332
Advanced Computer Architecture
Chapter 1

Introduction and review of
Pipelines, Performance, Caches, and Virtual Memory

January 2004
Paul H J Kelly

These lecture notes are partly based on the course text, Hennessy
and Patterson's Computer Architecture, a quantitative approach
(39 ed), and on the lecture slides of David Patterson's Berkeley

course (€5252)

Course materials online at
http://www.doc.ic.ac.uk/~phjk/AdvancedCompArchitecture.html
username aca, password kelly

Advanced Computer Architecture 2004 Chapter 1. p1

This is a textbook-based course

4 Computer Architecture: A
Quantitative Approach (3rd
Edition)

John L. Hennessy, David A. Patterson

B 1128 pages. Morgan Kaufmann (29
May, 2002); ISBN: 1558607242

E http://www.elsevier-

international.com/catalogue/title.cfm?IS
BN=1558607242

E Price: £ 33.95 (Amazon.co.uk, Jan 2004)

Advanced Computer Architecture 2004 Chapter 1. p3

Page 1

Pre-requisites
+ This a third-level computer architecture course

4 The usual path would be to take this course after following a
course based on a textbook like “"Computer Organization and
Design” (Patterson and Hennessy, Morgan Kaufmann)

This course is based on the more advanced book by the same
authors (see next slide)

You can take this course provided you're prepared to catch up if
necessary
E Read chapters 1 to 8 of “"Computer Organization and Design” (COD) if this
material is new to you

E If you have studied computer architecture before, make sure COD Chapters 2,
6, 7 are familiar

B See also “Appendix A Pipelining: Basic and Intermediate Concepts” of course
textbook

FAST review today of Pipelining, Performance, Caches, and Virtual
Memory

Advanced Computer Architecture 2004 Chapter 1. p2

Who are these guys anyway and why should T
read their book?

RAID-I (1989)
consisted of a Sun
4/280 workstation
with 128 MB of
DRAM, four dual-
string SCSI

~ controllers, 28
5.25-inch SCST
disks and
specialized disk
striping software.

John Hennessy:
4+ Founder, MIPS
Computer Systems
President, Stanford
University

(previous president: Condoleezza Rice)

4 David Patterson

4 Leader, Berkeley RISC
project (led to Sun's
SPARC)

4 RAID (redundant arrays
of inexpensive disks)

Professor, University of
California, Berkeley

RISC-I (1982) Contains 44,420
transistors, fabbed in 5 micron NMOS,
with a die area of 77 mm2, ran at 1 MHz.
This chip is probably the first VLST
RISC.

Advanced Computer Architecture 2004 Chapter 1. p4.

Administrivia * Lecturers: Course organisation

E Paul Kelly - first few weeks

& Course web site: T:T;T;:lelr:‘);;rez:fley - last couple of weeks

I http://www.doc.ic.ac.uk/~phjk/AdvancedCompArchitecture.html E Jeyarajan Thiyagalingam (Jeyan)
E See web site for link to course news group:
I+ news:icdoc.courses.332aca.

*

*

3 hours per week
Nominally two hours of lectures, one hour of classroom futorials
We will use the fime more flexibly

+ e

E Course textbook: H&P 3rd ed
i+ Read Appendix A right away

*

Assessment:
E Exam
For CS M.Eng. Class, exam will take place on last Monday of term
I For everyone else, exam will take place early in the summer term
 The goal of the course is to teach you how to think about computer architecture
The exam usually includes some architectural ideas not presented in the lectures
E Coursework
 You will be assigned a substantial, laboratory-based exercise
You will learn about performance tuning for computationally-intensive kernels

 You will learn about using simulators, and experimentally evaluating hypotheses to
understand system performance

 Use the machines in Studio A to get started and get help during tutorials

Please do not use the computers for anything else during classes
Advanced Computer Architecture 2004 Chng?:r 1. p5] Advanced Computer Architecture 2004 Chaenr 1. p6

A "Typical" RISC Example: MIPS (Note register location)

32-bit fixed format instruction (3 formats, see next slide)

32 32-bit general-purpose registers Register-Register

E (RO contains zero, double-precision/long operands occupy a pair) 31 26 25 2120 16 15 1110 6 5 0
4 Memory access only via load/store instructions [op [rst [Re2 [Ra | [opx |
E No instruction both accesses memory and does arithmetic
B All arithmetic is done on registers Register-Immediate
3-address, reg-reg arithmetic instruction 31 2625 2120 1615 _ o
E Subw r1,r2,r3 means rl := r2-r3 | Op || Rs1 || Rd || immediate |

E registers identifiers always occupy same bits of instruction encoding

Single addressing mode for load/store: Branch
base + displacement 31 2625 2120 1615 i 0
E ie register contents are added to constant from instruction word, and used as | Op || Rsl “252/Opx|| immediate |
address, eg "lw R2,100(r1)" means "r2 := Mem[100+r1]"
W no indirection N see: SPARC, MIPS, ARM, HP PA-Risc, Jump / Call
4 Simple branch conditions DEC Alpha, IBM PowerPC, 31 26 25 o
CDC 6600, €DC 7600, Cray-1,
4 Delayed branch Cray-2, Cray-3 [op | target |
Not: Intel Iiﬂ-32, IA-64 (?),
Motorola 68000, Q: What is the largest signed immediate operand for “subw r1,r2 X"?
Eg: \95?(Ynﬁar(chzblﬁ;grtc ﬁfm 360/370 Q: To what range of addresses can a conditional branch jump to?
Advanced Computer Architecture 2004 Chapter 1. p7] Advanced Computer Architecture 2004 Chapter 1. pa]

Page 2

5 Steps of MIPS Datapath

Figure 3.1, Page 130, CA:AQA 2e

Pipelining: A very familiar idea...

4 Laundry Example

Ann, Brian, Cathy, Dave
each have one load of clothes

CAHBCOD

to wash, dry, and iron =
4+ Washer takes 30 minutes -’
4 Dryer takes 40 minutes éﬁ’
4 Ironing takes 20 minutes ﬁ

Advanced Computer Architecture 2004 Chapter 1. p10

Instruction Instr. Decode Execute Memory Write
Fetch Reg. Fetch Addr. Calc Access Back
Next PC > I
> Next SEQ PC >
= B » Ry B ;l%—»
S[-—| 3 3 [+ © ¥ >
S 5 y w | D <IN
& S| WS @S o
> I-» 22—
) "Eb
@ e
-
WB Data
Advanced Computer Architecture 2004 Chapter 1. p9
Sequential Laundry

6PM 7 8 9 10 11 Midnight

! Time

| | | | | | | | | |
30 40 20 30 40 20 30 40 20 30 40 20

=Y
®Jr
S
=/ _
& NS .
= 4

& Ce
Sequential laundry takes 6 hours for 4 loads
¢ If they learned pipelining, how long would laundry take?

S0 QYQ x>h oy

Advanced Computer Architecture 2004 Chapter 1. p11

10 aNQ xun N

Pipelined Laundry:
Principle: everyone starts work ASAP

6PM 7 8 9 10 11 Midnight
| >

Time
| e e e | |

B FsI
gz

& Jr
& SIS

+ Pipelined laundry takes 3.5 hours for 4 loads

Advanced Computer Architecture 2004 Chapter 1. p12

Pipelined Laundry:
Lessons-

Pipelining doesn't hel
latency of single task, it
helps throughput of entire
workload

Pipeline rate limited by
slowest pipeline stage

+ Multiple tasks operating
simultaneously

Potential speedup =
Number pipe stages

Unbalanced lengths of pipe
stages reduces” speedup

¢ Time fo “fill" pipeline and
time to "drain’ it reduces
speedup

4 * Speedup comes from
= ‘ﬁ parallelism
E For free - no new hardware

Pipelined laundry takes 3.5 hours for 4 loads
Advanced Computer Architecture 2004 Chapter 1. p13

o

ol
i
Sl

:

5-stage MIPS pipeline with pipeline buffers

Figure 3.4, Page 134 , CA:AQA 2e

Instruction Instr. Decode Execute Memory Write
Fetch Reg. Fetch Addr. Calc Access Back
Next PC N > i
Next SEQPC | Next SEQ PC

. a8 2 &

3 g = z

[m ;) N

o X .-> o 3

= ® [P
H r .
3
g a
A. A RD g A RD 'A =
+ Data stationary control
- local decode for each instruction phase / pipeline stage
Advanced Computer Architecture 2004 Chapter 1. p15

Page 4

How can we apply this idea to the MIPS datapath?
Figure 3.1, Page 130, CA:AQA 2e
Instruction Instr. Decode Execute Memory Write|
Fetch Reg. Fetch Addr. Calc Access Back
Next PC > i
S
> Next SEQ PC
g Zero
RS1
E_ = P RS2
I =+
Y A LN
A - r’
o~
WB Data
Advanced Computer Architecture 2004 Chne?:r 1. pl4
Visualizing Pipelining
Figure 3.3, Page 133 , CA:AQA 2e
[‘ Time (c/ack cyc/es) ‘
Cycle 1:Cycle 2 : Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7
I H
o | R --»B]
s
t
r s ok --»2 @ a
o
; s iE --»ﬁ =HE
e :
--n--»ﬁ 4 |

Advanced Computer Architecture 2004 Chapter 1. p16

It's Not That Easy for Computers

Limits to pipelining: Hazards prevent next
instruction from executing during its designated
clock cycle

B Structural hazards: HW cannot support this combination of
instructions (single person to fold and put clothes away)

E Data hazards: Instruction depends on result of prior instruction
still in the pipeline (missing sock)

E Control hazards: Caused by delay between the fetching of
instructions and decisions about changes in control flow (branches
and jumps).

Advanced Computer Architecture 2004 Chapter 1. p17

SeQ3IQ IsulN

v

Load| AT ERIE]

One Memory Port/Structural Hazards

Figure 3.7, Page 143 , CA:AQA 2e

‘ Time (clock cyc/es)‘

v

Cycle 1 ECycIe 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

Instr 1

TN T o T

Advanced Computer Architecture 2004 Chapter 1. p19

Instr 2

Stall

Page 5

INQIQ Iwua N

One Memory Port/Structural Hazards
Figure 3.6, Page 142 , CA:AQA 2e

‘ Time (clock cyc/es)‘

v

Cycle 1 ECycIe 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

el seai =5y ical
Instr 1

Advanced Computer Architecture 2004 Chapter 1. p18

Instr 2

Instr 3

Instr 4

v

S8 QYQ

I w3 N

JH

One Memory Port/Structural Hazards

Figure 3.7, Page 143 , CA:AQA 2e

‘ Time (clock cyc/es)‘

v

Cycle 1 ECycIe 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

Instr 1
el
"Instr 3 : |

Instr 2

Stall

"bubble"” propagates Throﬁgh pipeline - at each

SUbsequenT CyC|e one Of The Plpehne STC\geS Iles Idle Advanced Cn;m uter Archif;c'ure 2004 Chapter 1. p20

JIsua N

S8 Q3Q

Data Hazard on R1

Figure 3.9, page 147 , CA:AQA 2e

lelock les)

e (clock cycles)

IF ID/RF EX MEM WB

add

rd,rl,r3

and r6,rl,r7

or r8,rl,r9

v|Xor rio,rl,rl1

|
ooy A IH

Advanced Computer Architecture 2004 Chapter 1. p21

Three Generic Data Hazards

+ Write After Read (WAR)
Instr; writes operand before Instr;reads it

CI: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,rl,r7

4 Called an “anti-dependence” by compiler writers.
This results from reuse of the name "rl1”.

4 Can't happen in MIPS 5 stage pipeline because:
E All instructions take 5 stages, and
E Reads are always in stage 2, and
E Werites are always in stage 5

Advanced Computer Architecture 2004 Chapter 1. p23

Page 6

Three Generic Data Hazards

¢ Read After Write (RAW)
Instr; tries to read operand before Instr; writes it

CI: add r1,r2,r3
J: sub r4,r1,r3

Caused by a "Dependence” (in comfiler' nomenclature).
This hazard results from an actual need for
communication.

Advanced Computer Architecture 2004 Chapter 1. p22

Three Generic Data Hazards

+ Write After Write (WAW)
Instr; writes operand before Instr; writes it.

<:I: sub rl,r4,r3
J: add ri1,r2,r3

K: mul r6,rl1,r7

4 Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

4 Can't happen in MIPS 5 stage pipeline because:
E All instructions take 5 stages, and

E Werites are always in stage 5

4+ Will see WAR and WAW in later more complicated pipes

Advanced Computer Architecture 2004 Chapter 1. p24

Forwarding to Avoid Data Hazard

Figure 3.10, Page 149 , CA:AQA 2e

Time (clock cycles)

<

I

n

s

t L]

r. sub r4,r1,r3

o R

:, and r6,rl,r7

e

r

or r8,rl1,r9
| |xor rio,ri, rll‘ prea)] =] l»ﬁ pun] % |
Advanced Computer Architecture 2004 Chapter 1. p25
Data Hazard Even with Forwarding
Figure 3.12, Page 153 , CA:AQA 2e
Time (clock cycles) R

I |ilwrl, 0(r2)

n

K)

t |Isub r4,rl1,r6
r.

O (land r6,rl1,r7

r

d

e

r or r8,rl1,r9

Advanced Computer Architecture 2004 Chapter 1. p27

Page 7

HW Change for Forwarding

Figure 3.20, Page 161, CA:AQA 2e

NextPC —»
o
S My - =
BEEN - =T g
F Y g Data R E
Memory 1®
Immediate —p| > g

Advanced Computer Architecture 2004 Chapter 1. p26

Data Hazard Even with Forwarding
Figure 3.13, Page 154 , CA:AQA 2e

Time (clock cycles)

I
n
s |[lwrl, 0(r2)
+
r.

sub r4,r1,r6
o
r
d
¢ |[and r6,ri,r7
r

or r8,r1,r9 w‘ . Iﬂl "ﬁ m

Advanced Computer Architecture 2004 Chapter 1. p28

Software Scheduling to Avoid Load Hazards

Try producing fast code for

a=b+c;
d=e-f;

assuming a, b, ¢, d ,e, and f in memory.

Slow code: Fast code:
LW Rb,b LW Rb,b
LW Rc,c LW Rc,c
ADD Ra,Rb,Rc LW Re,e
SW a,Ra ADD Ra,Rb,Rc
LW Re,e LW Rf,f
LW Rf,f SW a,Ra
SuB Rd,Re,Rf SuB Rd,Re,Rf
SwW d,Rd SW d,Rd

Advanced Computer Architecture 2004 Chapter 1. p29

Example: Branch Stall Impact

If 30% branch, Stall 3 cycles significant

Two part solution:
E Determine branch taken or not sooner, AND
E Compute taken branch address earlier

MIPS branch tests if register =

MIPS Solution:
E Move Zero test to ID/RF stage
E Adder to calculate new PC in ID/RF stage
E 1 clock cycle penalty for branch versus 3

Oor=0

Advanced Computer Architecture 2004 Chapter 1. p31

Page 8

Control Hazard on Branches
Three Stage Stall

10: beg rll,r3,36

14: and r2,r3,r5

18: or r6,rl,r7

22: add r8,r1,r9

<
36: xor ri0,rl,rll

et B3 HHE

Advanced Computer Architecture 2004 Chapter 1. p30

Plpelmed MIPS Datapath with early branch determination

Figure 3.22, page 163, CA:AQA 2/e

Instruction Instr. Decode Execute Memory Werite
Fetch Reg. Fetch Addr. Calc Access Back
ext I
SE!
—>
>
_>
51
RS2 » © - g I'%
H _ 8 % s = s
—1 2 18 I
& = 3 ?; H® >
< >
NED 2
Imm | ™1 2
ZS RD =A RD > A RD =A 2

+ Data stationary control

- local decode for each instruction phase / pipeline stage
Advanced Computer Architecture 2004 Chapter 1. p32

Four Branch Hazard Alternatives

#1: Stall until branch direction is clear
#2: Predict Branch Not Taken

B Execute successor instructions in sequence
E “Squash” instructions in pipeline if branch actually taken
E Advantage of late pipeline state update
B 47% MIPS branches not taken on average
E PC+4 already calculated, so use it to get next instruction
#3: Predict Branch Taken
E 53% MIPS branches taken on average
E But haven't calculated branch target address in MIPS
i MIPS still incurs 1 cycle branch penalty
i Other machines: branch target known before outcome

Advanced Computer Architecture 2004 Chapter 1. p33

Delayed Branch
* \Alll'lrg,re to get instructions to fill branch delay
slot?

E Before branch instruction
E From the target address: only valuable when branch taken

E From fall through: only valuable when branch not taken
o Clompiler' effectiveness for single branch delay
slot:
L1
E Fills about 60% of branch delay slots orae
E About 80% of instructions executed in branch delay slots
useful in computation
E About 50% (60% x 80%) of slots usefully filled
¢ Delayed Branch downside: 7-8 stage pipelines,
multiple instructions issued per clock (superscalar) ——
BIt RILT
. fallth
Canceling branches ——

E Branch delay slot instruction is executed but write-back is
disabled if it is not supposed to be executed

E Two variants: branch "likely taken”, branch “likely not-taken”
E allows more slots to be filled

Advanced Computer Architecture 2004 Chapter 1. p35]|

Page 9

Four Branch Hazard Alternatives

#4: Delayed Branch
E Define branch to take place AFTER a following instruction

branch instruction
sequential successor;
sequential successor,

sequential successor,
branch target if taken

> Branch delay of length n

E 1 slot delay allows proper decision and branch target address in
5 stage pipeline
E MIPS uses this

Advanced Computer Architecture 2004 Chapter 1. p34

Now, review basic performance issues in
processor design

Which is faster?

610

6.5 hours mph

470 286,700

1350
mph

3 hours 132 178,200

- Time to run the task (ExTime)

- Execution time, response time, latency

* Tasks per day, hour, week, sec, ns .. (Performance)
- Throughput, bandwidth

Advanced Computer Architecture 2004 Chapter 1. p36

Definitions

#Performance is in units of things per sec
E bigger is better

#If we are primarily concerned with response time

Eperformance(x) = 1
execution_time(x)

" Xis n times faster than Y" means

Performance(X) Execution_time(Y)

Performance(Y) Execution_time(X)

Advanced Computer Architecture 2004 Chapter 1. p37

Cycles Per Instruction
(Throughput)

“Average Cycles per Instruction”

CPI = (CPU Time * Clock Rate) / Instruction Count
= Cycles / Instruction Count

CPU time = Cycle Time x 3 CPI;x I,
j=1

“Instruction Frequency”

n |.
CPI =) CPI xF; where F, = !
=t Instructio n Count

Advanced Computer Architecture 2004 Chapter 1. p39

Page 10

Aspects of CPU Performance (CPU Law)

CPUtime = Seconds = Instructions x Cycles x Seconds
Instruction Cycle

Program Program

Inst Count | CPI Clock Rate
Program X
Compiler X X)
Inst. Set. X X
Organization X X
Technology X

Advanced Computer Architecture 2004 Chapter 1. p38|

Example: Calculating CPI

Base Machine (Reg / Reg)

Op Freq Cycles CPI(i) (% Time)
ALV 50% | 1 .5 (33%)
Load 20% | 2 4 27%)
Store 10% | 2 .2 (13%)
Branch 20% | 2 4 (27%)
1.5

Typical Mix of

instruction types

in program

Advanced Computer Architecture 2004 Chapter 1. p40

Example: Branch Stall Impact

Assume CPI = 1.0 ignoring branches
Assume solution was stalling for 3 cycles
If 30% branch, Stall 3 cycles

+ Op Freq Cycles CPI(i) (% Time)
4 Other 70% 1 7 (37%)
4 Branch 30% 4 12 (63%)

#=> new CPI = 1.9, or almost 2 times slower

Advanced Computer Architecture 2004 Chapter 1. p41

Example 3: Evaluating Branch Alternatives (for
1 program)

- Pipeline depth
1 +Branch frequency x Branch penalty

Pipeline speedup

Scheduling ~ Branch CPI speedup v.

scheme penalty stall
Stall pipeline 3 1.42 1.0
Predict taken 1 1.14 1.26
Predict not taken 1 1.09 1.29
Delayed branch 0.5 1.07 1.31

Assuming Conditional & Unconditional branches make up
14% of the total instruction count, and 65% of them
change the PC

Advanced Computer Architecture 2004 Chapter 1. p43

Page 11

Example 2: Speed Up Equation for Pipelining

CPI i cines = Ideal CPI + Average Stall cycles per Inst

Cycle Time,selined
Cycle Timepipelined

Ideal CPI x Pipeline depth .
deal CPI + Pipeline stall CPT

Speedup = I

For simple RISC pipeline, Ideal CPI = 1:

Pipeline depth Cycle Time,yipeiined

1 + Pipeline stall CPT)

Speedup =

Cycle Time, i elined

Advanced Computer Architecture 2004 Chapter 1. p42

Example 4: Dual-port vs. Single-port

Machine A: Dual ported memory (“Harvard Architecture”)

Machine B: Single ported memory, but its pipelined
implementation has a 1.05 times faster clock rate
Ideal CPI = 1 for both
Loads are 40% of instructions executed
SpeedUp, = Pipeline Depth/(1 + 0) X (clockp,pipe/ClOCK i)
= Pipeline Depth
SpeedUpg = Pipeline Depth/(1 + 0.4 x 1) X (clock ,pipe/(Clock nyine / 1.05)
= (Pipeline Depth/1.4) x 1.05
=0.75 x Pipeline Depth
SpeedUp, / SpeedUpy = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

Machine A is 1.33 times faster

Advanced Computer Architecture 2004 Chapter 1. p44

Now, Review of Memory Hierarchy

Advanced Computer Architecture 2004 Chapter 1. p45]

Levels of the Memory Hierarchy

50,"0'—"'7}’7_, Upper Level
ccess Time Staging
Cost Xfer Unit A faster
CPU Registers
100s Bytes egisters
<Is ns i
I Instr. Operands ‘;’:"89';‘:;’;"""
Cache Y
1-10 ns
$10/ MByte cache cntl
Blocks 8-128 bytes
Main Memory
M Bytes
100ns- 300ns | Memory |
$1/ MByte os
I Pages 512-4K bytes
Disk
10s G Bytes, 10 ms Disk
(10,000,000 ns) |
$0.0031/ MByte I Files user/operator v
Mbytes
. Larger
aj
infinite Tape | Lower Level
sec-min

$0.0014/ MByte

Advanced Computer Architecture 2004 Chapter 1. p47

Page 12

Recap: Who Cares About the Memory Hierarchy?
Processor-DRAM Memory Gap (latency)
1000 e /élf(’)r:;x/:
" ' " o/Yyr.
s
9 Moore's Law (2X/15yr)
S 100 Processor-Memory
E Performance Gap:
L 10 (grows 50% / year)
S »— DRAM
a DRAM 9°/°/yr'.
1 o Nm‘v‘m‘go‘r\‘oo‘c»‘o‘ﬁ‘m‘m‘v‘m‘no‘r\‘oo‘cn‘o (ZX/IO
SE382885888558838858888 v
Time
Advanced Computer Architecture 2004 Chapter 1. p46

The Principle of Locality
4 The Principle of Locality:

E Programs access a relatively small portion of the address space at any
insfant of time.

#+ Two Different Types of Locality:

E Temporal Locality (Locality in Time): If an item is referenced, it will
Yend Yo be referenced again soon (e.g., loops, reuse)

E SEafiaI Locality (Locality in Space): If an item is referenced, items
whose addresses are close by tend to be referenced soon

(e.g., straightline code, array access)

4 In recent years, architectures have become increasingly
reliant (totally reliant?) on locality for speed

E (interesting exception: Cray/Tera MTA,
www.cray.com/products/systems/mta/)

Advanced Computer Architecture 2004 Chapter 1. p48|

Memory Hierarchy: Terminology

Hit: data appears in some block in the upper level
(example: Block X)
E Hit Rate: the fraction of memory access found in the upper level
E Hit Time: Time to access the upper level which consists of
RAM access time + Time to determine hit/miss
Miss: data needs to be retrieve from a block in the
lower level (Block Y)
E Miss Rate =1 - (Hit Rate)
E Miss Penalty: Time to replace a block in the upper level +
Time to deliver the block the processor

Hit Time << Miss Penalty (500 instructions on 21264!)

Lower Level
To Processor Upper Level Memory
Memory
Bkx [* >
From Processor BIKY

anced Computer Architecture 2004 Chapter 1. p49

Simplest Cache: Direct Mapped

Memory Address
0

Memory

4 Byte Direct Mapped Cache
Cache Index

4 Location O can be occupied by data from:
E Memory location O, 4, 8, ... etc.

E In general: any memory location
whose 2 LSBs of the address are Os

B Address<1:0> => cache index
4+ Which one should we place in the cache?

+ How can we tell which one is in the
cache?

TMOUO®» © ©®~N o & WK P

Advanced Computer Architecture 2004 Chapter 1. p51

Page 13

Cache Measures
Hit rate: fraction found in that level
E So high that usually talk about Miss rate

B Miss rate fallacy: as MIPS o CPU performance,
miss rate to average memory access time in memory

* Aver-ag,Le| memory-access time
="Hit time + Miss rate x Miss penalty
(ns or clocks)

Miss penalty: time to replace a block from lower
level, including time to replace in CPU
B access time: time to lower level
= f(latency to lower level)
E fransfer time: time to transfer block
=f(BW between upper & lower levels)

Advanced Computer Architecture 2004 Chapter 1. p50

1 KB Direct Mapped Cache, 32B blocks

¢ For a 2 ** N byte cache:
B The uppermost (32 - N) bits are always the Cache Tag
E The lowest M bits are the Byte Select (Block Size = 2 ** M)

31 9 4 0
| Cache Tag Example: 0x50 | Cache Index | Byte Select
Ex: 0x01 Ex: 0x00
Stored as part
of the cache “state”
Valid Bit ~ Cache Tag Cache Data
Byte31| " [Bytel |Bytel0 |0
0x50 Byte63 | ** [Byte33 |Byte'32|1
2
3
Byte 1023 " Byte 992 | 31

Advanced Computer Architecture 2004 Chapter 1. p52

Direct-mapped Cache - structure Two-way Set Associative Cache
Capacity: C bytes (eg 1KB)
¢ Blocksize: B bytes (eg 32)
+ Byte select bits: 0..log(B)-1 (eg 0..4)

N-way set associative: N entries for each Cache Index
E N direct mapped caches operated in parallel (N typically 2 to 4)

Example: Two-way set associative cache
+ Number of blocks: C/B (eg 32) P Y Set |
. h E Cache Index selects a "set” from the cache
Address size: A (eg 32 bits) . .
. . E The two tags in the set are compared in parallel
¢ Cache index size: I=log(C/B) (eg log(32)=5) E Data is selected based on the tag result
¢ Tag size: A-I-log(B) (eg 32-5-5=22) I
Cache Index Cache Index
Valid Cache Tag Cache Data Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0 Cache Block 0
1 B e = 1 n-rp--—=-—=-—=-=---"-1 1T-—---=-=---7 I i i 1T—--------- - 1
1 | <« :

l Cache Block w Cache Block

Hit Hit¢
Advanced Computer Architecture 2004 Chapter 1. p53 Advanced Computer Architecture 2004 Chapter 1. p54
Disadvantage of Set Associative Cache 4 Questions for Memory Hierarchy

+ N-way Set Associative Cache v. Direct Mapped Cache:
E N comparators vs. 1
E Extra MUX delay for the data
E Data comes AFTER Hit/Miss
In a direct mapped cache, Cache Block is available BEFORE Hit/Miss:

B Possible to assume a hit and continue. Recover later if miss.

Q1: Where can a block be placed in the upper level?
(Block placement)

Q2: How is a block found if it is in the upper level?
(Block identification)

Valid Cache Tag cachepata e e Data CochoTog _ Valid + Q3: Which block should be replaced on a miss?
Cache Block 0 Cache Block 0 (BIOCk ”eP/ace”"e”f)

¢ Q4: What happens on a write?

i (Write strategy)

v Cache Block

Advanced Computer Architecture 2004 Chapter 1. p55] Advanced Computer Architecture 2004 Chapter 1. p56

Page 14

Q1: Where can a block be placed in the
upper level?

In a direct-mapped cache,
block 12 can only be placed
in one cache location,
determined by its low-
order address bits -

(12 mod 8) = 4

Q 1 2 3 4 5 [+
[I I I I I I I 1

In a fully-associative cache, block 12
can be placed in any location in the
cache

SetQ In a two-way set-
f‘; associative cache, the set
6 is determined by its low-

order address bits -
(12mod4)=0
Block 12 can be placed in
either of the two cache
locations in set O

NOOILAWNIRO

Advanced Computer Architecture 2004 Chapter 1. p57

Q3: Which block should be replaced on a miss?

#+ Easy for Direct Mapped

Set Associative or Fully Associative:
B Random
B LRU (Least Recently Used)

Assoc: 2-way 4-way 8-way

Size LRU Ran LRU Ran LRU Ran
16 KB 52% 57% 4.7% 53% 44% 50%
64KB 1.9% 2.0% 15% 1.7% 14% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Q2: How is a block found if it is in the upper level?

Cache Index
Valid Cache Tag Cache Data Cache Data Cache Tag Valid

Cache Block 0 Cache Block 0

Cache Block
Hit v v

+ Tag on each block
E No need to check index or block offset

Block Address Block
Tag I Index Offset

. s g . . —>
+ Increasing associativity shrinks index, expands tag
Advanced Computer Architecture 2004 Chae?zr 1. p58|

Q4: What happens on a write?

* Write through—The information is written to
both the block in the cache and to the block in
the lower-level memory.

¢ Write back—The information is written only to
the block in the cache. The modified cache
block is written o main memory only when it is
replaced.

E is block clean or dirty?

Pros and Cons of each?

E WT: read misses cannot result in writes
E WB: no repeated writes to same location

*WT alwa¥s combined with write buffers so that
don't wait for lower level memory

Advanced Computer Architecture 2004 Chapter 1. p59

Advanced Computer Architecture 2004 Chapter 1. p60

Write Buffer for Write Through

»| Cache [«
Processor DRAM
L» —>|
Write Buffer
A Write Buffer is needed between the Cache and

Memory
E Processor: writes data into the cache and the write buffer

E Memory controller: write contents of the buffer to memory
Write buffer is just a FIFO:

E Typical number of entries: 4

E Works fine if: Store frequency (w.r.t. time) << 1 / DRAM write cycle
4+ Memory system designer's nightmare:

B Store frequency (w.r.t. time) -> 1 / DRAM write cycle

E Write buffer saturation

Advanced Computer Architecture 2004 Chapter 1. p61

Summary #1/4:
Pipelining & Performance
Just overlap tasks; easy if tasks are independent
Speed Up < Pipeline Depth; if ideal CPI is 1, then:
Pipeline depth Cycle Time ipelined
1 + Pipeline stall CPI Cycle Time,ieiined

Speedup =

Hazards limit performance on computers:
E Structural: need more HW resources
E Data (RAW,WAR,WAW): need forwarding, compiler scheduling
E Control: delayed branch, prediction

+ Time is measure of performance: latency or

throughput
4+ CPI Law:
CPUtime = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

Advanced Computer Architecture 2004 Chapter 1. p63

Page 16

A Modern Memory Hierarchy

+ By taking advantage of the principle of locality:
E Present the user with as much memory as is available in the cheapest

technology.
E Provide access at the speed offered by the fastest technology.

Processor
Control Tertiary
Secondary Storage
Second Main S(tlgir:kg)e (Disk/Tape)
2 0?9 Level Memory
Datapath | 2. {1 | & & cache | | (DRAM)
gll|=s (SRAM)
Speed (ns): 1s 10s 100s 10,000,000s 10,000,000,000s
Size (bytes): 100s (10s ms) (10s sec)
Ks Ms Gs Ts

Advanced Computer Architecture 2004 Chapter 1. p62

Summary #2/4: Caches

The Principle of Locality:
E Erogr‘om access a relatively small portion of the address space at any instant of
ime
i+ Temporal Locality: Locality in Time
I Spatial Locality: Locality in Space

Three Major Categories of Cache Misses:
E Compulsory Misses: sad facts of life. Example: cold start misses.
E Capacity Misses: increase cache size

E Conflict Misses: increase cache size and/or associativity.
B
+ Write Policy:
E Write Through: needs a write buffer.
E Write Back: control can be complex

¢ Today CPU time is often dominated by memory access time, not just
computational work. What does this mean to
Compilers, Data structures, Algorithms?

Advanced Computer Architecture 2004 Chapter 1. p64

