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Motivation

• Most modern web and mobile applications today offer highly 
personalised services generating large amounts of data  

• Tasks separated into offline (BE) and online (LC) based on the latency, 
computation and data freshness requirements 

• To train models and offer analytics, they use asynchronous offline 
computation, which leads to stale data being served to clients 

• To serve requests robustly and with low latency, applications cache data 
from the analytics layer 

• Applications deployed in large clusters, but with no collocation of tasks to 
avoid SLO violations 

• No data freshness guarantees and poor resource efficiency
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• How does a typical scalable web application look like? 

• There is a strict decoupling of online and offline tasks 

• With the emerge of cloud computing, these applications are deployed on 
clusters with thousands of machines 



Challenges: Resource Efficiency
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Delimitrou, Christina, and Christos Kozyrakis. "Quasar: Resource-efficient and qos-aware cluster management. ASPLOS 2014

• Most cloud facilities operate at very low utilisation, hurting both cost 
effectiveness and future scalability 

• Figure depicts a utilisation analysis for a production cluster at Twitter with 
thousands of servers, managed by Mesos over one month. The cluster 
mostly hosts user-centric services  

• The aggregate CPU utilisation is consistently below 20%, even though 
reservations reach up to 80% of total capacity



Challenges: Resource Efficiency
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Delimitrou, Christina, and Christos Kozyrakis. "Quasar: Resource-efficient and qos-aware cluster management. ASPLOS 2014

• Even when looking at individual servers, their majority does not 
exceed 50% utilisation on any week  

• Typical memory use is higher (40-50%) but still differs from the 
reserved capacity 



Challenges: Resource Isolation
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Heracles: Improving Resource Efficiency at Scale," David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and Christos Kozyrakis. ISCA 2015.

When a number of workloads execute 
concurrently on a server, they com- 
pete for shared resources.

• Shared cluster environments suffer from resource interference. The main resources that are affected 
are CPU, caches (LLC), memory (DRAM), and network. There are also non-obvious interactions 
between resources, known as cross-resource interactions  

• What about resource isolation mechanisms provided by the Operating System - through scheduling? 

• Even at low load, colocating LC with BE tasks creates sufficient pressure on the shared resources to 
lead to SLO violations. There are differences depending on the LC sensitivity on shared resources  

• The values are latencies, normalised to the SLO latency
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In-memory Web Objects Model
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• IWOs, express both online and offline logic of a web application as a single stateful distributed dataflow graph (SDG)  

• State of the dataflow computation is expressed as IWOs, which are accessible as persistent objects by the 
application  

• What about application strict SLOs - resource isolation and efficiency?

Tasks can be cooperatively scheduled, 
allowing to move resources between 
tasks of the dataflow efficiently 
according to the web application needs. 
As a result, the application can exploit 
data-parallel processing for compute-
intensive requests and also maintain 
high resource utilisation, e.g. when 
training complex models, leading to 
fresher data while serving results with 
low latency from IWOs. 
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index(user, password){
 if(! User.authenticate(user, pass))
    return "Invalid credentials” 
}

view(user){
   //Constructing Recommendation
   userRow = userItem.getRow(user)
   coOcc.multiply(userRow)
}

rate(user, item, rating){
   //Pushing new rating in the queue
   Queue.publish(user, item, rating)
}
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Play2SDG: Typical Web Music App
• Implemented a typical scalable web music service using Play Framework for Java 

• Decoupled online and offline tasks to lower response latency  

• Asynchronous collaborative filtering (CF) task using Apache Spark and Mesos for deployment



• Implemented a scalable web music service using IWOs API and making minor changes in the application code 

• Express both online and offline logic of a web application as a stateful distributed dataflow graph 

• Online collaborative filtering implementation using SDGs. addRating must achieve high throughput; getRec must 
serve requests with low latency, when recommendations are included in dynamically generated web pages
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Front-End (Web)

view(user){
   //Access Dataflow live state 
   DataSource ds = DB.getDatasource()
   userRow = db.get(userItem).getRow(user)
   coOcc.multiply(userRow)
}
rate(user, item, rating){
   //Write directly to dataflow state
   DataSource ds = DB.getDatasource()
   ds.updateUserItem(user, item, rating)
   ds.updateCoOc(UserItem)
   return OK;
}

index(user, password){
  if(! User.authenticate(user, pass))
    return "Invalid credentials” 
}
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Evaluation Platform
• Wombat’s private cluster with 5 machines 

• Machines with 8 CPUs, 8 GB RAM and 1TB locally mounted disk, 1Gbps 
network 

• Data: Million song Dataset, 943,347 unique tracks with 8,598,630 tag pairs  

• Software:  
- Apache Spark 1.1.0 

- Apache Mesos is 0.22.1 (1 master node 3 slaves) 

- Nginx is 1.1.19 

- Cassandra database is 2.0.1 

• Load generator is Apache JMeter 2.13 producing a specific functional 
behaviour pattern:  

1. user login 

2. navigate through the home page displaying the top 100 tracks 

3. visit the page with the latest recommendations 

4. user logout 
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Systems Compared

• Isolated Play2SDG 
• Play framework, Cassandra and Spark are configured to use up to 2 cores and 2GB of 

memory each through the Mesos API 

•  Spark is set up in cluster mode and was not allowed to be colocated with Play application 

• Colocated Play2SDG 
• Play framework, Cassandra and Spark are configured to use up to 2 cores and 2GB of 

memory each through the Mesos API 

•  Spark is set up in cluster mode and was allowed to be colocated with Play application 

• Play2SDG IWOs implementation  
• both serving and analytics tasks implemented as an SDG 

• configure the application JVM to use the same resources as above using JVM configuration 
and cgroups - disabled scheduling
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Play2SDG Case Study Results
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Scheduling Results

 0

 10

 20

 30

 40

 50

 0  20  40  60  80  100  120

Re
sp

on
se

 la
te

nc
y 

in
 m

s

Time in seconds

Scheduled serving IWOs



Thesis Contributions

• Introduced In-memory Web Objects (IWOs), offering a unified model to 
developers when writing web applications that have the ability to serve 
data while using big data analytics 

• IWOs isolation mechanism that is based on cooperative task scheduling. 
Co-operative task scheduling reduces the scheduling decisions and 
allocates resources in a fine-grained way, leading to improved resource 
utilisation  

• The evaluation of IWOs by implementing Play2SDG, a real web 
application similar to Spotify, with both online/LC and offline/BE tasks. The 
web application was implemented as an extension of Play framework 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Future work

• Focus on efficient distributed scheduling of BE 
analytics and LC serving tasks 

• Further investigate the automatic conversion of a 
web application in an SDG 

• Implement IWOs abstract programming model for 
other stateful stream processing frameworks like Flink 

• More Evaluation! 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Thank you!

Questions???
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email: pgaref@imperial.ac.uk

mailto:pgaref@imperial.ac.uk


Demo time!
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Backup Slide Isolation
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Backup Slide 2
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Backup Slide 3
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