
Derivation and Performance of aPipelined Transaction ProcessorA. J. Bennett P. H. J. Kelly R. A. PatersonDepartment of ComputingImperial College of Science, Technology and MedicineLondon SW7 2BZAbstractTransaction processing can be formulated as a sim-ple functional program operating on a stream of trans-action requests and a tree-structured database. Inthis paper we use algebraic transformation of the ini-tial program to yield an optimistic implementationin which unnecessary synchronization is eliminated,thereby allowing concurrent processing of transactions.A detailed simulation is used to study the program'sbehaviour and to assess scheduling policies based onthe characteristics of the target architecture. Our re-sults show that good speedups can be achieved, and thattransformation can be used to derive a highly concur-rent program with better locality and grain size.1 IntroductionTransaction processing is an important applicationarea where the need for high performance has mo-tivated sophisticated parallel implementation tech-niques. In this paper we present a simple formulationof the problem in a functional style, and use this asa basis for a reconstruction of a fairly sophisticatedparallel algorithm. We then give a detailed analysis ofits performance using parallel graph reduction (PGR),a dynamically-scheduled implementation scheme. Ouruse of simulation makes it possible to isolate a numberof e�ects which were obscured in earlier experimentsusing real hardware [1].The transaction processing example which forms thesubject of this paper has inherently unpredictablesharing behaviour. It also relies heavily on the PGRsynchronization mechanism. It is therefore a good ex-ample of a PGR application. Indeed we hope our re-sults will be of interest to a wide audience since thetechniques are essentially language-independent.The problems associated with allowing concurrent ac-cesses to a database in a parallel transaction pro-

cessing system have received much attention. Thekey problem is to ensure the consistency of data sothat the concurrent execution is equivalent to a sched-ule in which the transactions are executed sequen-tially [5], and several styles of concurrency control al-gorithms have been proposed [3]. Using a functionallanguage leads naturally to an approach in which con-current transactions operate on multiple versions ofthe database [12]. We begin by reviewing this styleof transaction processing, before addressing the issuesinvolved in its parallelization.2 Functional transaction processingThe problem we consider involves updates to a sim-ple database, comprising a collection of records in-dexed by a single key. We shall assume that the wholedatabase resides in memory, or that the language sup-ports persistent data structures. The usual implemen-tation of such updates in a conventional database sys-tem updates the data structure in place. At �rst sightit would appear that a functional version must gener-ate a new copy of the entire database for each update.However, it is well known that such a database can bestructured as a tree, and the update need only gener-ate new versions of nodes on a path down the tree tothe addressed record.More speci�cally, using a Haskell style of presenta-tion [9], we de�ne a database as the following treestructuredata DB 4= Leaf Key Value �Node DB Key DBA database item is either a leaf, containing a key andassociated data, or an index node containing a sign-post key and two subtrees. In a properly constructedtree, the key in an index node is greater than or equal



to all the keys in the left subtree and less than all thosein the right subtree.The function lookup returns the datum associated witha key, if present, or fails:data Maybe � 4= Yes � � Nolookup : Key ! DB ! Maybe Valuelookup x (Leaf k v ) 4=if k = x then Yes v else Nolookup x (Node l k r ) 4=lookup x (if x � k then l else r )The following function assigns the datum associatedwith a key, if present:assign : Key ! Value ! DB ! DBassign x v 0 (Leaf k v ) 4=Leaf k (if k = x then v 0 else v )assign x v 0 (Node l k r ) 4=if x � kthen Node (assign x v 0 l ) k relse Node l k (assign x v 0 r )As noted above, only nodes on the path down to theaddressed leaf are updated.We shall not consider updates that change the shape ofthe tree, like insertions and deletions. However, thereare standard schemes for such operations which per-form top-down rebalancing of the tree, and we expectthat they could be added without greatly complicatingour analysis.A great deal of parallelism is available in such adatabase:� A lookup and an assign applied to the samedatabase may proceed independently in parallel,since the assign returns a new tree without alter-ing the old one.� An instance of assign is able to construct each in-dex node without waiting for the recursive call.If the result is the input to another call of assign,the new index node may be given to a thread exe-cuting the following call while the current threadprocesses a child node. That is, successive calls toassign may run concurrently in a pipeline. Oncetheir paths diverge in the tree, they will be com-pletely independent.A more realistic application might group a number oflookup and update operations as a transaction, so that

the updates are taken as a whole|either all take ef-fect, or in the event of some failure the database isunchanged. For example, let t denote a data struc-ture describing a transaction, containing distinct keysx1; : : : ; x5. Let the corresponding values be v1; : : : ; v5.If all keys are present and a condition c de�ned interms of t and the vi is satis�ed, we wish to replaceeach vi with a new value ei de�ned in terms of t andv1; : : : ; v5. Otherwise we wish to return the originaldatabase. Thus a simple function to apply such atransaction to a database is:apply : Trans ! DB ! DBapply t db0 4=let v1 4= lookup x1 db0 in...let v5 4= lookup x5 db0 inlet all-ok 4= ok v1 ^ ... ^ ok v5 inif all-ok ^ cthen let db1 4= assign x1 e1 db0 in...let db5 4= assign x5 e5 db4 indb5else db0where the function ok tests whether a lookup has suc-ceeded:ok : Maybe � ! Boolok (Yes x ) 4= Trueok No 4= FalseThis sort of global rollback is neatly supported by afunctional formulation [12]: the program may returneither the old root node or a new one reecting all theupdates.3 Reducing synchronizationThe program of the previous section has much paral-lelism within a transaction:� The various lookup operations may be executedin parallel.� Assuming that transactions usually succeed, wemay speculatively execute the assign operationsin parallel with the lookups. Moreover, the as-sign operations exhibit the pipeline parallelismdiscussed above.



However, in a sequence of transactions, no parallelismbetween transactions is possible: the top-level if forcesa synchronization between transactions, as the nexttransaction cannot begin until the appropriate branchis selected. This is wasteful, since the two possibleversions of the output database di�er very little, andthe di�erences are all in the leaf records, not the indexnodes. Recognizing this, Trinder [12, 1] proposed thatthe if in the above program be replaced with a condi-tional proposed by Friedman and Wise [6]. The ideais to evaluate the branches concurrently with the con-dition; if both branches have the same top-level struc-ture, it may be returned even if the condition is as yetunknown, while execution continues on the subtrees.This approach produces a large number of short-livedthreads, each responsible for evaluating a single nodeof the tree. Scheduling is thus considerably simpli�ed,at the cost of greater overheads. In the context ofthe above program, many of the threads do no usefulwork, since all the altered nodes are concentrated on apath down the tree. Hence the implementation of thisconditional requires ad hoc treatment of a number ofspecial cases, some of them speci�c to this program,to achieve reasonable behaviour [1]. Even so, the over-heads of thread creation and the costs of the resultingloss of locality may be excessive.An alternative to introducing �ne-grain parallelismand relying on general-purpose scheduling strategies,is to transform an initial program into one that ex-hibits better parallel behaviour, but is equivalent inthe speci�ed context. The transformational approachcan produce programs in which the grain of parallelismis quite large.Removing synchronization amounts to pushing a con-ditional down into its branches. In the current case,we wish to apply such a transformation to a sub-expression of the formif b then assign x v d else dThat is, we require a functionmaybe-assign : Key ! Maybe Value !DB ! DBsuch that for all fully de�ned b, x and d,if b then assign x v d else d =maybe-assign x(if b then Yes v else No ) dAssuming for the moment the existence of such a func-tion, we can transform our transaction processor to theequivalent

decide : Trans !Maybe Value ! ... ! Maybe Value !(Maybe Value � ... � Maybe Value )decide t u1 ... u5 =let all-ok 4= ok u1 ^ ... ^ ok u5 inif all-ok ^ cthen (Yes e1, ..., Yes e5)else (No , ..., No )apply t db0 4=let u1 4= lookup x1 db0 in...let u5 4= lookup x5 db0 inlet (u01, ..., u05) 4= decide t u1 ... u5 inlet db1 4= maybe-assign x1 u01 db0 in...let db5 4= maybe-assign x5 u05 db4 indb5The two programs are equivalent on fully de�ned in-puts. However, in the revised version the �ve instancesof maybe-assign can be pipelined, and will proceed inparallel once their paths in the tree diverge. Subse-quent applys may also run concurrently, blocking onlyif they refer to one of these keys.It remains to construct a de�nition of the functionmaybe-assign. The usual procedure in such cases isto attempt to prove the desired equation by inductionover the data structure. In the process, the appro-priate de�nition of the function will often emerge, ashappens in this case: the proof requires the followingde�nition of maybe-assign:or : Maybe � ! � ! �Yes x or y 4= xNo or y 4= ymaybe-assign x u (Leaf k v ) 4=Leaf k (if k = x then (u or v ) else v )maybe-assign x u (Node l k r ) 4=if x � kthen Node (maybe-assign x u l ) k relse Node l k (maybe-assign x u r )By pushing the synchronization point downwards, wehave constructed a program which always updates,but updates with the original content in the eventof failure. This might be considered an optimisticupdate, justi�ed in this context, where transactionsrarely fail.Our revised program is naturally partitioned as athread for each lookup and one for each maybe-assign.



It is necessary to perform all the assignments concur-rently, so that the upper levels of the index are madeavailable to the next transaction as early as possible.However, we can increase the grain size still further.A well-known transformation [4] combines two similarpasses over a data structure into one, saving some ef-fort in searching through the data structure. In theparallel context, this transformationmay fuse two sim-ilar processes, creating a larger process with greaterlocality. Here, we shall apply this procedure to lookupand maybe-assign, which repeat the same process ofsearching for the key in the tree. Applying the usualtechnique, we de�ne a function that performs bothoperationsupdate : Key ! Maybe Value ! DB !Maybe Value � DBupdate k v 0 d 4=(lookup k d , maybe-assign k v 0 d )This de�nition is expanded by cases (unfolding) andrecursive calls are discovered (folding), giving a revisedde�nition for the new function:update x u 0 (Leaf k v ) 4=(u , Leaf k v 0)where (u , v 0) 4=if k = x then (Yes v , u 0 or v )else (No , v )update x u 0 (Node l k r ) 4=if x � kthen (u , Node l 0 k r )where (u , l 0) 4= update x u 0 lelse (u , Node l k r 0)where (u , r 0) 4= update x u 0 rThe update function uses its database argument im-mediately, making the top level of its database resultavailable as soon as it moves to the next level. Onlywhen it reaches the leaf does it make its value resultavailable, after which it consults its value argument todetermine whether to alter the value in the leaf. Thusseveral update threads may be pipelined.Recall that we assumed that all keys within a trans-action were distinct, so that the �ve updates are inde-pendent lookup xi dbi�1 = lookup xi db0for each i = 2; : : : ; 5. Thus we can restate the trans-action processor as follows:

apply t db0 4=let (u1, db1) 4= update x1 u01 db0...(u5, db5) 4= update x5 u05 db4(u01, ..., u05) 4= decide t u1 ... u5indb5The let in this program is recursive: the ui are de-�ned in terms of the u0j, which in turn are de�ned interms of the ui. However, there is no circularity in thecomputation, since as noted above update provides thevalue of ui before it examines the value of u0i. More-over, the only part of the database that depends on u0iis the data value in one leaf.4 Simulation of parallel graph reduc-tionIn order to evaluate the parallel performance of thenew form of the transaction processor, its behaviourhas been studied on an implementation of parallelgraph reduction. This in turn runs on an execution-driven simulation of a shared-memory multiprocessor.The advantage of using simulation is that is allowsthe behaviour of the system to be closely monitoredwithout a�ecting its behaviour.PGR supports the \call-by-need" parameter passingmechanism required by lazy functional languages byusing \closures". A closure is a heap-based object con-taining a method for computing a value; the methodis only invoked when the closure is demanded , and oncompletion of the call the closure is overwritten by itsresult value. Closures are used in several places in thenew formulation of the transaction processor. In thede�nition of the apply function above, each call of up-date is packaged into a closure which is then sparked(i.e. added to a pool of available tasks for distributionto other processing elements). The call to decide isalso built as a closure, but is not sparked since its ar-guments will not be available until the updates havereached the leaves of the tree. The u0i parameters ofthe update closures are components of the value of thedecide closure. The �rst call of update to reach a leafnode of the tree will demand its u0i parameter, in turnevaluating the decide closure. Any other update re-quiring a u0i will block until decide completes, at whichpoint the new result database can be returned.PGR is inherently a dynamically scheduled scheme,and mechanisms are required to distribute sparkedtasks around the machine. We have adopted a work



stealing scheme in which each processor has a localtask queue to which tasks it sparks are added andfrom which it fetches new work when necessary. Onlywhen a processor's local queue is empty will it attemptto �nd work from another processor.4.1 Simulated architectureA simple model of a shared-memory parallel archi-tecture has been adopted: the system consists ofa set of processors, each tightly coupled to a largecache. The PEs are interconnected by network. Theprocessor model is based on a simple 32-bit RISC(i.e. load/store) device. It is assumed that stack, pri-vate data and code regions of each process are servedby separate perfect cache systems; each read or writeto these areas has a latency of one processor cycle.Note that cache associativity conicts and cache ca-pacity events are ignored, i.e. it is assumed that eachcache is in�nite in size, and therefore associativity isnot an issue.Two di�erent memory models are used: a perfectshared-memory is simulated in the next section in or-der to determine ideal speedup times and to study thebehaviour of the program without it being disturbedby network delays. A more realistic multicache imple-mentation of shared-memory is used later in order toassess scheduling policies appropriate for a real ma-chine.5 Parallel behaviourTo run the transaction processor on a parallel ma-chine, we need to indicate the parallel grains by an-notating the program with spark directives. Eachupdate must be run independently, so that the follow-ing transaction will not be blocked in any part of thetree. However, the program processes the root nodein a purely sequential manner, so locality will be in-creased with no loss of concurrency if a single threadis responsible for all root updates. Hence, we unfoldthe de�nition of update, sparking threads to updatenodes below the root. By sparking the �rst compo-nent of the result of the function update, we ensurethat a single thread evaluates the update all the waydown to the leaf.For our experiments, we used the following parame-ters:� Size of the database: 10000 consecutively num-bered records. This size was adopted in orderto produce a reasonable execution time for eachsimulation run.

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

P
ro

ce
ss

or

Time (cycles)Figure 1: Activity on a 64-node Machine� Initial distribution of the database: the entiredatabase is divided into subsets of consecutivelynumbered databases which are allocated to indi-vidual PEs.� Number and size of transactions: 10 transactionseach operating on 5 randomly selected records.� No disks are simulated, i.e. the database is en-tirely RAM-resident.The concurrency of the program is illustrated by Fig-ure 1, showing the activity of each processor when theprogram was run on our simulator, using a large num-ber of processors and an ideal memory model to givea simple picture. As can be seen from the �gure, themaster thread spawns 5 threads for each transactionand then terminates. Each of these threads representsan update, scanning from the root of the tree to a par-ticular leaf. The path of nodes to that leaf are updatedby the thread, so any following thread requesting thesame node will block. As the �gure shows, such colli-sions usually occur in the upper levels of the tree, andare transient. They are most noticeable where sev-eral keys are close together in the tree, and thus havelong paths in common, as in the seventh transaction(processor number 33). For each transaction, the �rstupdate thread to reach its leaf goes on to apply de-cide, while the others block. When the new values areknown, all the update threads commit together.Since the keys in the transactions are spread across thetree, collisions are rare. However, if two successivetransactions require the same record, the evaluationof decide in the second will block until the value isupdated.From Figure 1 we can also predict the behaviour onfewer processors. When a thread blocks after reachinga leaf, the processor on which it is running may use-fully take up another update thread. The modi�cation



0

5

10

15

20

0 1000 2000 3000 4000 5000 6000

P
ro

ce
ss

or

Time (cycles)Figure 2: Activity and State Transitions on a 18-nodeMachineof the leaf data can be done later; only another updaterequiring the same leaf will be blocked. On the otherhand, if the transient blocks higher in the tree (usuallynear the root) are treated in the same way, any newthread taken up will be likely to block quickly, so thatthe processor will accumulate many blocked threads.Moreover, other threads requiring the output of thesealso block. Since in our simulation threads do not mi-grate, most of the processors will be idle, waiting fora few heavily loaded processors.Possible solutions to this scheduling problem includetimesharing between runnable threads, and thread mi-gration. Both are expensive, and neither is a completesolution. However, it is apparent from the programthat� the updates are pipelined, and� the nodes and leaves of the tree are built quickly.Thus we have introduced a new annotation, indicat-ing that if a thread blocks waiting for value of theannotated expression, the processor should not sched-ule extra work, as the value will soon be available.Automatic detection of short computations is usefulfor other purposes (for example to avoid the overheadof thread switching, or to avoid creating short-livedthreads) and some partial solutions are known [7].With this modi�cation there are some momentary de-lays high in the tree, but otherwise the processorsare almost completely utilized. For example, Figure2 shows activity and state transitions on a 18-nodemachine. Note that there are three di�erent typicallengths of activity, in decreasing order:� The scan from the root of the tree to the leaf.� The work of decide.

0

5

10

15

20

0 5 10 15 20 25 30 35

S
pe

ed
up

Number of processorsFigure 3: Relative speedup on an ideal shared-memory� The actual update of the leaf.As can be seen, the work of deciding whether to com-mit, and of updating the leaves may be done one ormore scans later than the update of which they werepart.Figure 3 shows the relative speedup achieved for vari-ous sizes of machine. We have used a larger number oftransactions (100) to reduce the signi�cance of the un-even �nish times seen in Figure 2. As one might expectfrom Figure 1, the graph shows near-linear speedupup to the ratio between the cost of processing the rootnode (by processor 0) and the cost of processing theentire path down the tree and performing the update,which is proportional to the depth of the tree [12].For our sample tree of 10,000 nodes, the asymptoticspeedup is 18.6 Program behaviour with a multi-cache shared-memoryIn a real shared-memory parallel machine, memoryaccesses which require use of the network incur la-tency. We have simulated a multicache implementa-tion of shared-memory, since our previous experimentshave shown that programs running under PGR ex-hibit considerable locality of reference, which can beexploited by a caching scheme.We have used a newPGR-speci�c coherency protocol [2] that exploits lo-cality to a greater extent than a conventional invali-dation coherency protocol by taking advantage of thedisciplined memory reference characteristics of PGR.Two memory timing models are used with this proto-col: the low-latency model represents a �rst generationshared-memory multiprocessor such as the Symme-try [10], in which the latency of a shared-memory ac-cess which requires use of the network is 10 times thatof an access which can be satis�ed by the local cache,whereas the high-latency model represents a more



0

10

20

30

40

50

0 1000 2000 3000 4000 5000 6000 7000

P
ro

ce
ss

or

Time (cycles)Figure 4: Activity on a low-latency network
0

10

20

30

40

50

0 5000 10000 15000 20000 25000 30000

P
ro

ce
ss

or

Time (cycles)Figure 5: Activity on a high-latency networkmodern multiprocessor, in which the remote:local ra-tio is an order of magnitude larger.Our program has a great deal of locality withinthreads, the arguments and results of each call beingessentially local data. The nodes of the tree must beshared between threads. However, each update threadgenerates new nodes along a path from the root, sothere is a 50% probability that each node is storednear its parent.
0

10

20

30

40

50

0 5000 10000 15000 20000 25000 30000

P
ro

ce
ss

or

Time (cycles)Figure 6: Activity on a high-latency network with de-layed sparks

The behaviour of our program on a low-latency net-work is shown in Figure 4. As expected, everythingtakes longer, but the overall shape of the computationis much as before. Note, however, that the transientdelays that occur near the top of the tree are becominglonger. If the network latency is greatly increased, wehave the situation of Figure 5. The slope of the lead-ing edge, the thread creations, is identical with thatin Figure 4, but the delays have become a bottleneck.In fact, there are two bottlenecks: the thread resump-tions form two lines as the threads queue for the useof the two tree nodes at the second level in the tree.The solution is to move the sparks further down thetree, e�ectively broadening the root node. This hastwo e�ects: �rstly, the work done by processor 0 oneach update increases, a throttling e�ect decreasingthe slope of the leading edge in the �gure. Secondly,the updates are divided between a larger number ofqueues, increasing the slope of the thread-resumptionpart of the �gure and reducing overall time. If thesparks occur after k levels, processor 0 must process knodes, and the threads are divided between 2k queues.Assuming a uniform distribution of keys, if tn is thetime to reconstruct a node and l the latency, then theaverage inter-arrival time in each queue is k2ktn, whilethe service time is l + tn. To achieve a stable system,we must have k2ktn > l + tnFor the network parameters reected in Figure 5, achoice of k = 3 achieves this balance, leading to thebehaviour seen in Figure 6. The processors are usedfor shorter periods, and the overall time has also im-proved. This may be taken further, using standardqueueing theory to obtain the expected time spent inthe queue, and hence an estimated time for the up-date.7 Summary and conclusionsTransaction processing can be formulated as a sim-ple functional program operating on a stream oftransaction requests and a tree-structured database.Meaning-preserving transformations have been usedto derive a more e�cient form which reduces the num-ber of traversals of the tree, and o�ers better paral-lel performance by allowing multiple transactions tobe in progress simultaneously. The performance andbehaviour of this new form of the program has beenevaluated using a simulation of a shared-memory mul-tiprocessor. The ability to monitor the behaviour ofthe system in detail without a�ecting its behaviourhas allowed us to study scheduling and locking issuesin detail.



Our results include the following:� Signi�cant algorithmic parallelism is available.� Transformation leads to a form of the programwith the same level of concurrency as the previ-ously published version [1], but with better grainsize and locality.� A new annotation was found to be necessary forthe optimum scheduling of pipelines. The under-lying analysis is similar to that involved in thegeneration of serial combinators [7].� Contention for the upper levels of the tree be-comes signi�cant when network latency is high,resulting in unnecessary sequentialization. Thiscontention can be reduced by increasing the sizeof the root of the tree (i.e. by moving sparks downthe tree).� A simple queueing model can be used to deter-mine the optimum level to place spark annota-tions.Future work will include modifying the program tomore closely match the processing part of the debit-credit benchmark [11], and a detailed study of the in-teraction between the program and multicache shared-memory systems. Also we plan to provide the fu-ture [8] construct (very similar to a closure) to C pro-grammers via a library in order to allow the programto be expressed in an imperative language, and wehave targetted an initial implementation to the Fu-jitsu AP1000. Other ideas include the study of othershared coherent abstract data types which can be usedfor general-purpose portable parallel programming inconventional languages.AcknowledgementsThis work was funded by the U.K. Engineering andPhysical Sciences Research Council under grant num-ber GR/J 14448 (Compaqt : Combined program andquery optimization for parallel database processing).References[1] G. Akerholt, K. Hammond, S. Peyton Jones,and P. Trinder. Processing transactions onGRIP, a parallel graph reducer. In Arndt Bode,Mike Reeve, and Gottfried Wolf, editors, PARLE93 Parallel Architectures and Languages Europe,Munich, June 1993, volume 694 of Lecture Notesin Computer Science, pages 634{647, Berlin,1993. Springer-Verlag.

[2] Andrew J. Bennett and Paul H. J. Kelly. Elim-inating invalidation in coherent-cache parallelgraph reduction. In C. Halatsis, D. Maritsas,G. Philokyprou, and S. Theodoridis, editors,PARLE 94 Parallel Architectures and LanguagesEurope, Athens, July 1994, volume 817 of Lec-ture Notes in Computer Science, pages 375{386,Berlin, 1994. Springer-Verlag.[3] P. Bernstein and N. Goodman. On concurrencycontrol in distributed database systems. Comput-ing Surveys, 13(2):185{221, June 1981.[4] Rod M. Burstall and John Darlington. A trans-formation system for developing recursive pro-grams. Journal of the ACM, 24(1):44{67, 1977.[5] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L.Traiger. The notions of consistency and predicatelocks in a database system. Communications ofthe ACM, 19(11):624{633, November 1976.[6] D. P. Friedman and D. S. Wise. A note on condi-tional expressions. Communications of the ACM,21(11), November 1978.[7] Benjamin F. Goldberg. Multiprocessor Executionof Functional Programs. PhD thesis, Yale Uni-versity, New Haven, 1988.[8] Robert H. Halstead. Implementation of Multilisp:Lisp on a multiprocessor. In 1984 ACM Sym-posium on Lisp and Functional Programming,Austin, August, pages 9{17, 1984.[9] Paul Hudak, Simon L. Peyton Jones, and PhilipWadler. Report on the programming languageHaskell | a non-strict purely functional lan-guage, version 1.2. SIGPLAN Notices, 27(5):1{162, May 1992.[10] TomLovett and Shreekant Thakkar. The Symme-try multiprocessor system. In 1988 InternationalConference on Parallel Processing, Pennsylvania,August, pages 303{310, 1988.[11] Transaction Processing Performance Council(TPC). TPC Benchmark, a standard. Techni-cal report, ITOM International, Los Altos, CA,1989.[12] Phil Trinder. A Functional Database. PhD thesis,Computing Laboratory, Oxford University, Ox-ford, U.K., 1989.


