trees lend themselves to efficient data movement primitives.
Another research challenge is in provisioning storage nodes for
replication groups to be added to a growing cluster. Assuming
that storage nodes come in the form of virtual machines (VMs)
with local or remote storage on Cloud infrastructure, we need
to ensure that nodes in an RG fail independently (easier to
reason about in a private rather than a public Cloud setting).

VII. CONCLUSIONS

In this paper we described ACaZoo, a NoSQL system
offering strong consistency, high performance, and high avail-
ability for sharded data intensive NoSQL applications. These
properties are achieved via the combination of a high per-
formance replicated data store based on LSM-Trees, client-
coordinated I/O, and fast client notifications of cluster con-
figuration changes. The impact of heavy periodic background
activity at the master (a challenge with frequent compactions
in LSM-Trees) is handled via replica-group leader switches.
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Fig. 17. YCSB throughput of Oracle NoSQL under leader failure

Throughput Read latency Read latency
(ops/sec) (average, ms) (99 percentile, ms)

Server-coordinated I/O 317 3.1 4
Client-coordinated I/O 412 2.3 3

TABLE II. YCSB READ-ONLY WORKLOAD

We examined two policies for RG leader changes (random
and round-robin) and found them both effective in delivering
a performance improvement of up to 40% in write-intensive
workloads. We note that the RG leader-change technique is
generally applicable to any primary-backup replication system.
ACaZoo overall is shown to exhibit excellent performance
and availability compared to a commercial database with
comparable architecture and consistency semantics.
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