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Abstract. Parallel functional programs based on the graph reduction
execution model display considerable locality of reference, favouring the
use of large cache lines in the implementation of the shared heap on
a shared-memory multiprocessor. They also display a very high rate of
synchronisation, making conventional weakly-consistent coherency pro-
tocols ineffective at avoiding unnecessary contention for write access to
cache lines due to false sharing. We present the design of a specially
adapted cache coherency protocol and show results of simulation exper-
iments which demonstrate that the protocol allows spatial locality to be
exploited to at least the level of a conventional invalidation protocol, but
without the unnecessary serialisation and network transactions caused
by false sharing.

1 Introduction

Parallel graph reduction (PGR) uses a shared graph structure to manage and
synchronise the parallel execution of a functional program. It provides a simple
model of communication and synchronisation between processors with distinc-
tive properties of importance in the design and optimisation of multicache imple-
mentations of shared-memory. The performance of parallel programs operating
under this regime depends critically on the provision of access to the shared heap
with very high average performance.

The most successful implementations of PGR (e.g. Goldberg’s Buckwheat
system [8] and Augustsson and Johnsson’s (v, G)-machine [3]) have used general-
purpose shared-memory multiprocessors based on snooping cache coherency pro-
tocols [2]. For modest numbers of processors these systems implement a shared
heap with near-ideal performance, but their size is limited by contention for the
snooping bus.

In an earlier paper [5] we presented the results of a simulation study of par-
allel functional program execution on shared-memory multiprocessors using a
simplified version of the standard invalidation-based multicache coherency pro-
tocol used on most modern multiprocessors. Such protocols provide a strong
consistency property for application programs which make unrestricted use of
reads, writes and synchronisations.

The results of that work can be summarised as follows:



— Parallel functional programs perform synchronisations at a far greater rate
than more widely-studied program types (e.g. the SPLASH suite [14]).

— Many parallel functional programs display enough spatial locality to jus-
tify the use of very large cache lines, especially on architectures with high-
bandwidth, high-latency interconnect as many current designs have.

— With large cache lines; the benefit of locality 1s annulled by the dramatic
increase in communication caused by unnecessary invalidations when one
cell on a cache line is updated, while the other cells remain stable.

In this paper we describe a modified cache coherency protocol designed specifi-
cally to support the parallel graph reduction model, and we show the results of
simulated execution of a suite of benchmark programs to evaluate its success.
We are especially concerned with the following questions:

— How effective is the new protocol at exploiting spatial locality and avoiding
line stealing?

— How does performance of the PGR system operating under the new protocol
compare with performance under the invalidation protocol?

— How does performance vary with interconnection network and program be-
haviour?

2 Exploiting the Memory Reference Characteristics of
PGR

Objects in the shared-memory region are allocated, read, updated and shared
in PGR quite differently from the way memory is used in typical imperative
programs. For example, the following are inherent in the PGR model:

— There is a high turnover of cells, i.e. many cells are not accessed again soon
after being created.

— Cells are updated at most once (i.e. to normal form). However, an implemen-
tation of PGR also requires a cell to be updated when a thread has gained
the right to evaluate it.

— All writes to shared objects occur in critical sections (see Sect. 3).

The use of caching in the implementation of a shared-memory multiprocessor
raises the question of how to prevent out-of-date cached data from continuing to
be used indefinitely. Lamport defined sequential consistency [11] in which it is
guaranteed that a read by any processor of any location will return the last value
written to that location. Due to the unnecessary invalidation and serialisation
incurred by this, protocols which offer weaker consistency properties have been
proposed.

These advanced protocols are based on the concept of weak ordering [1], and
coherency protocols based on weak ordering offer performance improvements by
allowing invalidations generated by a thread whilst inside a critical section to be
processed in parallel with computation. This increases concurrency by allowing



the processor to continue executing the instructions following the write without
waiting for the invalidation to complete. The number of unnecessary invalida-
tions caused by false sharing is therefore reduced, and coherence is enforced at
synchronisation points only. Although a number of simulation studies of impera-
tive programs have shown that significant improvements in performance can be
achieved by using delayed consistency protocols (see for example [15]), the po-
tential improvement is minor in this case due to the high rate of synchronisation
inherent in PGR.

Our previous results indicate that it is line stealing (i.e. the unnecessary
invalidation of lines caused by false sharing and subsequent line copying) which
is the major cause of unnecessary network transactions when large cache lines are
used with an invalidation protocol. If an update protocol had been used instead,
these would have been eliminated, but active sharing of cache lines would be
so great that a large proportion of writes would require update transactions.
In summary, both invalidation and update protocols have significant problems.
Instead we focus on avoiding the need for invalidations altogether.

3 A New Protocol

Objects in the shared-memory region are allocated, read, updated and shared
in PGR quite differently from the way memory is used in typical imperative
programs. For example most objects are created at runtime. Of particular im-
portance is the three stage lifetime of nodes:

INACTIVE: The node has not been evaluated, and no thread has yet gained the
right to evaluate it.

ACTIVE: The node has not been evaluated, but a thread has gained the right
to evaluate it, and the node will be updated by its result by that thread at
some time in the future.

EVALUATED: The node has been evaluated and will not be updated again.

The state transitions from INACTIVE to ACTIVE, and from ACTIVE to EVAL-
UATED both require mutual exclusion: for a conventional shared-memory imple-
mentation, the state and lock fields of a node are used to achieve this. Each state
transition requires write accesses to both the lock and the state field, and will
result in any other copies of the cache line being invalidated. In the new pro-
tocol, ownership of cache lines is static, i.e. the processor that allocates nodes
on a line remains the owner of that line. Any access made by a PE to a line it
owns can be served by the local cache directly. Accesses to remote lines require
network transactions only if a state transition is required. Copies of remote cache
lines are made whenever a network transaction is made. Note that nodes in the
EVALUATED state can be accessed from cached copies of lines directly. This is
the only way in which locality of access can be exploited — locality of writes to
remote cache lines cannot be exploited.

So, incoherent copies of cache lines can exist in the system since any access
which may require a state transition to such a copy will result in a network



transaction with the owner of the line whose copy is always fully coherent. Eval-
uated nodes can be read from copies of lines since we can guarantee that they
will not be updated.

False sharing still occurs, but line stealing is entirely eliminated since inval-
idation is not used. Note that a static ownership scheme greatly simplifies that
task of locating the owner of a line: it is implicit in the address.

4 Experimental Design

The performance and behaviour of the new protocol have been assessed using a
series of simulation experiments. A comprehensive description of the experimen-
tal design can be found in [4]. Here the most important aspects are discussed.

We have chosen to use execution-driven simulation which eliminates the va-
lidity problems of trace-driven simulation since the simulated processors read the
data as it is at the simulated time at which the reference is made. A simplified
architectural model is used, representing a 32-bit load-store architecture in which
accesses to private memory take unit time and cache associativity and capacity
effects are ignored. Although each assumption is invalid on a real machine, they
prevent the results from being obscured by other effects.

The simulator models the state and copy set of each cache line in the shared-
memory in order to determine the latency of each heap reference. Further infor-
mation is also associated with each cell and cache line to enable the performance
of the cache system to be closely monitored.

4.1 Source Language and Compiler

The source language is a lazy, higher-order functional language in the tradition of
SASL, Miranda and Haskell [10]. The primary objective in building an optimising
compiler for a lazy functional language is to reduce the frequency at which claims
and references are made to the heap. It is therefore of great importance that the
compiler used in our experiments should perform well. We have adopted the
compiler developed for the FAST project [7], and although comparing compilers
1s difficult, we have some confidence that the system is competitive with the
state of the art [9]. It also, conveniently, generates C, making generated code
very easy to instrument and modify.

4.2 Garbage Collection

When storage allocated from the shared heap becomes free, it should be recycled
for reuse. In a parallel system a parallel garbage collector is needed, and the area
is the subject of intensive research. The behaviour of the garbage collector may
interfere with normal program execution in two ways: firstly, it may change the
relative timing of processes, depending on when it is activated, and whether all
processors collect in synchrony. Secondly, garbage collection may substantially
change the pattern in which store is allocated.



We have made an important simplification here: we have no garbage collection
at all. Instead, each processor is allocated a large contiguous segment of the
shared address space, and it allocates space from it starting from the base. This
assumption illuminates one of our major objectives which is to learn general
lessons about a large class of systems. We are less concerned that the experiments
predict the actual performance of some production system. Although our system
does not use garbage collection, the issue of how to collect in the presence of the
new protocol must be addressed; we return to this in Sect. 6.

4.3 Example Parallel Functional Programs
The suite of programs we have been using are as follows:

pfib compute the n'® Fibonacci number

nqueens compute a safe arrangement of queens on an n x n chess board
matmult multiply two n x n matrices

quad find the integral of a cubic function using adaptive quadrature
wave tidal simulation of an estuary.

Wave divides the estuary into a matrix of sub-areas and the action of tides
1s simulated for some number of iterations. Each iteration produces three result
matrices (represented by lists of lists) which are consumed by the following
iteration.

Less trivial example programs are available, but the programs in this suite
are simple enough to offer the possibility that their behaviour might be under-
stood, while covering a variety of parallel program structures. The first four
programs were used in Goldberg’s Alfalfa and Buckwheat experiments, and are
fully described in his thesis [8]. The last is taken from [16].

For space resaons in this paper we only present results from 3 programs:
quad, matmult and wave.

4.4 Simulation of the New Protocol

Simulations were made of each program operating under the invalidatio and the
new protocol using the following simulation parameters: 1, 2, 4, 8, 16, 32, 64
and 128 PEs, and cache line sizes of 1, 2, 4, 8, 16, 32, 64, 128, 256 cells. Note
that, in order to make results easier to interpret, transaction latencies have been
kept constant despite varying the cache line size. The memory timing model
represents a modern multiprocessor in which the latency of a shared-memory
access which requires use of the network is 500 times that of an access which
can be satisfied by the local cache.

5 Simulation Results

The simulated execution time of a program is determined to a large extent by the
latency of network transactions. Consequently, relative performance (i.e. speedup)



figures can be confusing. Since we want to compare the performance of two cache
coherency protocols in a way that is independent of network latency, we have
adopted the metric of “cache transaction ratio”, representing the proportion of
shared-memory accesses made by a program which require use of the network.
Multicache schemes are designed to minimise average memory reference latency
by minimising the cache transaction ratio.

5.1 Assessing Network Usage

Each graph in Fig. 1 shows the transaction ratio plotted against cache line size
with separate curves representing different numbers of processors, the left column
graphs were produced from simulations of the invalidation protocol, the right
column from the new protocol.

The graph for quad with the new protocol shows that the transaction ratio
decreases slightly as the line size is increased, regardless of the number of proces-
sors used. In the case of matmult and wave, the transaction ratio is initially very
high (greater than 17% for 128PEs for matmult) but it falls rapidly for greater
line sizes. These graphs indicate that using a large cache line size allows spatial
locality to be exploited, resulting in a reduction in the load on the network and
therefore execution time.

A comparison of these graphs with those produced for the invalidation proto-
col (left column of the figure) demonstrates the effectiveness of the new scheme:
for each program the transaction ratios for the minimum line size are almost
exactly the same, regardless of the number of PEs used. Although the reduction
in the transaction ratio under the invalidation protocol as the line size is in-
creased 1s initially as significant as under the new protocol, false sharing acts to
reduce the improvement. For the new protocol, the transaction ratio continues
to fall as the cache line size 1s increased, whereas the effect of false sharing acts
to reduce the advantage of using large lines with the invalidation protocol. In
the case of wave for example, the transaction ratio reaches a minimum at a line
size of approximately 8 cells, after which it increases rapidly.

In summary:

— With the exception of wave, the transaction ratios observed for the new
protocol at the minimum line size are very similar to those observed for
the invalidation protocol regardless of the number of processors used. For
wave they are approximately 20% greater than the corresponding figures for
invalidation, regardless of the number of processors used.

— Increasing the line size usually produces a reduction in the transaction ratio,
but never an increase. This indicates that the line stealing problem has been
eliminated.

— For matmult and wave which both exhibited significant reductions in trans-
action ratio for the invalidation protocol as the line size was increased up to
about 16 cells, the corresponding reduction with the new protocol is more
significant.
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Fig. 1. Cache transaction ratio as a function of cache line size for quad, matmult
and wave operating with the invalidation protocol (left column) and the new
protocol (right column)



— Quad exhibited little reduction in transaction ratio as the line size was in-
creased with the new protocol. This program does not use constructed data
and therefore little spatial locality is present. Line stealing still exists with
the invalidation protocol, leading to a very small optimum line size.

The results indicate that we have succeeded in exploiting spatial locality to at
least the same extent as under the invalidation protocol and have also succeeded
in eliminating unnecessary coherency transactions due to line stealing.

5.2 Exploiting Spatial Locality

In this section the advantage gained by exploiting spatial locality is assessed in
detail.

The major difference between the invalidation protocol and the new protocol
is the method used to acquire the right to evaluate and update remotely created
cells. Using monitoring information this can be studied. Reducing cells which
were created locally requires only low-latency memory references, but reducing
remote cells requires high-latency references. Each call to the acquire procedure
(which negotiates the right to evaluate cells) is classified according to the fol-
lowing scheme:

Simple : a call to acquire on a cell that was created locally, or a remotely
created cell which has been accessed by this PE before (and is still in the
cache).

Remote : a call to acquire on a cell which was created remotely and a network
transaction is required (either the local cache did not have the cell or it was
not a normal form).

Gain : the cell which was created remotely was present in normal form in the
local cache and has not been accessed by the PE before. This 1s a benefit
from spatial locality.

Counts of each type were made during simulations of each program with 32
processors. Graphs indicating the percentage of each type as a function of line
size are shown in Fig. 2.

First consider quad: for the minimum line size, only 1.2% of acquires are
to remote cells and incur the corresponding high latencies. This figure is only
slightly affected by line size. Few gains are ever observed. This is to be expected
since the only active sharing that occurs in the program is a direct result of cells
being evaluated remotely, i.e. due to parallel evaluation.

The other programs are more interesting. Matmult shows that about 70% of
acquires are to locally created cells, regardless of the size of cache lines. Most of
the remaining 30% of acquires which need remote access for the minimum line
size can be satisfied locally by using large lines. This is due to the data sharing
behaviour of the program: the two input matrices are accessed by all threads,
but since they are fully evaluated objects, large lines will allow spatial locality
to be exploited. Some cells are created specifically to allow tasks to be spawned,
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Fig. 2. Composition of acquire operations as a function of cache line size for
32 processor simulations of quad, matmult and wave operating with the new
protocol

and therefore calling acquire on such cells will require network transactions.
Consequently some acquires still require a network transaction, regardless of the
line size used. Wave shows similar behaviour to matmult.

In summary:

— Gain acquires are negligible for programs which do not use constructed data;
line size has little effect on the number of simple and remote acquires in this
case.

— Gain acquires are significant for programs which do use constructed data,
and spatial locality can be exploited by using large cache lines.



6 Discussion

The results shown above demonstrate that the new protocol allows spatial local-
ity to be exploited to at least the level that was achieved with the invalidation
protocol, and that line stealing caused by false sharing i1s eliminated.

An issue not addressed so far is the advantage offered by the new protocol
being based on the static ownership of lines. A result of this is that the owner of
a cache line 1s easy to determine — it is implicit in the address of the cell. This is
in contrast to dynamic ownership schemes usually associated with invalidation
protocols which require complicated and time consuming mechanisms to locate
the owner of a line in the absence of a broadcast medium. Possible mechanisms
include “probable ownership” chains in which each processor maintains a table
recording the last known owner of each line. Locating the owner requires follow-
ing the chain until the owner is found. Alternatively, each line can be assigned
a manager through which ownership transfers must be negotiated. Both these
schemes incur considerable overheads in terms of table space and extra messages,
and are described more fully and evaluated experimentally in [13].

In order to simplify the presentation of results, the latencies of network trans-
actions used above have been kept constant, despite varying the cache line size.
Since the line stealing effect has been eliminated in this protocol, this results in
the optimum line size being very large. It is important to note that other factors
need to be considered when selecting a cache line size, and therefore a smaller
line size would be used in practice.

The results do show, however, that the contention effect caused by false
sharing does not need to be considered when selecting a line size for use with
the new protocol.

Garbage collection in the presence of the new protocol raises a few problems,
but also offers some advantages when compared to collection in the presence of
a conventional invalidation protocol. We can view collection as a technique for
reusing parts of the shared address space which have been used before. The new
protocol presents the additional problem that cache lines can be freely cached
and are not invalidated, and therefore a distributed garbage collector, such as
a weighted reference count scheme [6, 17] cannot be used directly. However, a
variant on a pure weighted count scheme [12] allows a mark-scan or copying
collector to be used to collect local cells (which we have observed form the
vast majority of cells), with weighted reference counting only being used for
cells which have been accessed by more than one processor. In such a scheme,
invalidation is still required, but there are two advantages:

— The region to be invalidated is large (a heap semi-space), thus reducing the
volume of copy set data that must be maintained.

— The invalidation can be initiated immediately after a processor begins garbage
collection, but need not be performed with respect to all processors in the
copy set of the region until local collection has been completed. That is, the
invalidation can take place at the same time as local collection.



7 Conclusions

In this paper, a new multicache coherency protocol has been proposed and evalu-
ated for a set of benchmark functional programs. Using an invalidation protocol
with delayed consistency (i.e. one which only enforces coherence at synchroni-
sation points) offers little potential for performance improvements due to the
high rate of synchronisation inherent in PGR. The new protocol is motivated
by the memory access characteristics of PGR and allows spatial locality of read
accesses to be exploited, but does not suffer from the line stealing problem. The
ownership of cache lines is static, avoiding the need for complicated and costly
mechanisms to locate the dynamic owner of lines and to record the copy set of
each line.
Results of simulations indicate the following:

Cache line size can have a significant effect on performance, but increasing
line size will not reduce performance with the new protocol.

— Programs which did not use constructed data did not benefit from large
lines, but did not suffer either. Programs which used constructed data can
benefit from large lines due to spatial locality of read accesses.

For each program the cache transaction ratio for the minimum line size is
approximately equal to the corresponding figure for the invalidation protocol,
but the reduction observed by increasing line size is more significant with
the new protocol.

The new protocol has the advantage that it uses static ownership of cache
lines, simplifying the task of locating the owner of a line.

— The new protocol cannot take advantage of locality of write accesses to
remotely created objects, but the results indicate that this did not lead to
performance problems.

Although the negative effect of using large cache line sizes has been elimi-
nated, the choice of line size is governed by a number of factors which must still
be taken into account.

Future work will include a wider range of example programs, and the effect
of garbage collection. Other ideas include the study of other coherent shared
abstract data types which can be used for general-purpose portable parallel
programming in conventional languages.
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