
Parallel Processing Letters
c© World Scientific Publishing Company

GENERATIVE AND ADAPTIVE METHODS

IN PERFORMANCE PROGRAMMING

PAUL H J KELLY and OLAV BECKMANN

Department of Computing, Imperial College of Science, Technology and Medicine,

180 Queen’s Gate, London SW7 2AZ, United Kingdom

ABSTRACT

Performance programming is characterized by the need to structure soft-
ware components to exploit the context of use. Relevant context includes the
target processor architecture, the available resources (number of processors,
network capacity), prevailing resource contention, the values and shapes of in-
put and intermediate data structures, the schedule and distribution of input
data delivery, and the way the results are to be used. This paper concerns
adapting to dynamic context: adaptive algorithms, malleable and migrating
tasks, and application structures based on dynamic component composition.
Adaptive computations use metadata associated with software components —
performance models, dependence information, data size and shape. Compu-
tation itself is interwoven with planning and optimizing the computation pro-
cess, using this metadata. This reflective nature motivates metaprogramming
techniques. We present a research agenda aimed at developing a modelling
framework which allows us to characterize both computation and dynamic
adaptation in a way that allows systematic optimization.

Keywords: Software performance, components, parallel processing, compilers,
metaprogramming

1 Introduction

This paper aims to establish principles for constructing software that make per-

formance optimization tractable, and thereby to elaborate a manifesto for research

towards achieving performance goals in software engineering.

1.1 Performance Programming

The title refers to “performance programming”, rather than parallel programming,

to emphasize the proper objective of parallelization — to achieve high performance

— and this implies attention to all significant optimization opportunities. However,

we must also consider the costs, both in time spent writing and optimizing a pro-

gram, and in the long-term impact of optimizing transformations on the value of

the software. Performance programming is the discipline of software engineering in

its application to achieving performance goals.

1.2 Constructive methods

We focus here on performance programming “by construction”, in the sense of “by

design”. How can we build performance into a software project? How can we build-

in the means to detect and correct performance problems, as early as possible, with

minimal disruption to the software’s long-term value?

1.3 Adaptation to context

Most performance improvement opportunities come from adapting components to

their context. This conflicts, necessarily, with the desire to re-use components in dif-

ferent contexts. Thus, most performance improvement measures break component

abstraction boundaries.

So the art of performance programming is to figure out how to design and

compose components so we can optimize effectively, while retaining abstraction and

supporting re-use.

This paper is about two ideas which can help:

• Component metadata, characterizing data structures, components, their de-

pendence relationships and their optimization opportunities (Sections 2 and 3),

and

• Composition metaprogramming: optimisation by adaptation to context takes

place when components are invoked by client code, and composed with other

components. The optimizer uses the component metadata, together with the

structure of the client code, to find an optimal execution plan based on the

context in which each component is used (Sections 4 and 5).

We present specific examples to illustrate communication fusion, data alignment in

sequences of parallel library calls, partial evaluation/specialization, adapting to the

hardware platform/resources, and cross-component loop fusion.

1.4 Contributions of this paper

From these examples, we derive a unifying approach to the design of components

which can be adapted to context — context here meaning not just the source code or

method caller, but also dynamic information such as available resources, scheduling

constraints, run-time data shapes, sizes and values.

To support this, components need to carry metadata. We explore what this

metadata needs to do, and some of the challenges in using metadata characteriz-

ing dependence relationships and performance models to support composition-time

adaptation.

2 Adaptation to context: communication fusion

Consider a parallel function using MPI to compute the variance of a distributed

array data. We call a function sum to compute the sum, and another, sumsq

to compute the sum of squares. Both sum and sumsq involve a global reduction

CFL_Doubl e s1(0) , s2(0) ;

voi d sum(doubl e& dat a) {

s1 = 0. 0 ; …

f or (j =j mi n; j <=j max; j ++) {

s1 += dat a[j] ;

}

}

voi d sumsq(doubl e& dat a) {

s2 = 0. 0 ; …

f or (j =j mi n; j <=j max; j ++) {

s2 += dat a[j] * dat a[j] ;

}

}

doubl e a[…] […] , var […] ;

f or (i =0; i <N; i ++) {

sum(a[i]) ;

sumSq(a[i]) ;

var [i] = (s2- s1* s1/ N) / (N- 1) ;

}

Shared variable declaration

Global reduction

Assignment to local
force point

Global reduction

����������	

����������	�

��������������������

Fig. 1: Automatic fusion of MPI reduction operations. Both sum and sumsq involve an

MPI Allreduce, but we overload the C++ “+” operator to delay execution so that communi-

cation is automatically aggregated. This optimization yields a 44.5% speedup for N=3000 on a

4-processor Linux cluster.

operation, an MPI Allreduce(). An efficient calculation of variance needs just one

MPI Allreduce(), that sums both the values and the squares in a single round of

communication.

Figure 1 shows how the Communication Fusion Library [1] solves this problem.

The MPI Allreduce() call is hidden in an abstract data type for global, shared

variables. Arithmetic on global variables is delayed until forced by an assignment

of a global value to a local variable. At this point all delayed reductions can be

executed in a single MPI Allreduce() call.

This work was motivated by a parallel ocean plankton ecology modelling frame-

work. Depending on the sophistication of the particular ecology being simulated,

many different global variables need to be maintained. Variables, for example nutri-

ent concentration, may be adjusted during a timestep as different plankton species

are accounted for. Execution of delayed communication is forced when the model

needs to use the current value of a global variable. In a typical model, 27 scalar

reductions are required, but can be implemented in just 2 MPI Allreduce() calls,

leading to a 60% speedup on a 32-processor AP3000 [1].

2.1 The communication fusion library as a component model

This example shows a simple adaptation to context: a cross-component optimiza-

tion, where the components are functions defining and using global shared variables.

The library does this while preserving the source program’s structure, and the re-

usability of the components.

The library works at run-time, though the idea could be used in a compile-time

optimizer — the core idea is that each component carries a description (hidden in

the global shared variable abstract data type) of which global shared variables it

defines and uses. When the components are composed, we can use this “component

dependence metadata” to determine where the fused MPI Allreduce() calls have

to go.

We chose a run-time implementation because the run-time cost of optimizing

relatively heavyweight communication operations usually outweighs the benefits —

this turned out not to be so on some very fast networks [1], where the benefits

are small. In general, architecture-specific performance models need to be used to

identify the optimum implementation strategy [2].

template<class Matrix, class Vector, class Precond, class Real>

int CG(const Matrix &A, Vector &x,

const Vector &b, const Precond &M,

int &max_iter, Real &tol)

{

// local vector and scalar declarations & initial convergence test omitted

for(int i = 1; i <= max_iter; i++) {

z = M.solve(r);

rho(0) = dot(r, z);

if (i == 1)

p = z;

else {

beta(0) = rho(0) / rho_1(0);

p = z + beta(0) * p;

}

q = A*p;

alpha(0) = rho(0) / dot(p, q);

x += alpha(0) * p;

r -= alpha(0) * q;

if((resid = norm(r) / normb) <= tol) {

tol = resid;

max_iter = i;

return 0;

}

rho_1(0) = rho(0);

}

tol = resid;

return 1;

}

Fig. 2: Conjugate-gradient algorithm.

3 Adaptation to context: data alignment

Figure 2 shows a generic conjugate-gradient solver algorithm, part of Dongarra et

al’s IML++ library [3]. It is parameterized by the Matrix and Vector types. The

DESOBLAS library [4] implements this API for dense matrices, in parallel using

MPI.

���α���

� � �

����

����	� θ���	�

χ���	�

α��
θ�χ

��

�� ���������

��

x and p have
incompatible
distributions:
Second transpose
required

A: blocked row-major x: blocked row-wiser: blocked row-wise

���α���

� � �

����	� θ���	�

χ���	�

α��
θ�χ

A: blocked row-major x: blocked row-wiser: blocked row-wise

���������

����

No conflict:
x and p are
aligned

��

��

��

Fig. 3: Data flow for first iteration of the conjugate gradient solver shown in Figure 2. The

vector-vector product χ = q.p needs vectors p and q to be aligned, but they are not, since the

matrix-vector product q = A.p, produces a column-wise result if the operand p is row-wise. The

first figure shows the effect of resolving this conflict by transposing p — this is short-sighted since

p is later needed aligned with x. The second figure shows the benefit of foresight — if we transpose

q instead, one transpose suffices.

Each vector-vector and matrix-vector operation (the overloaded “+” and “*”

operators in the C++ code) operates on data distributed across a mesh of proces-

sors. The matrix A is distributed in a block-block fashion. The vectors p, r and x

are replicated on each row of the processor array, and distributed block-wise within

each row. For the matrix-vector multiply q=A.p, a copy of vector p is, thus, aligned

with each row of A; we compute partial inner-products for each block, and sum them

across the rows to produce a column-wise result q (see [5]).

As a consequence, p and q necessarily end up with conflicting distributions: one

row-wise, one column-wise. The next step is to compute the inner product q.p, for

which they have to be aligned. We need to transpose one of them. As illustrated

in Figure 3, the choice of which one to transpose depends on how they will be used

later in the computation.

Using foreknowledge of how distributed intermediate results will be used, we

can avoid unnecessary redistributions. Results reported in [6] for the conjugate

gradient algorithm on an ethernet-connected Linux cluster show a reduction in

communication time of 15%–50%, although the impact on overall execution time is

smaller.

3.1 Data alignment metadata

The optimization problem is to minimize time spent on redistributing data by align-

ing each result with the computation that uses it, if possible. Where an alignment

conflict cannot be avoided, we need to resolve it using the lowest-cost redistribution.

The alignment of each vector or matrix x is characterized by an affine alignment

function align(x). Each library operator carries metadata, consisting of a set of

affine functions relating operator’s output data placement to the placement of each

input. For example, for the matrix-vector multiply q = A.p, the alignment functions

of its inputs and outputs are related:

align(p) = align(A)

align(q) = align(p)T

The arcs of the data flow graph define a network of invertible linear equalities —

in effect, a system of equations. To solve it, the optimizer can shift redistributions

around the dataflow graph to minimize communication cost; a review of optimiza-

tion algorithms and heuristics is presented in [7].

3.2 Component metadata in data alignment optimization

Again, each component carries metadata which is used to optimize it to its context

of use. The optimizer that uses this metadata analyses the way the application

program calls the component library, and encodes special knowledge of the opti-

mization requirements and opportunities that arise when the components offered

by the library are composed.

Again, our work in this area has adopted a run-time optimization strategy,

and our results show the overheads of run-time optimization are small and can be

reduced further by caching optimized execution plans for subsequent reuse. The

principle is independent of whether optimization is at compile-time or run-time:

metadata associated with functions/components is used by a domain-specific opti-

mization pass which operates on the application code that calls the library.

4 Adaptation to context: specialization

The third form of optimization by adaptation to context we explore is specialisa-

tion, sometimes called partial evaluation. Much research [8] has been focussed on

automatic partial evaluation, starting from a non-specialising code version, perhaps

annotated to indicate run-time constant variables. A good example is DyC [9],

a compiler for C that generates a run-time specialiser which is invoked when the

program first uses an annotated run-time–constant value.

The more explicit alternative that we present here is to program the generation

process explicitly. “Multi-stage” programming languages, such as MetaOCaml [10]

support this as a first-class language feature. Our TaskGraph library for C++

exploits templates and overloading to achieve much of this without special compiler

support.

The complete example program in Figure 4 dynamically creates a piece of code

for the expression x+y+1. The resulting taskgraph represents a function with two

integer arguments and an integer result. Finally the taskgraph is passed application

program variables a and b as parameters and executes the code, printing a+b+c = 6

as the result. The code for x+y+c is specialised for c = 1.

The type of an expression determines whether it forms part of the generated

code, or instead is executed at code generation time. Expressions and statements

which involve only primitive C/C++ variables (such as c) are executed normally.

TaskGraph expressions are expressions that involve TaskGraph variables (parame-

ters such as x and y above, and, in later examples, variables declared using tVar).

Arithmetic operators such as + are overloaded, so that if one of the operands is

a TaskGraph expression or TaskGraph variable, instead of doing an addition, the

int main() {

int c = 1;

TaskGraph < Par < int, int >, Ret < int > > T;

taskgraph(T, tuple2(x, y)) {

tReturn(x + y + c);

}

T.compile(tg::GCC, true);

int a = 2;

int b = 3;

printf("a+b+c = %d\n", T.execute(a, b));

}

+

+

tReturn

tVar x tVar y

1

Fig. 4: Left: Simple example of using the TaskGraph library. The TaskGraph’s argument is a 2-

tuple containing the two integer formal parameters; it has an integer result type. Right: Abstract

syntax tree (AST) for the simple TaskGraph constructed by the piece of code shown on the left.

The variable c, which is static at TaskGraph construction time, does not appear in the tree –

instead c’s value is used.

+ operator creates a node for the taskgraph’s abstract syntax tree. The tReturn()

function creates a return statement node in the taskgraph. As we see in the next

example, assignment is also overloaded to add an assignment node, and there are

TaskGraph versions of the usual control structures — tFor for for, tIf for if, and

so on.

4.1 Generalised image convolution

Figure 5 shows how specialisation can be used at run-time to achieve a substantial

performance improvement. In this image convolution example, we sweep over an

input image, computing at each pixel the sum of the CSZ*CSZ neighbouring pixels,

weighted by a second image mask. The function builds a version of the loop nest,

specialized to the particular mask. The loops over the mask array are executed as

the taskgraph is generated, so the mask values appear as constants (possibly zero)

in the generated code.

The effect is that the taskgraph contains control flow nodes for the outer i and

j loops and a loop body consisting of CSZ * CSZ assignment statements.

Figure 6 illustrates the performance that can be achieved. The convolution mask

used was a 3×3 averaging filter, images were square arrays of single-precision floats

ranging in size up to 4094× 4096. Measurements are taken on a Pentium 4-M with

512KB L2 cache running Linux 2.4, gcc 3.3 and the Intel C++ compiler version

7.1. We compare the performance of the following:

• The static C++ code, compiled with gcc 3.3 (-O3).

• The static C++ code, compiled with the Intel C++ compiler version 7.1 (-

restrict -O3 -xc -xiMKW -tpp7 -fno-alias). The icc compiler reports that the

innermost loop for(cj..)) has been vectoriseda. Note, however, that this

aThe SSE2 extensions implemented on Pentium 4 processors include 16-byte vector registers

void specialize_convolution(

TaskGraph < Par <float[IMG_SIZE][IMG_SIZE], float[IMG_SIZE][IMG_SIZE]>,

Ret < void > > &T,

const int IMGSZ, const int CSZ, const float *mask) {

int ci, cj;

assert(CSZ % 2 == 1);

const int c_half = (CSZ / 2);

taskgraph(T, tuple2(tgimg, new_tgimg)) {

tVar (int, i);

tVar (int, j);

// Loop iterating over image

tFor(i, c_half, IMGSZ - (c_half + 1)) {

tFor(j, c_half, IMGSZ - (c_half + 1)) {

new_tgimg[i][j] = 0.0;

// Loop to apply convolution mask

for(ci = -c_half; ci <= c_half; ++ci) {

for(cj = -c_half; cj <= c_half; ++cj) {

new_tgimg[i][j] +=

tgimg[i+ci][j+cj] * mask[c_half+ci][c_half+cj];

} } } }

}

}

Fig. 5: Generic image convolution: this function builds a taskgraph for a convolution operation

specialised to a particular mask. The outer loops, tFor(i..) and tFor(j..), produce loops in

the generated code. The inner loops, for(ci..) and for(cj..), are executed during taskgraph

construction — producing multiple copies of the loop body. Each instance of the loop body is

specialised for particular values of ci and cj. The expression mask[c half+ci][c half+cj] involves

no taskgraph variables so its value is calculated at construction time.

loop will have a dynamically determined trip-count of 3, i.e. the Pentium 4’s

16-byte vector registers will not be filled.

• The code dynamically generated by the TaskGraph library, compiled with gcc

3.3. The two innermost loops are unrolled.

• The code dynamically generated by the TaskGraph library, compiled with icc

7.1. The two innermost loops are unrolled and the then-remaining innermost

loop (the for(j..) loop over the image) is vectorised by icc.

The results show that the overhead of generating code and compiling it at run-time

is around 100ms, so for a single convolution operation, speedup occurs only with

images larger than 1024× 1024. For large images the specialized code is more than

three times faster.

and corresponding instructions which operate simultaneously on multiple operands packed into
them [11].

Generalised Image Filtering Performance (1 Pass)

0

0.5

1

1.5

2

0 512 1024 1536 2048 2560 3072 3584 4096
Image Size (512 means image size is 512x512 floats)

R
u

n
ti

m
e

in
 S

ec
o

n
d

s

Generic C++ compiled with gcc
Generic C++ compiled with icc
TaskGraph gcc
TaskGraph icc

Fig. 6: Performance of image convolution example. The graphs show total execution time, includ-

ing run-time compilation, for one pass over the image. The poor performance with 1024 × 1024

and 3072 × 3072 images is due to cache interference effects.

4.2 Specialisation and performance metadata

Components like image convolution can use specialization internally without expos-

ing the fact to the caller. However, better performance can often be achieved if the

caller is involved in deciding when, and whether, to invest in run-time code gener-

ation. To do this the component has to expose the information the caller needs to

estimate performance, and to evaluate the likely costs and benefits of specialisation.

For example, in the case of image convolution, unspecialized execution time is

characterized by an expression dominated by the product of the image size with the

mask size. With specialization, execution time is a product of image size and the

number of non-zero mask elements, but likely with lower constants due to vector-

ization and reduced loop overheads. However the specialization process itself takes

time proportional to the mask size (although in our current implementation the

100ms overhead of invoking the compiler usually makes code size a minor factor).

5 Adaptation to platform

The fourth form of optimization by adaptation to context we explore is tuning the

code for the particular hardware on which it will execute.

Many applications are distributed to customers with diverse hardware, or are

executed on resources allocated on-demand. Re-optimization to exploit the avail-

able hardware may simply be a matter of recompilation. Libraries like Atlas [12]

typedef float MatrixType[MATRIXSIZE][MATRIXSIZE];

float MatrixType a, b, c;

typedef TaskGraph< Par<MatrixType, MatrixType, MatrixType>, Ret<void> > mm_TaskGraph;

void taskMatrixMult (mm_TaskGraph &t, TaskLoopIdentifier *loop) {

taskgraph (t, tuple3(a, b, c)) {

tVar (int, x); tVar (int, y); tVar (int, z);

tGetId (loop[0]); // label

tFor (x, 0, MATRIXSIZE - 1) {

tGetId (loop[1]); // label

tFor (z, 0, MATRIXSIZE - 1) {

tGetId (loop[2]); // label

tFor (y, 0, MATRIXSIZE - 1) {

c[x][y] += a[x][z] * b[z][y];

}}}}}

main () {

int bestTime; int bestSize = 0;

for (int tsz = 4; tsz <= MATRIXSIZE; ++tsz) {

int trip3 = { tsz, tsz, tsz };

TaskLoopIdentifier loop[3];

mm_TaskGraph MM;

taskMatrixMult(loop, MM);

interchangeLoops(loop[1], loop[2]);

tileLoop(3, &loop[0], trip3);

MM.compile(TaskGraph::ICC);

tt3 = time_function();

MM.execute(A, B, C);

time = time_function()-tt3;

if (time < bestTime || bestSize == 0) {

bestTime = time; bestSize = tsz;

}}}

Fig. 7: This example illustrates the TaskGraph library’s metaprogramming capabilities. Having

built a simple loop nest to encode a matrix multiply, we call SUIF transformations to interchange

and tile loops. We record the performance achieved with each tile size and record the optimum

value for future runs. An example of the generated code is shown in Figure 8.

extern void taskGraph_1(void **params)

{

float (*a)[512]; float (*b)[512]; float (*c)[512];

int i; int j; int k; int j_tile; int k_tile;

a = *params; b = params[1]; c = params[2];

for (i = 0; i <= 511; i++)

for (j_tile = 0; j_tile <= 511; j_tile += 360)

for (k_tile = 0; k_tile <= 511; k_tile += 360)

for (j = j_tile; j <= min(511, 359 + j_tile); j++)

for (k = max(0, k_tile); k <= min(511, 359 + k_tile); k++)

c[i][k] = c[i][k] + a[i][j] * b[j][k];

}

Fig. 8: Example of the code generated by Figure 7, for 360 × 360 tiles (slightly tidied). For large

matrices on a 1.8GHz Pentium-4-M with 512KB level-2 cache, using the Intel C compiler version

7.1 this is the optimal tile size, and achieves ca.2 GFLOPs (single precision), more than five times

the performance of the naive code. Further transformations are needed to maximise performance

(the Atlas version can reach more than 4 GFLOPs), including index set splitting to remove the

min and max operators, hierarchical tiling (for TLB, registers and multiple levels of cache) and

copying of submatrices to reduce cache associativity conflicts.

and FFTW [13] run performance experiments at installation-time to select the op-

timal code variants to use for key library functions. “Iterative compilation” is the

idea of extending this to application code by empirically searching the space of code

transformations and synthesis alternatives [14]. Figure 7 shows a simple example

of doing this using our TaskGraph library’s metaprogramming tools, which pro-

vide access to analyses and restructuring transformations implemented using the

SUIF [15] and ROSE [16] frameworks.

This simple example illustrates the potential for programmer control over ap-

plication of sophisticated transformations. The performance benefits can be large

— in this extreme example a factor of eight or more. Different target architectures

and problem sizes need different combinations of optimisations. Matrix multiply is

a simple example, but has a large space of available transformations — should the

loops at each level be nested in “ijk” or “ikj” order? Should we tile hierarchically

— for registers, TLB, and multiple levels of cache? Should we copy the reused

submatrix into contiguous memory?

5.1 Abstraction in automatic adaptation to hardware architecture

The problem here is not finding valid optimizing transformations, but to constrain

the empirical search for the optimum combination of transformations to apply.

There are two parts:

• Leaf routines and fully-inlined code, and

• Code built by composing library functions

To extend the performance benefits of iterative compilation beyond libraries without

exploring a enormous transformation space, we need to be able to characterise the

ways in which a library function can adapt to its context of use.

For a very simple example, consider summing three images, represented as arrays

of 32-bit floats. We can use the Intel Performance Primitives library’s function to

add two such images at a time:

ippiAdd_32f_C1R(image1, size , image2 , size, sum12, size , whole);

ippiAdd_32f_C1R(image3, size, sum12, size, sum123 , size , whole);

The first call adds image1 and image2. The second adds this to image3. Inlining

the naive code for image addition produces:

for (i = 0; i <= size; i++)

for (j = 0; j <= size; j++)

sum12[i][j] = image1[i][j] + image2[i][j];

for (i = 0; i <= size; i++)

for (j = 0; j <= size; j++)

sum123[i][j] = image3[i][j] + sum12[i][j];

Loop fusion can be applied:

for (i = 0; i <= size; i++)

for (j = 0; j <= size; j++)

sum12[i][j] = image1[i][j] + image2[i][j];

sum123[i][j] = image3[i][j] + sum12[i][j];

However, Intel’s library code for image addition is carefully implemented, and it

is faster to forego loop fusion, and use the library code to sweep over the images

twice — until the image size exceeds around 4000 × 4000 (on a 1.8GHz Pentium

4-M using the Intel C Compiler 8.0).

The role for component metadata here is to carry information like this — to se-

lect loop fusion only when the image size exceeds some architecture-specific thresh-

old.

6 Discussion

We have presented four examples of optimization by adaptation to context:

• Communication fusion (Section 2)

• Data alignment (Section 3)

• Specialisation (Section 4)

• Adaptation to hardware platform (Section 5)

In each case we have observed how exploiting this optimization manually can lead

to damage to the program’s abstractions.

6.1 Component metadata

In each case, we have explored the proposition that using metadata associated with

the program’s components, this damage can be prevented:

• For communication fusion: metadata tracks the global shared variables defined

and used.

When components are composed, we can use this to determine when collective,

fused, communications have to be executed.

• For data alignment optimisation: metadata characterises each component’s

data alignment constraints.

When components are composed, we assemble these constraints and solve for

the minimum-cost assignment of data alignments to intermediate operands.

• Specialisation: metadata characterizes the likely costs and benefits of special-

ization with respect to each parameter, possibly as a function of the parame-

ter’s value or size.

This information is used to decide whether to create a version of the compo-

nent specialised to a particular context.

• For adaptation to the hardware platform, metadata characterizes the available

optimizing transformations, and provides a model for their effect on perfor-

mance.

This is used to guide the search for the optimum combination of optimizing

transformations. When components are composed, it identifies fusion/blocking

opportunities and characterizes their benefits and costs.

6.2 Composition metaprogramming

The code that uses component metadata operates at the point where components

are assembled — in the calling, client code. This is a form of metaprogramming [17],

since it plans program execution, possibly generating code.

For each of the adaptation optimizations above, there is a “composition metapro-

gram” that uses component metadata to find the optimum way to execute the

components being assembled.

6.3 A generic framework

The form of the component metadata depends on the optimisation opportunities

being considered, and this, in turn, depends on the application domain. The ex-

amples we have presented illustrate some of the potential variety, and demonstrate

the need for an open, extensible framework. A starting point would be the meta-

data/annotation schemes found in Java [18] or attributes in .Net [19]. The research

challenge is to devise a component metadata structure that supports a wide range of

adaptations in a common framework, so that different composition metaprograms

have access to all the adaptation opportunities the components offer.

7 Related work

Explicit composition metaprogramming — the idea of analysing component con-

text to plan computation accordingly — has a considerable heritage. This is what

compilers do, of course, but more interesting examples operate at later stages. For

example, KeLP [20], BSP [21] and CHAOS/PARTI [22] explicitly schedule message

exchanges to implement the communication pattern required at run-time. Metadata

in the form of performance models has been used at run-time to control granularity

in task-stealing systems [23]. The macro data-flow system Mentat [24] supported

dynamic partitioning of the data-flow graph. Veneer is a generic run-time opti-

mization framework that uses dependence metadata about client code fragments to

re-order and coalesce remote calls [25].

Procedure summary data is used in compilers to support scalable interprocedural

analysis [26]. While this addresses the scalability of analysis rather than synthesis,

“procedure cloning” attempts to gain the advantages of full inlining (and thus full

adaptation to context) using a minimum number of implementation variants [27].

ICENI [28], a grid component framework, uses performance models to select imple-

mentation variants and to match them to available computing resources. In [29],

cost models for computational components are combined at the composition level

using cost models for higher-order skeleton operators.

“Active libraries” are libraries that take an active role in compilation of client

code [30]. To build them, generic frameworks for building domain-specific optimizers

are needed; we have been experimenting with ROSE [16]. Kennedy proposes a

“telescoping” approach to optimization to context, where a large number of different

component compositions are precompiled [31].

In [32] we proposed component dependence metadata, that characterizes the

internal iteration space and dependence structure. For regular loop nests with well-

behaved dependence structure, the Kelly-Pugh [33] or Polytope-based [34] composi-

tional transformation frameworks can be adopted. The challenge is to extend such

a model to irregular loops whose dependence structure depends on data values.

Strout et al offer a step in this direction [35].

8 Conclusions

Optimizing software by adapting components to context manually reduces its long-

term value because it breaks abstractions and blocks re-use. This can be avoided

by automating the adaptation process. We have attempted here to map out an

attack on this problem. A metaprogram — which may be a compiler plug-in, or

a run-time mechanism — analyses how the components are composed, and uses

metadata carried by the components to identify optimizing transformations and

plan the execution.

Through a number of examples, we have explored specific instances of this gen-

eral idea. Much research is needed to unify the different kinds of optimisation,

the different kinds of context to which to adapt, and the different stages at which

adaptation can take place.

Acknowledgements Particular thanks are due to the organisers of the CMPP

2004 workshop in Stirling who commissioned the invited talk on which this paper

is based. Tony Field, Alastair Houghton, Michael Mellor, Peter Fordham, Peter

Liniker, Thomas Hansen, Kostas Spyropoulos and Peter Collingbourne also con-

tributed to some of the work presented here. This work was funded by the EPSRC

through a doctoral studentship and grants GR/R21486 (Oscar) and GR/R15566

(Desormi). Chris Lengauer and Scott Baden kindly offered advice on presentation.

References

1. A. J. Field, Paul H. J. Kelly, and Thomas L. Hansen. Optimising shared reduction
variables in MPI programs. In Burkhard Monien and Rainer Feldmann, editors,
Euro-Par 2002. Springer Verlag LNCS 2400, 2002.

2. Sergei Gorlatch. Towards formally-based design of message passing programs. IEEE
Transactions on Software Engineering, 26(3):276–288, March 2000.

3. J. Dongarra, A. Lumsdaine, R. Pozo, and K. Remington. A sparse matrix library
in C++ for high performance architectures. In Proceedings of the Second Object
Oriented Numerics Conference, 1992.

4. Peter Liniker, Olav Beckmann, and Paul H. J. Kelly. Delayed evaluation, self-
optimising software components as a programming model. In Euro-Par 2002.
Springer Verlag LNCS 2400, 2002.

5. Michael J Quinn. Parallel Programming in C with MPI and OpenMP. McGraw Hill,
2003.

6. Olav Beckmann and Paul H. J. Kelly. Efficient interprocedural data placement
optimisation in a parallel library. In LCR98: Languages, Compilers and Run-time
Systems for Scalable Computers, pages 123–138. Springer-Verlag LNCS 1511, May
1998.

7. Olav Beckmann and Paul H J Kelly. A review of data placement optimisation for
data parallel component composition. In Sergei Gorlatch and Christian Lengauer,
editors, Constructive Methods for Parallel Programming, Advances in Computation:
Theory and Practice. Nova Science, 2000. (proceedings of CMPP2000).

8. John Hatcliff, Torben Mogensen, and Peter Thiemann, editors. Partial Evaluation.
Practice and Theory. Springer Verlag LNCS 1706, 1999. DIKU 1998 International
Summer School, Copenhagen, Denmark, June 29 - July 10, 1998.

9. Brian Grant, Markus Mock, Matthai Philipose, Craig Chambers, and Susan J. Eg-
gers. Annotation-directed run-time specialization in C. SIGPLAN Not., 32(12):163–
178, 1997.

10. Walid Taha and Tim Sheard. Multi-stage programming with explicit annotations.
In Proceedings of the 1997 ACM SIGPLAN Symposium on Partial evaluation and
semantics-based program manipulation, pages 203–217. ACM Press, 1997.

11. Intel Corporation. Intel Pentium 4 and Intel Xeon Processor Optimization Reference
Manual, 1999–2002. Available via developer.intel.com.

12. Jack J. Dongarra and Clint R. Whaley. Automatically tuned linear algebra software
(ATLAS). In Proceedings of SC’98 Conference. IEEE, 1998.

13. Matteo Frigo and Steven G. Johnson. FFTW: An adaptive software architecture for
the FFT. In Proc. 1998 IEEE Intl. Conf. Acoustics Speech and Signal Processing,
volume 3, pages 1381–1384. IEEE, 1998.

14. G.G. Fursin, M.F.P. O’Boyle, and P.M.W. Knijnenburg. Evaluating iterative com-
pilation. In Proceedings of the 15th Workshop on Languages and Compilers for
Parallel Computers (LCPC’02), pages 305–315, 2002.

15. M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao,

E. Bugnion, and M. S. Lam. Maximizing multiprocessor performance with the
SUIF compiler. IEEE Computer, December 1996.

16. Markus Schordan and Daniel Quinlan. A source-to-source architecture for user-
defined optimizations. In Joint Modular Languages Conference (JMLC’03).
Springer Verlag LNCS 2789, 2003.

17. Tim Sheard. Accomplishments and research challenges in meta-programming. In
2nd Intl. Workshop on Semantics, Applications, and Implementation of Program
Generation, pages 2–44. Spring Verlag LNCS 2196, 2001.

18. Gilad Bracha et al. JSR 175: A metadata facility for the Java programming lan-
guage, September 2004. Java Community Process (http://www.jcp.org).

19. Microsoft. .NET framework developer’s guide: Extending metadata using at-
tributes, 2004. (http://msdn.microsoft.com).

20. S. J. Fink, S. R. Kohn, and S. B. Baden. Efficient run-time support for irregular
block-structured applications. J. Parallel and Distributed Computing, 50(1-2), April-
May 1998.

21. Rob H. Bisseling. Parallel Scientific Computation: A Structured Approach using
BSP and MPI. Oxford University Press, February 2004.

22. Ravi Ponnusamy, Joel H. Saltz, and Alok N. Choudhary. Runtime compilation tech-
niques for data partitioning and communication schedule reuse. In Supercomputing,
pages 361–370, 1993.

23. P. López-Garćıa, M. Hermenegildo, and S.K. Debray. A methodology for granularity
based control of parallelism in logic programs. Journal of Symbolic Computation,
22, 1996.

24. Jon B. Weissman and Andrew S. Grimshaw. Network partitioning of data paral-
lel computations. In Third IEEE International Symposium on High Performance
Distributed Computing (HPDC), August 1994.

25. Kwok Cheung Yeung and Paul H J Kelly. Optimizing Java RMI programs by com-
munication restructuring. In D Schmidt and M Endler, editors, Middleware 2003:
ACM/IFIP/USENIX International Middleware Conference. Springer Verlag LNCS
2672, 2003.

26. M. Hall, S. Hiranandani, K. Kennedy, and C. Tseng. Interprocedural compilation
of Fortran D. Journal of Parallel and Distributed Computing, December 1996.

27. K.D. Cooper, M.W. Hall, and K. Kennedy. A methodology for procedure cloning.
Computer Languages, 19(2), April 1999.

28. J. Hau, W. Lee, and Steven Newhouse. Autonomic service adaptation using onto-
logical annotation. In 4th International Workshop on Grid Computing, Grid 2003,
November 2003.

29. Martin Alt, Holger Bischof, and Sergei Gorlatch. Program development for com-
putational grids using skeletons and performance prediction. Parallel Processing
Letters, 12(2):157–174, 2002.

30. Todd L. Veldhuizen and Dennis Gannon. Active libraries: Rethinking the roles
of compilers and libraries. In Proceedings of the SIAM Workshop on Object Ori-
ented Methods for Inter-operable Scientific and Engineering Computing (OO’98),
Philadelphia, PA, USA, 1998. SIAM.

31. Ken Kennedy. Telescoping languages: A compiler strategy for implementation of
high-level domain-specific programming systems. In 14th International Parallel and
Distributed Processing Symposium (IPDPS’00). Springer Verlag, 2000.

32. Paul H J Kelly, Olav Beckmann, Tony Field, and Scott Baden. Themis: Component

dependence metadata in adaptive parallel applications. Parallel Processing Letters,
11(4), 2001.

33. Wayne Kelly and William Pugh. A framework for unifying reordering transforma-
tions. Technical Report CS-TR-3193, Dept. of Computer Science, University of
Maryland, 1993.

34. C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and O. Temam. Putting polyhedral
loop transformations to work. In Workshop on Languages and Compilers for Parallel
Computing (LCPC’03). Springer Verlag, 2003.

35. Michelle Mills Strout, Larry Carter, and Jeanne Ferrante. Compile-time composition
of run-time data and iteration reorderings. In Programming Language Design and
Implementation (PLDI). ACM, 2003.

