
Run-time ode generation in C++ as afoundation for domain-spei� optimisationOlav Bekmann, Alastair Houghton, Paul H J Kelly, and Mihael MellorDepartment of Computing, Imperial College,180 Queen's Gate, London SW7 2BZ, United Kingdomfo.bekmann,p.kellyg�imperial.a.ukwww.do.i.a.uk/f~ob3,~phjkgAbstrat. The TaskGraph Library is a C++ library for dynami odegeneration, whih ombines speialisation with dependene analysis andloop restruturing. A TaskGraph represents a fragment of ode whih isonstruted and manipulated at run-time, then ompiled, dynamiallylinked and exeuted. TaskGraphs are initialised using maros and over-loading, whih forms a simpli�ed, C-like sub-language with �rst-lass ar-rays and no pointer arithmeti. One a TaskGraph has been onstruted,we an analyse its dependene struture and perform optimisations. Inthis paper, we present the design of the TaskGraph library, and two sam-ple appliations to demonstrate its use for runtime ode speialisationand restruturing optimisation.1 IntrodutionSetting the Sene: Cross-Component Optimisation at Runtime. The work wedesribe in this paper is part of a wider researh programme at Imperial Col-lege aimed at addressing the apparent onit between the quality of sienti�software and its performane. High-quality, easy-to-maintain sienti� softwareis often built from abstrat omponents whih have been independently veri�edand optimised. Unfortunately, there is a performane penalty assoiated with thisapproah sine omponents are deployed outside the ontext in whih they havebeen optimised. Our proposal for reversing this performane penalty is based onruntime ross-omponent optimisation. Current researh projets whih imple-ment this general approah are a library for performing runtime ross-omponentdata plaement optimisation in data-parallel programs [13℄, a system for optimis-ing Java RMI alls at runtime [22℄ and runtime ross-omponent loop fusion [6℄.The TaskGraph Library. The TaskGraph library is a key tool whih we aredeveloping in order to drive this researh programme. The library is written inC++ and is designed to support dynami ode generation, speialisation andexpliit analysis and manipulation of the generated ode:{ Dynami Component SpeialisationThe TaskGraph library an be used for speialising software omponents



aording to either their parameters or other runtime ontext information.Later in this paper (Setion 3), we show an example of speialising a generiimage �ltering funtion to the partiular onvolution matrix being used.{ Runtime Dependene Analysis and RestruturingThe TaskGraph library uses SUIF-1 [21℄, the Stanford University Interme-diate Format, as its internal representation for ode. This makes a rih ol-letion of dependene analysis and restruturing passes available for our usein ode optimisation.{ Runtime Generation of Component MetadataOur delayed evaluation, self-optimising (DESO) library [13℄ for performingruntime ross-omponent data plaement optimisation urrently relies onhand-written metadata whih haraterises the data plaement onstraintsof eah omponent. We have arried out initial work aimed at generatingthis metadata automatially using the TaskGraph library [19℄.Relationship with Earlier Work. Several earlier tools for dynami ode optimi-sation have been reported in the literature [5, 8℄. The key harateristis whihdistinguish our approah are as follows:{ Single-Language DesignThe TaskGraph library is implemented in C++ and any TaskGraph programan be ompiled as C++ using widely-available ompilers. This is in ontrastwith approahes suh as `C [5℄ whih rely on a speial ompiler for proessingdynami onstruts. The TaskGraph library's support for manipulating odeas data within one language was pioneered in Lisp [15℄.{ Expliit Spei�ation of Dynami CodeLike `C [5℄, the TaskGraph library is an imperative system in whih theappliation programmer has to onstrut the ode as an expliit data stru-ture. This is in ontrast with ambitious partial evaluation approahes suh asDyC [8,9℄ whih use delarative annotations of regular ode to speify wherespeialisation should our and whih variables an be assumed onstant.O�ine partial evaluation systems like these rely on binding-time analysis(BTA) to �nd other, derived stati variables [12℄.{ Simpli�ed C-like Sub-languageDynami ode is spei�ed with the TaskGraph library via a small sub-language whih is very similar to standard C (see Setion 2). This languagehas been implemented through extensive use of maros and C++ operatoroverloading and onsists of a small number of speial ontrol ow onstruts,as well as speial types for dynamially bound variables. This means thatBTA in our approah is e�etively performed by the C++ type system. Thelanguage has �rst-lass arrays, unlike C and C++, to failitate dependeneanalysis.Struture of this Paper. In Setion 2, we desribe how TaskGraphs are on-struted. Setion 3 o�ers a simple demonstration of run-time speialisation. Se-tion 4 explains how the library itself is implemented. In Setion 5, we use matrix



1 #inlude <stdio.h>2 #inlude <TaskGraph>34 using namespae tg;56 int main( int arg, har �argv[℄ ) f7 TaskGraph T;8 int b = 1,  = 1;910 taskgraph( T ) f11 tParameter ( tVar ( int, a ) );1213 a = a + ;14 g1516 T.ompile();17 T.exeute( "a", &b, NULL );1819 printf ( "b = %dnn", b );20 return 0;21 g
var
a : int progn

TaskGraph

Var a Add

(Statement) Assign

1Var aFig. 1. Left: Simple Example of using the TaskGraph library. Right: Abstrat syntaxtree (AST) for the simple TaskGraph onstruted by the piee of ode shown on theleft. The variable , whih has is stati at TaskGraph onstrution time appears in theAST as a value (see Setion 4).multipliation to illustrate the use of the library's loop restruturing apabili-ties. In Setions 6 and 7 we disuss related and ongoing work, and Setion 8onludes.2 The TaskGraph Library APIA TaskGraph is a data struture whih holds the abstrat syntax tree (AST)for a piee of dynami ode. A key feature of our approah is that the appli-ation programmer has aess to and an manipulate this data struture atruntime; in partiular, we provide an extensible API (sub-language) for on-struting TaskGraphs at runtime. This API was arefully designed using marosand C++ operator overloading to look as muh as possible like ordinary C.A Simple Example. The simple C++ program shown in the left-hand part of Fig-ure 1 is a omplete example of using the TaskGraph library. When ompiled withg++, linked against the TaskGraph library and exeuted, this program dynami-ally reates a piee of ode for the statement a = a + , binds the appliationprogram variable b as a parameter and exeutes the ode, printing b = 2 as theresult. This very simple example illustrates both that reation of dynami odeis ompletely expliit in our approah and that the language for reating theAST whih a TaskGraph holds looks similar to ordinary C.



void onvolution( onst int IMGSZ, onst FLOAT �image, FLOAT �new image,onst int CSZ /� onvolution matrix size �/, onst FLOAT �matrix ) fint i , j , i , j ;assert ( CSZ % 2 == 1 );onst int  half = ( CSZ / 2 );// Loop iterating over imagefor( i =  half ; i < IMGSZ �  half; ++i ) ffor( j =  half ; j < IMGSZ �  half; ++j ) fnew image[i � IMGSZ + j℄ = 0.0;// Loop to apply onvolution matrixfor( i = �  half; i <=  half; ++i ) ffor( j = �  half; j <=  half; ++j ) fnew image[i � IMGSZ + j℄ +=image[(i+i) � IMGSZ + j+j℄ � matrix[( half+i) � CSZ +  half+j℄;ggggreturn;gFig. 2. Generi image �ltering: C++ ode. Beause the size as well as the entries ofthe onvolution matrix are runtime parameters, the inner loops (for-i and for-j), withmost likely very low trip-ount, annot be unrolled eÆiently.3 Generalised Image FilteringWe now show an example whih uses a fuller range of TaskGraph onstrutsand whih also demonstrates a real performane bene�t from runtime ode op-timisation. A generi image onvolution funtion, whih allows the appliationprogrammer to supply an arbitrary onvolution matrix ould be written in Cas shown in Figure 2. This funtion has the advantage of generiity (the inter-fae is in priniple similar to the General Linear Filter funtions from the IntelPerformane Libraries [11, Setion 9℄) but su�ers from poor performane beause{ The loop bounds of the inner loops over the onvolution matrix are statiallyunknown, hene these loops, with most likely very low trip-ount, annot beunrolled eÆiently.{ Failure to unroll the inner loops not only leads to unneessarily ompliatedontrol ow, but also bloks optimisations suh as vetorisation on the outerloops.Figure 3 shows a funtion whih onstruts a TaskGraph that is speialised tothe partiular onvolution matrix being used. The tFor onstruts are part ofthe TaskGraph API and reate a loop node in the AST. Note, however, that theinner for loops are exeuted as ordinary C++ at TaskGraph onstrution time,reating an assignment node in the AST for eah iteration of the loop body. Thee�et is that the AST ontains ontrol ow nodes for the for-i and for-j loopsand a loop body onsisting of CSZ * CSZ assignment statements.We study the performane of this example in Figure 4. The onvolutionmatrix used was a 3 � 3 averaging �lter, images were square arrays of single-



302 void taskgraph onvolution( TaskGraph &T, onst int IMGSZ,303 onst int CSZ, onst FLOAT �matrix ) f304 int i , j ;305 assert ( CSZ % 2 == 1 );306 onst int  half = ( CSZ / 2 );307308 taskgraph( T ) f309 unsigned int dims[℄ = fIMGSZ � IMGSZg;310 tParameter( tArray( FLOAT, tgimg, 1, dims ) );311 tParameter( tArray( FLOAT, new tgimg, 1, dims ) );312 tVar ( int, i );313 tVar ( int, j );314315 // Loop iterating over image316 tFor( i ,  half , IMGSZ � ( half + 1) ) f317 tFor( j ,  half , IMGSZ � ( half + 1) ) f318 new tgimg[i � IMGSZ + j℄ = 0.0;319320 // Loop to apply onvolution matrix321 for( i = � half; i <=  half; ++i ) f322 for( j = � half; j <=  half; ++j) f323 new tgimg[i � IMGSZ + j℄ +=324 tgimg[(i+i) � IMGSZ + j+j℄ � matrix[( half+i) � CSZ +  half+j℄;325 g326 g327 g328 g329 g330 return;331 gFig. 3. Generi image �ltering: funtion onstruting the TaskGraph for a spei�onvolution matrix. The size as well as the entries of the onvolution matrix are statiat TaskGraph onstrution time. This failitates omplete unrolling of the inner twoloops. The outer loops (for-i and for-j) are entered as ontrol ow nodes in the AST.preision oats ranging in size up to 4094� 4096. Measurements are taken ona Pentium 4-M with 512KB L2 ahe running Linux 2.4, g 3.3 and the IntelC++ ompiler version 7.1. We ompare the performane of the following:{ The stati C++ ode, ompiled with g 3.3.{ The stati C++ ode, ompiled with the Intel C++ ompiler version 7.1. Thei ompiler reports that the innermost loop (for-j) has been vetorised1.Note, however, that this loop will have a dynamially determined trip-ountof 3, i.e. the Pentium 4's 16-byte vetor registers will not be �lled.{ The ode dynamially generated by the TaskGraph library, ompiled withg 3.3. The two innermost loops are unrolled.{ The ode dynamially generated by the TaskGraph library, ompiled withi 7.1. The two innermost loops are unrolled and the then-remaining in-nermost loop (the for-j loop over the image) is vetorised by i.We have deliberately measured the performane of these image �ltering funtionsfor only one pass over an image. In order to see a real speedup the overhead of1 The SSE2 extensions implemented on Xeon and Pentium 4 proessors inlude 16-byte vetor registers and orresponding vetor instrutions [10℄.



Generalised Image Filtering Performance (1 Pass)
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Generalised Image Filtering - Timing Breakdown
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Fig. 4. Performane of image �ltering example. Top: Total exeution time, inludingruntime ompilation, for one pass over image. Bottom: Breakdown of total exeutiontime into ompilation time and exeution time of the atual onvolution ode for twospei� image sizes: 1024 � 1024 (the break-even point) and 2048 � 2048.



runtime ompilation therefore needs to be reovered in just a single appliation ofthe generated ode. Figure 4 shows that we do indeed get an overall speedup forimage sizes that are greater than 1024�1024. In the right-hand part of Figure 4,we show a breakdown of the overall exeution time for two spei� data sizes.This demonstrates that although we ahieve a huge redution in exeution timeof the atual image �ltering ode, the onstant overhead of runtime ompilationanels out this bene�t for a data size of 1024� 1024. However, for larger datasizes, we ahieve an overall speedup.Note, also, that image �lters suh as the one in this example might be appliedeither more than one to the same image or to di�erent images | in either ase,we would have to pay the runtime ompilation overhead only one and will gethigher overall speedups.4 How it WorksThus far, we have given examples of how the TaskGraph library is used, as wellas demonstrated that it an ahieve signi�ant performane gains. In this setionwe now give a brief overview of TaskGraph syntax, together with an explanationof how the library works.TaskGraph Creation. The TaskGraph library an represent ode as data |spei�ally, it provides TaskGraphs as data strutures holding the AST for apiee of ode. We an reate, ompile and exeute di�erent TaskGraphs inde-pendently. Statements suh as the assignment a = a +  in line 13 of Figure 1make use of C++ operator overloading to add nodes (in this ase an assignmentstatement) to a TaskGraph. Figure 1 illustrates this by showing a graphial rep-resentation of the omplete AST whih was reated by the adjaent ode. Notethat the variable  has stati binding-time for this TaskGraph. Consequently,the AST ontains its value rather than a variable referene.The taskgraph( T )f...g onstrut (see line 308 in Figure 3) determineswhih AST the statements in a blok are attahed to. This is neessary in or-der to failitate independent onstrution of di�erent TaskGraphs, representingdi�erent omputations.Variables in TaskGraphs. The TaskGraph library inherits lexial soping fromC++. The tVar(type, name) onstrut (see lines 312 and 313 in Figure 3)an be used to delare a dynami loal variable. Similarly, the tArray(type,name, no dims, extents[℄) onstrut an be used to delare a dynami multi-dimensional array with number of dimensions no dims and size in eah dimen-sion ontained in the integer array extents. Arrays are �rst-lass objets in theTaskGraph onstrution sub-language and an only be aessed inside a Task-Graph using the [℄ subsript operators. There are no pointers in the TaskGraphonstrution sub-language.



302 void taskgraph onvolution( TaskGraph &T, onst int IMGSZ,303 onst int CSZ, onst FLOAT �matrix ) f304 int i , j ;305 assert ( CSZ % 2 == 1 );306 onst int  half = ( CSZ / 2 );307308 taskgraph( T ) f309 unsigned int dims[℄ = fIMGSZ � IMGSZg;310 tParameter( tArray( FLOAT, tgimg , 1, dims ) );311 tParameter( tArray( FLOAT, new tgimg , 1, dims ) );312 tVar ( int, i );313 tVar ( int, j );314315 // Loop iterating over image316 tFor( i ,  half, IMGSZ � ( half + 1) ) f317 tFor( j ,  half, IMGSZ � ( half + 1) ) f318 new tgimg [ i � IMGSZ + j ℄ = 0.0;319320 // Loop to apply onvolution matrix321 for( i = � half; i <=  half; ++i ) f322 for( j = � half; j <=  half; ++j) f323 new tgimg [ i � IMGSZ + j ℄ +=324 tgimg [( i +i) � IMGSZ + j +j℄ � matrix[( half+i) � CSZ +  half+j℄;325 g326 g327 g328 g329 g330 return;331 gFig. 5. Binding-Time Analysis. TaskGraph onstrution ode for the image �lteringexample from Figure 2, with all dynami variables marked by a boxed outline .TaskGraph Parameters. Both Figure 1 (line 11) and Figure 3 (lines 310 and 311)illustrate that any TaskGraph variable an be delared to be a TaskGraph pa-rameter using the tParameter() onstrut. We require the appliation program-mer to ensure that TaskGraph parameters bound at exeution time do not aliaseah other.Control Flow Nodes. Inside a TaskGraph onstrution blok, for loops andif onditionals are exeuted at onstrution time. Therefore, the for loops onlines 321 and 322 in Figure 3 result in an unrolled inner loop. However, theTaskGraph sub-language de�nes some onstruts for adding ontrol-ow nodesto an AST: tFor(var,lower,upper) adds a loop node (see lines 316 and 317 inFigure 3). The loop bounds are inlusive. tIf() an be used to add a onditionalnode to the AST.Expressions and Binding-Time Analysis. We refer to variables that are bound atTaskGraph onstrution time as stati variables and those that are bound at ex-eution time as dynami. Delarative ode speialisation systems suh as DyC [8℄



use annotations that delare some variables to be stati for the purpose of par-tial evaluation. In ontrast, stati binding time, i.e. evaluated at TaskGraphonstrution time is the default for the TaskGraph language. Only TaskGraphvariables, inluding parameters, are dynami. Internally, dynami variables arerepresented by speial types and the overloaded operators de�ned on those dy-nami types de�ne binding-time derivation rules. Thus, an expression suh asa +  in Figure 1 where a is dynami and  is stati is derived dynami, butthe stati part is evaluated at onstrution time and entered into the AST asa value. We illustrate this by reproduing the TaskGraph image �ltering odefrom Figure 3 again in Figure 5; however, this time all dynami expressions aremarked by a boxed outline. Note that the onvolution matrix, inluding its entiresubsript expression in the statement on line 324, is stati.5 Another example: matrix multiplyIn Setion 3, we showed an example of how the speialisation funtionality ofthe TaskGraph library an be used to failitate ode optimisations suh as ve-torisation. In this Setion, we show, using matrix multipliation as an example,how we an take advantage of the use of SUIF-1 as the underlying ode rep-resentation in the TaskGraph library to perform restruturing optimisations atruntime.Figure 6 shows both the ode for the standard C/C++ matrix multiplyloop (ijk loop order) and the ode for onstruting a TaskGraph representingthis loop, together with an example of how we an diret optimisations fromthe appliation program: we an interhange the for-j and for-k loops beforeompiling and exeuting the ode. Further, we an perform loop tiling with aruntime-seleted tile size. This last appliation demonstrates in partiular thepossibilities of using the TaskGraph library for domain-spei� optimisation:{ Optimising for a partiular arhitetureIn Figure 6, we show a simple piee of ode whih implements a runtimesearh for the optimal tilesize when tiling matrix multiply. In Figure 8, weshow the results of this searh for both a Pentium 4-M (with 512K L2 ahe)and an Athlon (with 256K L2 ahe) proessor. The resulting optimal tile-sizes di�er for most problem sizes, but they do not di�er by as muh aswould have been expeted if the optimal tilesize was based on L2 apaity.We assume that a di�erent parameter, suh as TLB span, is more signi�antin pratie.{ Optimising for a partiular loop or working setWe note that the optimal tile size for matrix multiply alulated by ourode shown in Figure 6 di�ers aross problem sizes (see Figure 8). Similarly,we would expet the optimal tilesize to vary for di�erent loop bodies andresulting working sets.We believe that high performane ahieved, with relatively straight-forwardode, in our matrix multiply example (up to 2 GFLOP/s on a Pentium 4-M



/�� mm ijk� Most straight�forward matrix multiply� Calulates C += A � B�/void mm ijk( onst unsigned int sz,onst FLOAT �onst A,onst FLOAT �onst B,FLOAT �onst C ) funsigned int i, j , k;for( i = 0; i < sz; ++i ) ffor( j = 0; j < sz; ++j ) ffor( k = 0; k < sz; ++k ) fC[i�sz+j℄ += A[i�sz+k℄ � B[k�sz+j℄;gggreturn;g

void TG mm ijk( unsigned int sz[2℄,TaskLoopIdenti�er �loop,TaskGraph &t ) ftaskgraph( t ) ftParameter(tArray(FLOAT, A, 2, sz));tParameter(tArray(FLOAT, B, 2, sz));tParameter(tArray(FLOAT, C, 2, sz));tVar( int, i );tVar( int, j );tVar( int, k );tGetId( loop [0℄ );tFor( i , 0, sz [0℄ � 1 ) ftGetId( loop [1℄ );tFor( j , 0, sz [1℄ � 1 ) ftGetId( loop [2℄ );tFor( k , 0, sz [0℄ � 1 ) fC[i ℄[ j℄ += A[i℄[k ℄ � B[k℄[ j ℄;gggggfor( int tsz = 4; tsz <= min(362, matsz); ++tsz ) funsigned int sizes[℄ = f matsz, matsz g;int trip3 [℄ = f tsz , tsz , tsz g;TaskLoopIdenti�er loop [3℄;TaskGraph MM;TG mm ijk( sizes, loop, MM );interhangeLoops( loop[1℄, loop [2℄ ); // Interhange loopstileLoop( 3, &loop [0℄, trip3 ); // Tile inner two loopsMM.ompile( TaskGraph::ICC, false );tt2 = time funtion ();MM.setParameters( "A", A, "B", B, "C", C, NULL );MM.exeute();tt2 = time funtion() � tt2;time[0℄ = time to seonds( tt2 );if ( time[0℄ < best time i ) fbest time i = time[0℄;best tsz i = tsz;ggFig. 6. The ode on the top left is the standard C++ matrix multiply (ijk loop or-der) ode. The ode on the top right onstruts a TaskGraph for the standard ijkmatrix multiply loop. The ode underneath shows an example of using the TaskGraphrepresentation for the ijk matrix multiply kernel, together with SUIF-1 passes for in-terhanging and tiling loops to searh for the optimal tilesize of the interhanged andtiled kernel for a partiular arhiteture and problem size.



1.8 GHz) shows promising potential for our approah of performing dynamispeialisation and optimisation, based on runtime domain-spei� information.6 Related WorkIn this setion, we briey disuss related work in the �eld of dynami odeoptimisation.Language-Based Approahes.{ ImperativeTik-C or 'C [5℄, a superset of ANSI C, is a language for dynami ode gen-eration. Like the TaskGraph library, 'C is expliit and imperative in nature;however, a key di�erene in the underlying design is that 'C relies on a speialompiler (t). Dynami ode an be spei�ed, omposed and instantiated,i.e. ompiled, at runtime. The fat that `C relies on a speial ompiler alsomeans that it is in some ways a more expressive and more powerful systemthan the TaskGraph library. For example, 'C failitates the onstrution ofdynami funtion alls where the type and number of parameters is dynam-ially determined. This is not possible in the TaskGraph library. Jak [2℄,MetaML [20℄, MetaOCaml [4℄ and Template Haskell [18℄ are similar e�orts,all relying on hanges to the host language's syntax.{ DelarativeDyC [8,9℄ is a dynami ompilation system whih speialised seleted parts ofprograms at runtime based on runtime information, suh as values of ertaindata strutures. DyC relies on delarative user annotations to trigger spe-ialisation. This means that a sophistiated binding-time analysis is requiredwhih is both polyvariant (i.e. allowing speialisation of one piee of odefor di�erent ombinations of stati and dynami variables) and program-point spei� (i.e. allowing polyvariant speialisation to our at arbitraryprogram points). The result of BTA is a set of derived stati variables inaddition to those variables whih have been annotated as stati. In order toredue runtime ompilation time, DyC produes, at ompile-time, a generat-ing extension [12℄ for eah speialisation point. This is e�etively a dediatedompiler whih has been speialised to ompile only the ode whih is beingdynamially optimised. This stati pre-planning of dynami optimisation isreferred as staging.Marlet et al [14℄ present a proposal for making the speialisation proessitself more eÆient. This is built using Tempo [3℄, an o�ine partial eval-uator for C programs and also relies on an earlier proposal by Gl�uk andJ�rgensen to extend two-level binding-time analysis to multiple levels [7℄,i.e. to distinguish not just between dynami and stati variables but be-tween multiple stages. The main ontribution of Marlet et al is to showthat multi-level speialisation an be ahieved more eÆiently by repeated,inremental appliation of a two-level speialiser.



Performance of Matrix Multiply on Athlon 1600+
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Performance of Matrix Multiply on Pentium 4-M 1.8GHz
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Fig. 7. Performane of matrix multiply on Athlon 1600+ with 256KB L2 ahe and onPentium 4-M 1.8 GHz with 512KB L2 ahe. We show the performane of the naiveC++ ode (ijk loop order), the ode where the we have used the TaskGraph libraryto interhange the inner two loops (resulting in ikj loop order) and the ode wherethe TaskGraph library is used to interhange and 3-way tile the loops. For the tiledode, we used the TaskGraph library to searh for the optimal tile size for eah datapoint, as shown in Figure 6. For both the interhanged and tiled ode, we plot onegraph showing the raw performane of the generated ode and one graph whih showsthe performane after the dynami ode generation ost has been amortised over oneinvoation of the generated ode.



Optimal Tile Size for 3-way Tiled Code (icc)
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Fig. 8. Optimal tile size on Athlon and Pentium 4-M proessors, for eah data pointfrom Figure 7. These results are based on a straight-forward exhaustive searh imple-mented using the TaskGraph library's runtime ode restruturing apabilities (see odein Figure 6).Data-Flow Analysis. Our library performs runtime data ow analysis on loopsoperating on arrays. A possible drawbak with this solution ould be high run-time overheads. Sharma et al present deferred data-ow analysis (DDFA) [17℄ asa possible way of ombining ompile-time information with only limited runtimeanalysis in order to get aurate results. This tehnique relies on omprisingthe data ow information from regions of the ontrol-ow graph into summaryfuntions, together with a runtime stither whih selets the appliable summaryfuntion, as well as omputes summary funtion ompositions at runtime.Transparent Dynami Optimisation of Binaries. One ategory of work on dy-nami optimisation whih ontrasts with ours are approahes whih do not relyon program soure ode but instead work in a transparent manner on runningbinaries.Dynamo [1℄ is a transparent dynami optimisation system, implementedpurely in software, whih works on an exeuting stream of native instrutions.Dynamo interprets the instrution stream until a hot trae of instrutions isidenti�ed. This is then optimised, plaed into a ode ahe and exeuted whenthe starting-point is re-enountered.These tehniques also perform runtime ode optimisation; however, as statedin Setion 1, our objetive is di�erent: restruturing ross-omponent optimisa-tion at runtime.



7 Ongoing and Future WorkWe have reently evaluated the urrent TaskGraph library implementation inthe ontext of some moderately large researh projets [6℄. This experiene hasled us to planning future developments of this work.{ Automati Generation of OpenMP AnnotationsWe would like to use the runtime dependene information whih is alu-lated by the TaskGraph library for automatially annotating the generatedode with OpenMP [16℄ diretives for SMP parallelisation. An alternativeapproah would be to use a ompiler for ompiling the generated ode thathas built-in SMP parallelisation apabilities.{ Automati Derivation of Component MetadataOur delayed evaluation, self-optimising (DESO) library of data-parallel nu-merial routines [13℄ urrently relies on hand-written metadata whih har-aterise the data plaement onstraints of omponents to perform ross-omponent data plaement optimisation. One of the outstanding hallengeswhih we would like to address in this work is to allow appliation pro-grammers to write their own data-parallel omponents without having tounderstand and supply the plaement-onstraint metadata. We hope to gen-erate these metadata automatially with the help of the TaskGraph library'sdependene information. Some initial work on this projet has been done [19℄.{ Transparent Cross-Component Loop FusionIn an ongoing projet [6℄ we are using the TaskGraph library to performross-omponent loop fusion in our DESO library of data-parallel numerialroutines.8 ConlusionThe TaskGraph library ombines ode speialisation with runtime dependeneanalysis and restruturing optimisations. We believe that this ombination isunique, and essential for our researh agenda of restruturing ross-omponentoptimisation, arried out at runtime with the bene�t of runtime ontext informa-tion. Sine our long-term objetives inlude the optimisation of large sienti�odes, we deided on the exlusive use of standard C++ to failitate integratingthe TaskGraph library with existing odes.Aknowledgements. This work was supported by the United Kingdom EPSRC-funded OSCAR projet (GR/R21486).Referenes1. Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: A transparentdynami optimization system. In PLDI '00: Programming Language Design andImplementation, pages 1{12, 2000.
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