
Eliminating Invalidation in Coherent-CacheParallel Graph ReductionAndrew J. Bennett and Paul H. J. KellyDepartment of ComputingImperial College of Science, Technology and MedicineLondon SW7 2BZAbstract. Parallel functional programs based on the graph reductionexecution model display considerable locality of reference, favouring theuse of large cache lines in the implementation of the shared heap ona shared-memory multiprocessor. They also display a very high rate ofsynchronisation, making conventional weakly-consistent coherency pro-tocols ine�ective at avoiding unnecessary contention for write access tocache lines due to false sharing. We present the design of a speciallyadapted cache coherency protocol and show results of simulation exper-iments which demonstrate that the protocol allows spatial locality to beexploited to at least the level of a conventional invalidation protocol, butwithout the unnecessary serialisation and network transactions causedby false sharing.1 IntroductionParallel graph reduction (PGR) uses a shared graph structure to manage andsynchronise the parallel execution of a functional program. It provides a simplemodel of communication and synchronisation between processors with distinc-tive properties of importance in the design and optimisation of multicache imple-mentations of shared-memory. The performance of parallel programs operatingunder this regime depends critically on the provision of access to the shared heapwith very high average performance.The most successful implementations of PGR (e.g. Goldberg's Buckwheatsystem [8] and Augustsson and Johnsson's h�;Gi-machine [3]) have used general-purpose shared-memory multiprocessors based on snooping cache coherency pro-tocols [2]. For modest numbers of processors these systems implement a sharedheap with near-ideal performance, but their size is limited by contention for thesnooping bus.In an earlier paper [5] we presented the results of a simulation study of par-allel functional program execution on shared-memory multiprocessors using asimpli�ed version of the standard invalidation-based multicache coherency pro-tocol used on most modern multiprocessors. Such protocols provide a strongconsistency property for application programs which make unrestricted use ofreads, writes and synchronisations.The results of that work can be summarised as follows:



{ Parallel functional programs perform synchronisations at a far greater ratethan more widely-studied program types (e.g. the Splash suite [14]).{ Many parallel functional programs display enough spatial locality to jus-tify the use of very large cache lines, especially on architectures with high-bandwidth, high-latency interconnect as many current designs have.{ With large cache lines, the bene�t of locality is annulled by the dramaticincrease in communication caused by unnecessary invalidations when onecell on a cache line is updated, while the other cells remain stable.In this paper we describe a modi�ed cache coherency protocol designed speci�-cally to support the parallel graph reduction model, and we show the results ofsimulated execution of a suite of benchmark programs to evaluate its success.We are especially concerned with the following questions:{ How e�ective is the new protocol at exploiting spatial locality and avoidingline stealing?{ How does performance of the PGR system operating under the new protocolcompare with performance under the invalidation protocol?{ How does performance vary with interconnection network and program be-haviour?2 Exploiting the Memory Reference Characteristics ofPGRObjects in the shared-memory region are allocated, read, updated and sharedin PGR quite di�erently from the way memory is used in typical imperativeprograms. For example, the following are inherent in the PGR model:{ There is a high turnover of cells, i.e. many cells are not accessed again soonafter being created.{ Cells are updated at most once (i.e. to normal form). However, an implemen-tation of PGR also requires a cell to be updated when a thread has gainedthe right to evaluate it.{ All writes to shared objects occur in critical sections (see Sect. 3).The use of caching in the implementation of a shared-memory multiprocessorraises the question of how to prevent out-of-date cached data from continuing tobe used inde�nitely. Lamport de�ned sequential consistency [11] in which it isguaranteed that a read by any processor of any location will return the last valuewritten to that location. Due to the unnecessary invalidation and serialisationincurred by this, protocols which o�er weaker consistency properties have beenproposed.These advanced protocols are based on the concept of weak ordering [1], andcoherency protocols based on weak ordering o�er performance improvements byallowing invalidations generated by a thread whilst inside a critical section to beprocessed in parallel with computation. This increases concurrency by allowing



the processor to continue executing the instructions following the write withoutwaiting for the invalidation to complete. The number of unnecessary invalida-tions caused by false sharing is therefore reduced, and coherence is enforced atsynchronisation points only. Although a number of simulation studies of impera-tive programs have shown that signi�cant improvements in performance can beachieved by using delayed consistency protocols (see for example [15]), the po-tential improvement is minor in this case due to the high rate of synchronisationinherent in PGR.Our previous results indicate that it is line stealing (i.e. the unnecessaryinvalidation of lines caused by false sharing and subsequent line copying) whichis the major cause of unnecessary network transactions when large cache lines areused with an invalidation protocol. If an update protocol had been used instead,these would have been eliminated, but active sharing of cache lines would beso great that a large proportion of writes would require update transactions.In summary, both invalidation and update protocols have signi�cant problems.Instead we focus on avoiding the need for invalidations altogether.3 A New ProtocolObjects in the shared-memory region are allocated, read, updated and sharedin PGR quite di�erently from the way memory is used in typical imperativeprograms. For example most objects are created at runtime. Of particular im-portance is the three stage lifetime of nodes:inactive: The node has not been evaluated, and no thread has yet gained theright to evaluate it.active: The node has not been evaluated, but a thread has gained the rightto evaluate it, and the node will be updated by its result by that thread atsome time in the future.evaluated: The node has been evaluated and will not be updated again.The state transitions from inactive to active, and from active to eval-uated both require mutual exclusion: for a conventional shared-memory imple-mentation, the state and lock �elds of a node are used to achieve this. Each statetransition requires write accesses to both the lock and the state �eld, and willresult in any other copies of the cache line being invalidated. In the new pro-tocol, ownership of cache lines is static, i.e. the processor that allocates nodeson a line remains the owner of that line. Any access made by a PE to a line itowns can be served by the local cache directly. Accesses to remote lines requirenetwork transactions only if a state transition is required. Copies of remote cachelines are made whenever a network transaction is made. Note that nodes in theevaluated state can be accessed from cached copies of lines directly. This isthe only way in which locality of access can be exploited | locality of writes toremote cache lines cannot be exploited.So, incoherent copies of cache lines can exist in the system since any accesswhich may require a state transition to such a copy will result in a network



transaction with the owner of the line whose copy is always fully coherent. Eval-uated nodes can be read from copies of lines since we can guarantee that theywill not be updated.False sharing still occurs, but line stealing is entirely eliminated since inval-idation is not used. Note that a static ownership scheme greatly simpli�es thattask of locating the owner of a line: it is implicit in the address.4 Experimental DesignThe performance and behaviour of the new protocol have been assessed using aseries of simulation experiments. A comprehensive description of the experimen-tal design can be found in [4]. Here the most important aspects are discussed.We have chosen to use execution-driven simulation which eliminates the va-lidity problems of trace-driven simulation since the simulated processors read thedata as it is at the simulated time at which the reference is made. A simpli�edarchitectural model is used, representing a 32-bit load-store architecture in whichaccesses to private memory take unit time and cache associativity and capacitye�ects are ignored. Although each assumption is invalid on a real machine, theyprevent the results from being obscured by other e�ects.The simulator models the state and copy set of each cache line in the shared-memory in order to determine the latency of each heap reference. Further infor-mation is also associated with each cell and cache line to enable the performanceof the cache system to be closely monitored.4.1 Source Language and CompilerThe source language is a lazy, higher-order functional language in the tradition ofSASL, Miranda and Haskell [10]. The primary objective in building an optimisingcompiler for a lazy functional language is to reduce the frequency at which claimsand references are made to the heap. It is therefore of great importance that thecompiler used in our experiments should perform well. We have adopted thecompiler developed for the FAST project [7], and although comparing compilersis di�cult, we have some con�dence that the system is competitive with thestate of the art [9]. It also, conveniently, generates C, making generated codevery easy to instrument and modify.4.2 Garbage CollectionWhen storage allocated from the shared heap becomes free, it should be recycledfor reuse. In a parallel system a parallel garbage collector is needed, and the areais the subject of intensive research. The behaviour of the garbage collector mayinterfere with normal program execution in two ways: �rstly, it may change therelative timing of processes, depending on when it is activated, and whether allprocessors collect in synchrony. Secondly, garbage collection may substantiallychange the pattern in which store is allocated.



We have made an important simpli�cationhere: we have no garbage collectionat all. Instead, each processor is allocated a large contiguous segment of theshared address space, and it allocates space from it starting from the base. Thisassumption illuminates one of our major objectives which is to learn generallessons about a large class of systems. We are less concerned that the experimentspredict the actual performance of some production system. Although our systemdoes not use garbage collection, the issue of how to collect in the presence of thenew protocol must be addressed; we return to this in Sect. 6.4.3 Example Parallel Functional ProgramsThe suite of programs we have been using are as follows:p�b compute the nth Fibonacci numbernqueens compute a safe arrangement of queens on an n� n chess boardmatmultmultiply two n� n matricesquad �nd the integral of a cubic function using adaptive quadraturewave tidal simulation of an estuary.Wave divides the estuary into a matrix of sub-areas and the action of tidesis simulated for some number of iterations. Each iteration produces three resultmatrices (represented by lists of lists) which are consumed by the followingiteration.Less trivial example programs are available, but the programs in this suiteare simple enough to o�er the possibility that their behaviour might be under-stood, while covering a variety of parallel program structures. The �rst fourprograms were used in Goldberg's Alfalfa and Buckwheat experiments, and arefully described in his thesis [8]. The last is taken from [16].For space resaons in this paper we only present results from 3 programs:quad, matmult and wave.4.4 Simulation of the New ProtocolSimulations were made of each program operating under the invalidatio and thenew protocol using the following simulation parameters: 1, 2, 4, 8, 16, 32, 64and 128 PEs, and cache line sizes of 1, 2, 4, 8, 16, 32, 64, 128, 256 cells. Notethat, in order to make results easier to interpret, transaction latencies have beenkept constant despite varying the cache line size. The memory timing modelrepresents a modern multiprocessor in which the latency of a shared-memoryaccess which requires use of the network is 500 times that of an access whichcan be satis�ed by the local cache.5 Simulation ResultsThe simulated execution time of a program is determined to a large extent by thelatency of network transactions. Consequently, relative performance (i.e. speedup)



�gures can be confusing. Since we want to compare the performance of two cachecoherency protocols in a way that is independent of network latency, we haveadopted the metric of \cache transaction ratio", representing the proportion ofshared-memory accesses made by a program which require use of the network.Multicache schemes are designed to minimise average memory reference latencyby minimising the cache transaction ratio.5.1 Assessing Network UsageEach graph in Fig. 1 shows the transaction ratio plotted against cache line sizewith separate curves representing di�erent numbers of processors, the left columngraphs were produced from simulations of the invalidation protocol, the rightcolumn from the new protocol.The graph for quad with the new protocol shows that the transaction ratiodecreases slightly as the line size is increased, regardless of the number of proces-sors used. In the case of matmult and wave, the transaction ratio is initially veryhigh (greater than 17% for 128PEs for matmult) but it falls rapidly for greaterline sizes. These graphs indicate that using a large cache line size allows spatiallocality to be exploited, resulting in a reduction in the load on the network andtherefore execution time.A comparison of these graphs with those produced for the invalidation proto-col (left column of the �gure) demonstrates the e�ectiveness of the new scheme:for each program the transaction ratios for the minimum line size are almostexactly the same, regardless of the number of PEs used. Although the reductionin the transaction ratio under the invalidation protocol as the line size is in-creased is initially as signi�cant as under the new protocol, false sharing acts toreduce the improvement. For the new protocol, the transaction ratio continuesto fall as the cache line size is increased, whereas the e�ect of false sharing actsto reduce the advantage of using large lines with the invalidation protocol. Inthe case of wave for example, the transaction ratio reaches a minimum at a linesize of approximately 8 cells, after which it increases rapidly.In summary:{ With the exception of wave, the transaction ratios observed for the newprotocol at the minimum line size are very similar to those observed forthe invalidation protocol regardless of the number of processors used. Forwave they are approximately 20% greater than the corresponding �gures forinvalidation, regardless of the number of processors used.{ Increasing the line size usually produces a reduction in the transaction ratio,but never an increase. This indicates that the line stealing problem has beeneliminated.{ For matmult and wave which both exhibited signi�cant reductions in trans-action ratio for the invalidation protocol as the line size was increased up toabout 16 cells, the corresponding reduction with the new protocol is moresigni�cant.
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{ Quad exhibited little reduction in transaction ratio as the line size was in-creased with the new protocol. This program does not use constructed dataand therefore little spatial locality is present. Line stealing still exists withthe invalidation protocol, leading to a very small optimum line size.The results indicate that we have succeeded in exploiting spatial locality to atleast the same extent as under the invalidation protocol and have also succeededin eliminating unnecessary coherency transactions due to line stealing.5.2 Exploiting Spatial LocalityIn this section the advantage gained by exploiting spatial locality is assessed indetail.The major di�erence between the invalidation protocol and the new protocolis the method used to acquire the right to evaluate and update remotely createdcells. Using monitoring information this can be studied. Reducing cells whichwere created locally requires only low-latency memory references, but reducingremote cells requires high-latency references. Each call to the acquire procedure(which negotiates the right to evaluate cells) is classi�ed according to the fol-lowing scheme:Simple : a call to acquire on a cell that was created locally, or a remotelycreated cell which has been accessed by this PE before (and is still in thecache).Remote : a call to acquire on a cell which was created remotely and a networktransaction is required (either the local cache did not have the cell or it wasnot a normal form).Gain : the cell which was created remotely was present in normal form in thelocal cache and has not been accessed by the PE before. This is a bene�tfrom spatial locality.Counts of each type were made during simulations of each program with 32processors. Graphs indicating the percentage of each type as a function of linesize are shown in Fig. 2.First consider quad: for the minimum line size, only 1.2% of acquires areto remote cells and incur the corresponding high latencies. This �gure is onlyslightly a�ected by line size. Few gains are ever observed. This is to be expectedsince the only active sharing that occurs in the program is a direct result of cellsbeing evaluated remotely, i.e. due to parallel evaluation.The other programs are more interesting. Matmult shows that about 70% ofacquires are to locally created cells, regardless of the size of cache lines. Most ofthe remaining 30% of acquires which need remote access for the minimum linesize can be satis�ed locally by using large lines. This is due to the data sharingbehaviour of the program: the two input matrices are accessed by all threads,but since they are fully evaluated objects, large lines will allow spatial localityto be exploited. Some cells are created speci�cally to allow tasks to be spawned,
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Fig. 2. Composition of acquire operations as a function of cache line size for32 processor simulations of quad, matmult and wave operating with the newprotocoland therefore calling acquire on such cells will require network transactions.Consequently some acquires still require a network transaction, regardless of theline size used. Wave shows similar behaviour to matmult.In summary:{ Gain acquires are negligible for programs which do not use constructed data;line size has little e�ect on the number of simple and remote acquires in thiscase.{ Gain acquires are signi�cant for programs which do use constructed data,and spatial locality can be exploited by using large cache lines.



6 DiscussionThe results shown above demonstrate that the new protocol allows spatial local-ity to be exploited to at least the level that was achieved with the invalidationprotocol, and that line stealing caused by false sharing is eliminated.An issue not addressed so far is the advantage o�ered by the new protocolbeing based on the static ownership of lines. A result of this is that the owner ofa cache line is easy to determine | it is implicit in the address of the cell. This isin contrast to dynamic ownership schemes usually associated with invalidationprotocols which require complicated and time consuming mechanisms to locatethe owner of a line in the absence of a broadcast medium. Possible mechanismsinclude \probable ownership" chains in which each processor maintains a tablerecording the last known owner of each line. Locating the owner requires follow-ing the chain until the owner is found. Alternatively, each line can be assigneda manager through which ownership transfers must be negotiated. Both theseschemes incur considerable overheads in terms of table space and extra messages,and are described more fully and evaluated experimentally in [13].In order to simplify the presentation of results, the latencies of network trans-actions used above have been kept constant, despite varying the cache line size.Since the line stealing e�ect has been eliminated in this protocol, this results inthe optimum line size being very large. It is important to note that other factorsneed to be considered when selecting a cache line size, and therefore a smallerline size would be used in practice.The results do show, however, that the contention e�ect caused by falsesharing does not need to be considered when selecting a line size for use withthe new protocol.Garbage collection in the presence of the new protocol raises a few problems,but also o�ers some advantages when compared to collection in the presence ofa conventional invalidation protocol. We can view collection as a technique forreusing parts of the shared address space which have been used before. The newprotocol presents the additional problem that cache lines can be freely cachedand are not invalidated, and therefore a distributed garbage collector, such asa weighted reference count scheme [6, 17] cannot be used directly. However, avariant on a pure weighted count scheme [12] allows a mark-scan or copyingcollector to be used to collect local cells (which we have observed form thevast majority of cells), with weighted reference counting only being used forcells which have been accessed by more than one processor. In such a scheme,invalidation is still required, but there are two advantages:{ The region to be invalidated is large (a heap semi-space), thus reducing thevolume of copy set data that must be maintained.{ The invalidation can be initiated immediately after a processor begins garbagecollection, but need not be performed with respect to all processors in thecopy set of the region until local collection has been completed. That is, theinvalidation can take place at the same time as local collection.



7 ConclusionsIn this paper, a new multicache coherency protocol has been proposed and evalu-ated for a set of benchmark functional programs. Using an invalidation protocolwith delayed consistency (i.e. one which only enforces coherence at synchroni-sation points) o�ers little potential for performance improvements due to thehigh rate of synchronisation inherent in PGR. The new protocol is motivatedby the memory access characteristics of PGR and allows spatial locality of readaccesses to be exploited, but does not su�er from the line stealing problem. Theownership of cache lines is static, avoiding the need for complicated and costlymechanisms to locate the dynamic owner of lines and to record the copy set ofeach line.Results of simulations indicate the following:{ Cache line size can have a signi�cant e�ect on performance, but increasingline size will not reduce performance with the new protocol.{ Programs which did not use constructed data did not bene�t from largelines, but did not su�er either. Programs which used constructed data canbene�t from large lines due to spatial locality of read accesses.{ For each program the cache transaction ratio for the minimum line size isapproximately equal to the corresponding �gure for the invalidation protocol,but the reduction observed by increasing line size is more signi�cant withthe new protocol.{ The new protocol has the advantage that it uses static ownership of cachelines, simplifying the task of locating the owner of a line.{ The new protocol cannot take advantage of locality of write accesses toremotely created objects, but the results indicate that this did not lead toperformance problems.Although the negative e�ect of using large cache line sizes has been elimi-nated, the choice of line size is governed by a number of factors which must stillbe taken into account.Future work will include a wider range of example programs, and the e�ectof garbage collection. Other ideas include the study of other coherent sharedabstract data types which can be used for general-purpose portable parallelprogramming in conventional languages.References1. Sarita V. Adve and Mark D. Hill. Weak ordering | a new de�nition and someimplications. Technical Report 902, Computer Sciences Department, University ofWisconsin-Madison, 1989.2. James Archibald and Jean-Loup Baer. Cache coherence protocols: evaluation usinga multiprocessor simulation model. ACM Transactions on Computer Systems,4(4):273{298, November 1986.
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