
1

Firedrake: the architecture of a

compiler that automates the finite

element method

Paul Kelly

Group Leader, Software Performance Optimisation

Department of Computing

Imperial College London
Joint work with David Ham (Imperial Maths), Lawrence Mitchell (Imperial Computing)

Fabio Luporini (Imperial Earth Science Engineering), Florian Rathgeber (now with Google), Doru Bercea (now with

IBM Research), Michael Lange (now with ECMWF), Andrew McRae (now at University of Oxford), Graham Markall

(now at Embecosm Ltd), Tianjiao Sun (now at Cerebras), Thomas Gibson (Imperial Maths)

And many others....

4

This talk

Three different potential audiences:

Programming language design
and implementation

Numerical methods for PDEs

High-performance computing

What is Firedrake?

What is it used for? By whom?

What does its DSL actually look like?

How is its compiler designed?

What is its domain of applicability?

Does it generate good code?
What are the open research
challenges?

What would we do differently?

What is the opportunity to
change the world?

Does it automate interesting
optimisations that would be hard to
do by hand?

5
What is Firedrake?

6
What is Firedrake?

8

Firedrake is
used in:

Thetis:
unstructured
grid coastal
modelling
framework

What is it used for? By whom?

9

Tidal barrage simulation using Thetis (https://thetisproject.org/)
What is it used for? By whom?

https://thetisproject.org/

10

Firedrake is
used in:

Gusto:
atmospheric
modelling
framework
being used
to prototype
the next
generation
of weather
and climate
simulations
for the UK
Met Office

Three-dimensional simulation of a thermal rising through
a saturated atmosphere. From A Compatible Finite
Element Discretisation for the Moist Compressible Euler
Equations (Bendall et al,
https://arxiv.org/pdf/1910.01857.pdf)

What is it used for? By whom?

https://arxiv.org/pdf/1910.01857.pdf

11

Firedrake is
used in:

Icepack: a
framework
for modeling
the flow of
glaciers and
ice sheets,
developed at
the Polar
Science
Center at the
University of
Washington

Larsen ice shelf model, from the Icepack tutorial
by Daniel Shapero
(https://icepack.github.io/icepack.demo.02-
larsen-ice-shelf.html)

What is it used for? By whom?

https://icepack.github.io/icepack.demo.02-larsen-ice-shelf.html

The finite element method in outline
do element = 1,N

assemble(element):

end do

i

j
k

ii

i

jj

j

kk

k

Ax = b

Key data structures: Mesh, dense local assembly
matrices, sparse global system matrix, and RHS vector

l
l

l l

i j k l
i
j
k
l

13

Multilayered abstractions for FE

Local assembly:

Computes local assembly matrix

Using:

The (weak form of the) PDE

The discretisation

Key operation is evaluation of expressions over basis
function representation of the element

Mesh traversal:

PyOP2

Loops over the mesh

Key is orchestration of data movement

Solver:

Interfaces to standard solvers through PetSc

15

Example: Burgers equation

We start with the PDE: (see https://www.firedrakeproject.org/demos/burgers.py.html)

From the weak form of the PDE, we derive an equation to
solve, that determines the state at each timestep in terms of
the previous timestep

https://www.firedrakeproject.org/demos/burgers.py.html

16

Example: Burgers equation

From the weak form of the PDE, we derive an equation to
solve, that determines the state at each timestep in terms of
the previous timestep

17

Example: Burgers equation

From the weak form of the PDE, we derive an equation to
solve, that determines the state at each timestep in terms of
the previous timestep

Transcribe into Python – u is 𝑢𝑛+1, u_ is 𝑢𝑛 :

18

Burgers equation

UFL is also the DSL of the
FEniCS project

Firedrake implements the
Unified Form Language
(UFL)

Embedded in Python

What does its DSL actually look like?

19

Burgers equation

UFL is also the DSL of the
FEniCS project

Firedrake implements the
Unified Form Language
(UFL)

Embedded in Python

What does its DSL actually look like?

set up initial conditions for u and u_

Generated code
to assemble the
resulting linear
system matrix

Executed at each
triangle in the
mesh

Accesses
degrees of
freedom shared
with neighbour
triangles through
indirection map

21

•paraview

Firedrake: single-node AVX512 performance

[Skylake Xeon Gold 6130 (on all 16 cores, 2.1GHz, turboboost off, Stream: 36.6GB/s, GCC7.3 –march=native)]

Theo peak

Intel LINPACK

GFLOPs
achieved for
residual
assembly for
various
element types,
with polynomial
degree ranging
from 1-6

A study of vectorization for matrix-free finite element methods, Tianjiao Sun et al
https://arxiv.org/abs/1903.08243

Does it generate good code?

https://arxiv.org/abs/1903.08243

23

Firedrake: compiler architecture

PyOP2: stencil DSL for
unstructured-mesh

Explicit access descriptors
characterise access footprint of
kernels

UFL specifies the (weak form of
the) partial differential equation
and how it is to be discretised

Compiler generates PyOP2
kernels and access descriptors

PyOP2

Non-FE loops
over the mesh

UFL “Two-
stage” Form

Compiler

Unified Form
Language

Multicore
Manycore

/GPU

Future/

other

R
a
th

g
e
b
e
r,

 H
a
m

,
M

it
c
h
e
ll

e
t
a
l,
 A

C
M

 T
O

M
S

 2
0
1
6
,

T
ia

n
jia

o
 S

u
n
 e

t
a
l
h
tt
p
s
:/
/a

rx
iv

.o
rg

/p
d
f/
1
9
0
3
.0

8
2

4
3
.p

d
f

In
production

In
development

Some prototyping

Loo.py loop transformations

GEM: tensor
contractions

GEM: abstract representation
supports efficient flop-reduction
optimisations

Loo.py: vectorization etc

Distributed MPI-parallel PyOP2
implementation

Loo.py representation

Sequence of intermediate
representations

100% Python, runtime code
generation, code-caching

https://arxiv.org/pdf/1903.08243.pdf

Firedrake: a finite-element framework
Automates the finite element method for solving PDEs

Alternative implementation of FEniCS language, 100% Python using runtime code generation

PyOP2: stencil DSL for
unstructured-mesh

Explicit access descriptors
characterise access footprint of
kernels

UFL specifies the (weak form of
the) partial differential equation
and how it is to be discretised

Compiler generates PyOP2
kernels and access descriptors

PyOP2

Non-FE loops
over the mesh

UFL “Two-
stage” Form

Compiler

Unified Form
Language

Multicore
Manycore

/GPU

Future/

other

R
a
th

g
e
b
e
r,

 H
a
m

,
M

it
c
h
e
ll

e
t
a
l,
 A

C
M

 T
O

M
S

 2
0
1
6
,

T
ia

n
jia

o
 S

u
n
 e

t
a
l
h
tt
p
s
:/
/a

rx
iv

.o
rg

/p
d
f/
1
9
0
3
.0

8
2

4
3
.p

d
f

In
production

In
development

Some prototyping

Loo.py loop transformations

GEM: tensor
contractions

GEM: abstract representation
supports efficient flop-reduction
optimisations

Loo.py: vectorization etc

Distributed MPI-parallel PyOP2
implementation

Loo.py representation

Firedrake’s “Compiler
architecture” has evolved
over time

https://arxiv.org/pdf/1903.08243.pdf

26

Easy parallelism

Example:

for (i=0; i<N; ++i) {

points[i]->x += 1;

}

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

Oh no: not all the iterations are independent!
You want to re-use piece of code in different
contexts

Whether it’s parallel depends on context!

Can the
iterations of this
loop be executed
in parallel?

Analysis is not always the interesting part....

It’s more fun the higher you start!

Syntax

Points-to

Class-hierarchy

Dependence

Shape

.....

Types

Call-graph

Polyhedra

Register allocation

Instruction selection/scheduling

Storage layout

Tiling

Parallelisation

Mapping

Loop nest ordering

….

h
tt
p
:/
/w

w
w

.n
ik

k
ie

m
c
d

a
d
e

.c
o

m
/s

u
b

F
ile

s
/2

D
E

x
a

m
p

le
s
.h

tm
l

h
tt
p
:/
/w

w
w

.g
in

z
.c

o
m

/n
e
w

_
z
e

a
la

n
d
/s

k
i_

n
e
w

_
z
e

a
la

n
d

_
w

a
n
a
k
a

_
c
a

d
ro

n
a

Compilation is like skiing

http://www.nikkiemcdade.com/subFiles/2DExamples.html

Unstructured meshes require pointers/indirection because adjacency
lists have to be represented explicitly

A controlled form of pointers (actually a general graph)

OP2 is a C++ and Fortran library for parallel loops over the mesh,
implemented by source-to-source transformation

PyOP2 is the same basic model, implemented in Python using
runtime code generation

Enables generation of highly-optimised vectorised, CUDA, OpenMP
and MPI code

The OP2 model originates from Oxford (Mike Giles et al)

How a mesh is represented in OP2

Mesh

u

Edges

Vertices

PyOP2: “sets” “dats” “maps”

Cells

v

v v

w

w

w

EdgeToVertex

CellToEdge

OP2 loops,

access

descriptors and

kernels

OP2 separates local (kernel) from global (mesh)

OP2 makes data dependence explicit

op_par_loop(set, kernel, access descriptors)

We specify
which set to
iterate over

We specify a
kernel to
execute – the
kernel
operates
entirely locally,
on the dats to
which it has
access

The access descriptors
specify which dats the
kernel has access to:

• Which dats of the target
set

• Which dats of sets
indexed from this set
through specified maps

Ar,u,du r,u.du

A
r,u,du r,u.du

A A A

PyOP2: “decoupled access-execute”

void res(float *A, float *u, float *du,

const float *beta) {

*du += (*beta) * (*A) * (*u);

}

void update(float *r, float *du, float *u, float

*u_sum, float *u_max) {

*u += *du + alpha * (*r);

*du = 0.0f;

*u_sum += (*u) * (*u);

*u_max = *u_max > *u ? *u_max : *u;

}

for iter in xrange(0, NITER):

u_sum = op2.Global(1, data=0.0, np.float32)

u_max = op2.Global(1, data=0.0, np.float32)

op2.par_loop(res, edges,

p_A(op2.READ),

p_u(op2.READ, edge2vertex[1]),

p_du(op2.INC, edge2vertex[0]),

beta(op2.READ))

op2.par_loop(update, nodes,

p_r(op2.READ),

p_du(op2.RW),

p_u(op2.INC),

u_sum(op2.INC),

u_max(op2.MAX))

Access

descriptors

specify how

to feed the

kernel from

the mesh

• Parallel loops, over sets (nodes, edges etc)

• Access descriptors specify how to pass data to and
from the C kernel

• The kernel operates only on local data

Code generation for indirect loops in PyOP2
For MPI we
precompute
partitions & haloes

Derived from
PyOP2 access
descriptors,
implemented
using PetSC
DMPlex

At partition
boundaries, the
entities (vertices,
edges, cells) form
layered halo
region

F
lo

ri
a
n
 R

a
th

g
e
b
e
r

P
h
D

 t
h
e
s
is

,
P

ro
d
u
c
ti
v
e
 a

n
d
 E

ff
ic

ie
n
t
C

o
m

p
u
ta

ti
o
n
a
l
S

c
ie

n
c
e
 T

h
ro

u
g
h
 D

o
m

a
in

-s
p
e
c
if
ic

 A
b
s
tr

a
c
ti
o
n
s

Code generation for indirect loops in PyOP2
For MPI we
precompute
partitions & haloes

Derived from
PyOP2 access
descriptors,
implemented
using PetSC
DMPlex

At partition
boundaries, the
entities (vertices,
edges, cells) form
layered halo
region

F
lo

ri
a
n
 R

a
th

g
e
b
e
r

P
h
D

 t
h
e
s
is

,
P

ro
d
u
c
ti
v
e
 a

n
d
 E

ff
ic

ie
n
t
C

o
m

p
u
ta

ti
o
n
a
l
S

c
ie

n
c
e
 T

h
ro

u
g
h
 D

o
m

a
in

-s
p
e
c
if
ic

 A
b
s
tr

a
c
ti
o
n
s

processor 0

processor 1

Code generation for indirect loops in PyOP2
For MPI we
precompute
partitions & haloes

Derived from
PyOP2 access
descriptors,
implemented
using PetSC
DMPlex

At partition
boundaries, the
entities (vertices,
edges, cells) form
layered halo
region

F
lo

ri
a
n
 R

a
th

g
e
b
e
r

P
h
D

 t
h
e
s
is

,
P

ro
d
u
c
ti
v
e
 a

n
d
 E

ff
ic

ie
n
t
C

o
m

p
u
ta

ti
o
n
a
l
S

c
ie

n
c
e
 T

h
ro

u
g
h
 D

o
m

a
in

-s
p
e
c
if
ic

 A
b
s
tr

a
c
ti
o
n
s

Core: entities owned which can be processed without accessing halo data.

Owned: entities owned which access halo data when processed

Exec halo: off-processor entities which are redundantly executed over because they
touch owned entities

Non-exec halo: off-processor entities which are not processed, but read when
computing the exec halo

37

First example:

Tiling for cache locality

(This optimisation has been implemented –
and automated – but does not currently
form part of the standard distribution)

Can we automate interesting
optimisations that would be hard to do
by hand?

Sparse split tiling on an unstructured mesh, for locality

How can we load a block of mesh and do the iterations of loop
1, then the iterations of loop 2, before moving to the next
block?

If we could, we could dramatically improve the memory access
behaviour!

Loop 2

Loop 1
Visits edges

Increments nodes

Visits nodes

Depends on edges

S
tr

o
u
t,

 L
u
p

o
ri
n

i
e

t
a

l,
 I
P

D
P

S
’1

4

t

iBlock of U Block of U Block of U

t

i

Block of U Block of U

t

iBlock of U Block of U Block of U

Skewed

Overlap

Split

Loop 2

Loop 1

Sparse split tiling

Partition the iteration space of loop 1

Colour the partitions, execute the colours in order

Project the tiles, using the knowledge that colour n can use
data produced by colour n-1

Thus, the tile coloured #1 grows where it meets colour #0

And shrinks where it meets colours #2 and #3

0

2

1

3
2

0

0

2

1

3
2

0

Visits edges

Increments nodes

Visits nodes

Depends on edges

S
tr

o
u
t,

 L
u
p

o
ri
n

i
e

t
a

l,
 I
P

D
P

S
’1

4

Partition the iteration space of loop 1

Colour the partitions

Project the tiles, using the knowledge that colour n can use
data produced by colour n-1

Thus, the tile coloured #1 grows where it meets colour #0

And shrinks where it meets colours #2 and #3

Sparse split tiling

S
tr

o
u
t,

 L
u
p

o
ri
n

i
e

t
a

l,
 I
P

D
P

S
’1

4

Inspector-executor:
derive tasks and
task graph from
the mesh, at
runtime

Loop 2

Loop 1

0

2

1

3
2

0

0

2

1

3
2

0

Visits edges

Increments nodes

Visits nodes

Depends on edges

Tiles grow

S
tr

o
u
t,

 L
u
p

o
ri
n

i
e

t
a

l,
 I
P

D
P

S
’1

4

0

2

1

3
2

0

0

2

1

3
2

0

0

2

1

3
2

0

As we project the tiles forward, tile shape degrades

Perimeter-volume ratio gets worse

Tiles grow

S
tr

o
u
t,

 L
u
p

o
ri
n

i
e

t
a

l,
 I
P

D
P

S
’1

4

1

1

1

As we project the tiles forward, tile shape degrades

Perimeter-volume ratio gets worse

We could partition Loop 1’s data for the cache

But Loop 2 and Loop 3 have different footprints

So we rely on good (ideally space-filling-curve) numbering

Loop 1

Loop 2

Loop 3

Tiles can collide0

2

1

3
2

0

0

2

1

3
2

0

0

2

1

3
2

0

0

2

1

3
2

0

0

2

1

3
2

0

(1) Blue, (2) Red, (3) Green

(L
u
p
o
ri
n
i,
 e

t
a
l,
 A

u
to

m
a
te

d
 T

ili
n
g
 o

f
U

n
st

ru
ct

u
re

d
 M

e
sh

 C
o
m

p
u
ta

ti
o
n
s

w
it
h

A
p
p
lic

a
ti
o
n
 t
o
 S

e
is

m
o
lo

g
ic

a
l
M

o
d
e
lin

g
.
A
C
M

 T
O

M
S
 2

0
1
9
)

Loop chains
with loop_chain(tile_size=,….):

solve for velocity vector field

self.solve(….);

self.solve(….);

self.solve(….);

self.solve(….);

solve for stress tensor field

self.solve(….);

self.solve(….);

self.solve(….);

self.solve(….);

(Luporini, Lange, Jacobs, Gorman, Ramanujam, Kelly.
Automated Tiling of Unstructured Mesh Computations with

Application to Seismological Modeling. ACM TOMS 2019
https://doi.org/10.1145/3302256)

(25 op_par_loops
per timestep, all
tilable)

Example: Seigen

Elastic wave solver

2d triangular mesh

Velocity-stress
formulation

4th-order explicit
leapfrog
timestepping
scheme

Discontinuous-
Galerkin, order
q=1-4

32 nodes, 2x14-
core E5-2680v4,
SGI MPT 2.14

1000 timesteps
(ca.1.15s/timestep)

Up to 1.28x speedup

Inspection about as much time as 2
timesteps

Using RCM numbering – space-filling
curve should lead to better results

Weak scaling: #cores (#elements)

S
p

e
e

d
u

p
 (

c
o

m
p

u
te

+
c

o
m

m
u

n
ic

a
ti

o
n

ti
m

e
 o

ri
g

in
a

l/
ti

li
n

g
) Best speedup:

1.28x at q=3 on
448 processes.

Optimum fusion
scheme breaks
25 loops into 6
chains. MPI
halo is extended
from S=1 to S=2

(A
C
M

 T
O

M
S
 2

0
1
9
)

70

Second example:

Generalised loop-invariant code motion

(This optimisation has been implemented,
automated, and re-implemented – and
forms part of the standard distribution)

Can we automate interesting
optimisations that would be hard to do
by hand?

Generated code
to assemble the
resulting linear
system matrix

Executed at each
triangle in the
mesh

Accesses
degrees of
freedom shared
with neighbour
triangles through
indirection map

Recall:

Local assembly code generated by Firedrake for a Helmholtz
problem on a 2D triangular mesh using Lagrange p = 1 elements.

The local assembly operation computes a small dense submatrix

These are combined to form a global system of simultaneous
equations capturing the discretised conservation laws expressed by
the PDE

L
u
p
o
ri
n

i,
 V

a
rb

e
n
e
s
c
u

e
t

a
l,
 A

C
M

 T
A

C
O

/H
iP

E
A

C
2
0
1
5

A simpler example:

L
u
p
o
ri
n

i,
 V

a
rb

e
n
e
s
c
u

e
t

a
l,
 A

C
 T

A
C

O
/H

iP
E

A
C

2
0
1
5

Local assembly code generated by Firedrake for a Helmholtz
problem on a 2D triangular mesh using Lagrange p = 1 elements.

The local assembly operation computes a small dense submatrix

These are combined to form a global system of simultaneous
equations capturing the discretised conservation laws expressed by
the PDE

A simpler example:

Local assembly code
for the Helmholtz
problem after
application of

padding,

data alignment,

Loop-invariant
code motion

In this example, sub-
expressions invariant
to j are identical to
those invariant to k, so
they can be
precomputed once in
the r loop

L
u
p
o
ri
n

i,
 V

a
rb

e
n
e
s
c
u

e
t

a
l,
 A

C
 T

A
C

O
/H

iP
E

A
C

2
0
1
5

Generalised loop-invariant code motion:

We formulate an ILP problem to find the best factorisation strategy

F. Luporini, D.A. Ham, P.H.J. Kelly. An algorithm for the optimization of finite element integration
loops. ACM Transactions on Mathematical Software (TOMS), 2017).

PyOP2

Non-FE loops
over the mesh

UFL “Two-
stage” Form

Compiler

Unified Form
Language

Multicore
Manycore

/GPU

Future/

other

In
production

In
development

Some prototyping

Loo.py loop transformations

GEM: tensor
contractions

Distributed MPI-parallel PyOP2
implementation

Loo.py representation

Firedrake’s “Compiler architecture”
has evolved over time

Vectorisation

Loop-invariant
code motion,

sum-
factorisation

Why I do what I do, and what I’ve learned

Engaging with applications to exploit domain-specific
optimisations can be incredibly fruitful

Compiling general purpose languages is worthy but usually incremental

Compiler architecture is all about designing intermediate
representations – that make hard things look easy

Tools to deliver domain-specific optimisations often have domain-specific
representations

Premature lowering is the constant enemy (appropriate lowering is great)

Along the way, we learn something about building better
general-purpose compilers and programming
abstractions

Drill vertically, expand horizontally

Sparse unstructured tiling really works, but didn’t make it into
the main trunk

It’s just too complicated to justify the additional maintenance burden

It only helps some applications

We need to find a way to make it easier!

Improved strong-scaling

GPUs (and other accelerators?)

Coupled problems (in-progress)

Particles, particle transport

Mesh adaptation, load balancing

Things that I haven’t had time to talk about:

Automatic adjoints, inverse problems (in-service)

Interface/integration with PetSc (in-service)

Hybridisation, static condensation (in-service, could be faster)

What are the open research challenges?

The real value of Firedrake is in
supporting the applications users in
exploring their design space

We enable them to navigate rapidly
through alternative solutions to their
problem

We break down barriers that prevent the
right tool being used for the right
problem

Firedrake automates the finite element
method

The Devito project automates finite
difference

In the future, we will have automated
pathways from maths to code for many
classes of problem, and many alternative
solution techniques

How can we change the world?

94

Have your cake and eat it too

We can simultaneously

raise the level at which
programmers can
reason about code,

provide the compiler
with a model of the
computation that
enables it to generate
faster code than you
could reasonably write
by hand

Program generation is
how we do it

95

Acknowledgements

Partly funded/supported by

NERC Doctoral Training Grant (NE/G523512/1)

EPSRC “MAPDES” project (EP/I00677X/1)

EPSRC “PSL” project (EP/I006761/1)

Rolls Royce and the TSB through the SILOET programme

EPSRC “PAMELA” Programme Grant (EP/K008730/1)

EPSRC “PRISM” Platform Grants (EP/I006761/1 and EP/R029423/1)

EPSRC “Custom Computing” Platform Grant (EP/I012036/1)

EPSRC “Application Customisation” Platform Grant (EP/P010040/1)

EPSRC “A new simulation and optimisation platform for marine technology”
(EP/M011054/1)

Basque Centre for Applied Mathematics (BCAM)

Code:

http://www.firedrakeproject.org/

http://op2.github.io/PyOP2/

https://github.com/OP-DSL/OP2-Common

http://www.firedrakeproject.org/
http://op2.github.io/PyOP2/
https://github.com/OP-DSL/OP2-Common

