
Play2SDG:
Bridging the Gap between Serving and
Analytics in Scalable Web Applications

Panagiotis Garefalakis
 M.Res Thesis Presentation, 7 September 2015

Outline
•Motivation
•Challenges

➡Scalable web app design

➡Resource efficiency

➡Resource Isolation

•In-memory Web Objects model
➡Play2SDG case study

➡Experimental Results

•Conclusions
•Future work

2

Motivation

• Most modern web and mobile applications today offer highly
personalised services generating large amounts of data

• Tasks separated into offline (BE) and online (LC) based on the latency,
computation and data freshness requirements

• To train models and offer analytics, they use asynchronous offline
computation, which leads to stale data being served to clients

• To serve requests robustly and with low latency, applications cache data
from the analytics layer

• Applications deployed in large clusters, but with no collocation of tasks to
avoid SLO violations

• No data freshness guarantees and poor resource efficiency

3

4

Typical Web App

Database ServerLoad Balancer

Database

Web Server

Presentation

Web Application

Business

Data Model

HTTP Request HTTP Response

Data Intensive Batch
Processing

Data

Trained Models
Dashed Line: Offline Task

Cluster A

Cl
us

te
r B

• How does a typical scalable web application look like?

• There is a strict decoupling of online and offline tasks

• With the emerge of cloud computing, these applications are deployed on
clusters with thousands of machines

Challenges: Resource Efficiency

5
Delimitrou, Christina, and Christos Kozyrakis. "Quasar: Resource-efficient and qos-aware cluster management. ASPLOS 2014

• Most cloud facilities operate at very low utilisation, hurting both cost
effectiveness and future scalability

• Figure depicts a utilisation analysis for a production cluster at Twitter with
thousands of servers, managed by Mesos over one month. The cluster
mostly hosts user-centric services

• The aggregate CPU utilisation is consistently below 20%, even though
reservations reach up to 80% of total capacity

Challenges: Resource Efficiency

6
Delimitrou, Christina, and Christos Kozyrakis. "Quasar: Resource-efficient and qos-aware cluster management. ASPLOS 2014

• Even when looking at individual servers, their majority does not
exceed 50% utilisation on any week

• Typical memory use is higher (40-50%) but still differs from the
reserved capacity

Challenges: Resource Isolation

7
Heracles: Improving Resource Efficiency at Scale," David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and Christos Kozyrakis. ISCA 2015.

When a number of workloads execute
concurrently on a server, they com-
pete for shared resources.

• Shared cluster environments suffer from resource interference. The main resources that are affected
are CPU, caches (LLC), memory (DRAM), and network. There are also non-obvious interactions
between resources, known as cross-resource interactions

• What about resource isolation mechanisms provided by the Operating System - through scheduling?

• Even at low load, colocating LC with BE tasks creates sufficient pressure on the shared resources to
lead to SLO violations. There are differences depending on the LC sensitivity on shared resources

• The values are latencies, normalised to the SLO latency

8

In-memory Web Objects Model

Cluster A

Load Balancer Web Server

Presentation

Web Application

Data Model

IWOs API

HTTP Request

Stateful Stream Processing (SDGs)

serving dataflow

o1 o2src snk

IWO

o2

o3

o4 snk

analytics dataflow

o1src

HTTP Response

state

Stateful Stream Processing (SDGs)

serving dataflow

o1 o2src snk

IWO

o2

o3

o4 snk

analytics dataflow

o1src

HTTP Response

state

Scheduler

State

SLO
SLO
SLO
SLO

Queues

Worker
Threads

Cluster A

• IWOs, express both online and offline logic of a web application as a single stateful distributed dataflow graph (SDG)

• State of the dataflow computation is expressed as IWOs, which are accessible as persistent objects by the
application

• What about application strict SLOs - resource isolation and efficiency?

Tasks can be cooperatively scheduled,
allowing to move resources between
tasks of the dataflow efficiently
according to the web application needs.
As a result, the application can exploit
data-parallel processing for compute-
intensive requests and also maintain
high resource utilisation, e.g. when
training complex models, leading to
fresher data while serving results with
low latency from IWOs.

9

Front-End (Web)

4.

5.

7.

8.

Data Transport Layer Back-End

Relational Data

Cassandra

Non Relational Data

userItem

Cooccurrence

Cassandra
Scheduler

Java App

Batch Proccesing
High-Latency
High-Throughput

6.

Mesos/Spark Cluster

index(user, password){
 if(! User.authenticate(user, pass))
 return "Invalid credentials”
}

view(user){
 //Constructing Recommendation
 userRow = userItem.getRow(user)
 coOcc.multiply(userRow)
}

rate(user, item, rating){
 //Pushing new rating in the queue
 Queue.publish(user, item, rating)
}

Play Framework async fetch ratings

synch authenticate

1.

get recommendations

2.

3.

async add new rating

read userItem data

write CoOccurence data

update data

4.
async fetch data

sync

ORM interface

Queue interface

Key-value interface

#

#

Synchronous Task

Asynchronous Task

batch processing for analytics data

Play2SDG: Typical Web Music App
• Implemented a typical scalable web music service using Play Framework for Java

• Decoupled online and offline tasks to lower response latency

• Asynchronous collaborative filtering (CF) task using Apache Spark and Mesos for deployment

• Implemented a scalable web music service using IWOs API and making minor changes in the application code

• Express both online and offline logic of a web application as a stateful distributed dataflow graph

• Online collaborative filtering implementation using SDGs. addRating must achieve high throughput; getRec must
serve requests with low latency, when recommendations are included in dynamically generated web pages

10

Front-End (Web)

view(user){
 //Access Dataflow live state
 DataSource ds = DB.getDatasource()
 userRow = db.get(userItem).getRow(user)
 coOcc.multiply(userRow)
}
rate(user, item, rating){
 //Write directly to dataflow state
 DataSource ds = DB.getDatasource()
 ds.updateUserItem(user, item, rating)
 ds.updateCoOc(UserItem)
 return OK;
}

index(user, password){
 if(! User.authenticate(user, pass))
 return "Invalid credentials”
}

Back-End

Play Framework

SDG Distributed Processing System

write datasource

read datasource

Data Store

Cassandra

userItem
CoOccurrence

Transparent State

low latency interface

In-Memory
Web Object

(IWO)

analytics dataflow

serving dataflow

authenticate user

JPA interface

IWO interface

fetch data

Play2SDG: IWOs Web Music App

updateUserItemnew
rating

rec
request

coOcc

rec
result

State
Element

(SE)

dataflow

Task
Element

(TE)
getUserVec

updateCoOcc

user
Item

getRecVec

11

Evaluation Platform
• Wombat’s private cluster with 5 machines

• Machines with 8 CPUs, 8 GB RAM and 1TB locally mounted disk, 1Gbps
network

• Data: Million song Dataset, 943,347 unique tracks with 8,598,630 tag pairs

• Software:
- Apache Spark 1.1.0

- Apache Mesos is 0.22.1 (1 master node 3 slaves)

- Nginx is 1.1.19

- Cassandra database is 2.0.1

• Load generator is Apache JMeter 2.13 producing a specific functional
behaviour pattern:

1. user login

2. navigate through the home page displaying the top 100 tracks

3. visit the page with the latest recommendations

4. user logout

12

Systems Compared

• Isolated Play2SDG
• Play framework, Cassandra and Spark are configured to use up to 2 cores and 2GB of

memory each through the Mesos API

• Spark is set up in cluster mode and was not allowed to be colocated with Play application

• Colocated Play2SDG
• Play framework, Cassandra and Spark are configured to use up to 2 cores and 2GB of

memory each through the Mesos API

• Spark is set up in cluster mode and was allowed to be colocated with Play application

• Play2SDG IWOs implementation
• both serving and analytics tasks implemented as an SDG

• configure the application JVM to use the same resources as above using JVM configuration
and cgroups - disabled scheduling

13

Play2SDG Case Study Results

 0
 200
 400
 600
 800

 1000
 1200
 1400

5 10 20 40 80 100 120 140 180 200 225 250 300Av
er

ag
e

Th
ro

ug
hp

ut
 (T

PS
)

Number of clients

 0

 100

 200

 300

 400

 500

Re
sp

on
ce

 ti
m

e
av

er
ag

e
(m

s)

Isolated Play component with Cassandra
Collocated Spark-Play components with Cassandra

IWOs Serving and Analytics with Cassandra

5 20 40 120 180 225 300
 0.01

 0.1

 1

 10

Re
sp

on
ce

 ti
m

e
pe

rc
en

tile
s

(s
)

Number of clients

Isolated 75th percentile
Colocated 75th percentile

IWOs 75th percentile

 0
 200
 400
 600
 800

 1000
 1200
 1400

5 10 20 40 80 100 120 140 180 200 225 250 300Av
er

ag
e

Th
ro

ug
hp

ut
 (T

PS
)

Number of clients

 0

 100

 200

 300

 400

 500

Re
sp

on
ce

 ti
m

e
av

er
ag

e
(m

s)

Isolated Play component with Cassandra
Collocated Spark-Play components with Cassandra

IWOs Serving and Analytics with Cassandra

5 20 40 120 180 225 300
 0.01

 0.1

 1

 10

Re
sp

on
ce

 ti
m

e
pe

rc
en

tile
s

(s
)

Number of clients

Isolated 75th percentile
Colocated 75th percentile

IWOs 75th percentile

 0
 200
 400
 600
 800

 1000
 1200
 1400

5 10 20 40 80 100 120 140 180 200 225 250 300Av
er

ag
e

Th
ro

ug
hp

ut
 (T

PS
)

Number of clients

 0

 100

 200

 300

 400

 500

Re
sp

on
ce

 ti
m

e
av

er
ag

e
(m

s)

Isolated Play component with Cassandra
Collocated Spark-Play components with Cassandra

IWOs Serving and Analytics with Cassandra

5 20 40 120 180 225 300
 0.01

 0.1

 1

 10

Re
sp

on
ce

 ti
m

e
pe

rc
en

tile
s

(s
)

Number of clients

Isolated 90th percentile
Colocated 90th percentile

IWOs 90th percentile

 0
 200
 400
 600
 800

 1000
 1200
 1400

5 10 20 40 80 100 120 140 180 200 225 250 300Av
er

ag
e

Th
ro

ug
hp

ut
 (T

PS
)

Number of clients

 0

 100

 200

 300

 400

 500

Re
sp

on
ce

 ti
m

e
av

er
ag

e
(m

s)

Isolated Play component with Cassandra
Collocated Spark-Play components with Cassandra

IWOs Serving and Analytics with Cassandra

5 20 40 120 180 225 300
 0.01

 0.1

 1

 10

Re
sp

on
ce

 ti
m

e
pe

rc
en

tile
s

(s
)

Number of clients

Isolated 99th percentile
Colocated 99th percentile

IWOs 99th percentile

14

Scheduling Results

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100 120

Re
sp

on
se

 la
te

nc
y

in
 m

s

Time in seconds

Scheduled serving IWOs

Thesis Contributions

• Introduced In-memory Web Objects (IWOs), offering a unified model to
developers when writing web applications that have the ability to serve
data while using big data analytics 

• IWOs isolation mechanism that is based on cooperative task scheduling.
Co-operative task scheduling reduces the scheduling decisions and
allocates resources in a fine-grained way, leading to improved resource
utilisation  

• The evaluation of IWOs by implementing Play2SDG, a real web
application similar to Spotify, with both online/LC and offline/BE tasks. The
web application was implemented as an extension of Play framework 

15

Future work

• Focus on efficient distributed scheduling of BE
analytics and LC serving tasks

• Further investigate the automatic conversion of a
web application in an SDG

• Implement IWOs abstract programming model for
other stateful stream processing frameworks like Flink

• More Evaluation! 

16

Thank you!

Questions???

17

email: pgaref@imperial.ac.uk

mailto:pgaref@imperial.ac.uk

Demo time!

18

19

Backup Slide Isolation

 0

 10

 20

 0 1 2 3 4 5 6 7 8 9

Ti
m

e
in

 s
ec

on
ds

Number of instances

Mesos deployment time
Application ramp up time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 1 2 3 4 5 6 7 8 9

Ti
m

e
in

 s
ec

on
ds

Number of instances

LXC container snapshot time
LXC container clone time

20

Backup Slide 2

21

Backup Slide 3

A18-v1

XYZ18-v2

cf2:col2-XYZ

B18-v3 foobar18-v1

 row-6

cf1:col-B cf2:foobar

row-5

Foo18-v1

cf2:col-Foo

row-2

row-7

row-1

cf1:col-A

 row-10

row-18 A18 - v1

Column Family 1 Column Family 2

Coordinates for a Cell: Row Key Column Family Name Column Qualifier Version

B18 - v3

Peter - v2

Bob - v1

Foo18 - v1

XYZ18 - v2

Mary - v1

foobar18 - v1

CF Prefix

Description

playServ

playCF

Stat Desc.

TitleZ

Map<k,v>

id

sparkCF Map<k,v>

Stat Desc.

Stat Desc.

Map<k,v>

StatsMap

timeX

TimeSt.

timeY

Cluster KeyRow Key Column Family

Description

Stat Desc.

TitleZ

Map<k,v>

Map<k,v>

Stat Desc.

Stat Desc.

Map<k,v>

StatsMap

timeX

TimeSt.

timeY

Cluster Key Column Family

releaseDate

0axfdsa

0axfdsb

DateTime

TitleZ

name

id

0axfdsg name

DateTime

DateTime

name

Artist

TitleX

Title

TitleY

Static Column FamiliesRow Key

Tag

tag1

tag1

tag2

Tag

…

…

…

Dynamic Column Family

