
An exhaustive evaluation of row-major, column-major
and Morton layouts for large two-dimensional arrays

Jeyarajan Thiyagalingam, Olav Beckmann, Paul H. J. Kelly

Department of Computing, Imperial College
180 Queen’s Gate, London SW7 2AZ, U.K.fphjk,ob3,jeyang@doc.ic.ac.uk

Abstract. Morton layout is a compromise storage layout between the program-
ming language mandated layouts row-major and column-major, providing sub-
stantial locality of reference when traversed in either direction. This paper ex-
plores the performance of Morton, row-major and column-major layouts in detail
on some representative architectures. Using a small suite of dense kernels work-
ing on two-dimensional arrays, we have carried out an extensive study of the
impact of poor array layout and of whether Morton layout can offer an attractive
compromise. Whether Morton layout is better than traversing a column-major ar-
ray in row-major order (or vice versa) depends on problem size and architecture.
Morton layout generally leads to much more consistent performance and only a
small improvement in its performance could make it an attractive alternative.

1 Introduction

Two-dimensional arrays are generally arranged in memory inrow-major order (for C,
Pascal etc) or column-major order (for Fortran). Modern processors rely heavily on
caches and prefetching, which work well when the access pattern matches the storage
layout. Sophisticated programmers, or occasionally sophisticated compilers, match the
loop structure to the language’s storage layout in order to maximise spatial locality.
Unsophisticated programmers do not, and the performance loss is often dramatic — a
factor of 10 or more. In this paper we study the Morton storagelayout (for background
and history see [2,11]).

Morton layout is a compromise between row-major and column-major, with some
spatial locality whether traversed in row-major or column-major order — but in neither
case is spatial locality as high as the best case for row-major or column-major. Further,
the way that array elements are stored requires fairly complicated address calculation.
So, should language implementors still consider providingsupport for Morton layout
for multidimensional arrays? In this paper, we explore and analyse this question and
provide some qualified answers.

Perhaps controversially, we confine our attention to “naively” written codes, where
a mismatch between access order and layout is reasonably likely. We also assume that
the compiler does not help, neither by adjusting storage layout, nor by loop nest restruc-
turing such as loop interchange or tiling1. Naturally, we fervently hope that users will

1 In the examples which we studied, we have not seen evidence ofthe compiler either inter-
changing loops or changing storage layout in order to improve the stride of memory access.

be expert and that compilers will successfully analyse and optimise the code, but we
recognise that very often, neither is the case. In this paper,we evaluate the hypothesis
that Morton layout, implemented using lookup tables, is a useful compromise between
row-major and column-major layout. We present extensive experimental results using
five simple numerical kernels, running on five different processors (Section 4).

2 Related work

In our earlier paper [10], we argued that Morton layout is an effective compromise stor-
age layout, with the evidence of experimental data on various architectures for various
kernels, on power-of-two problem sizes. Our later work on selected non-power-of-two
sizes (presented at the CPC workshop in January 2003) gave similar results. This paper
improves on our earlier work:

– We use the best available compilers for each of the five processors, using the com-
piler flags chosen by the vendors for their SPEC CFP2000 (base) benchmark re-
ports [9] (see Table 3 in Section 4).

– We present an extensive and systematic study using all problem sizes in the range
100� 100 to 2048. This shows a number of interesting effects, and Morton lay-
out appears less attractive. However, as we discuss at the end of the paper, further
improvements to the performance of Morton layout might be possible.

In [10], we included a discussion about related work in the area of compiler tech-
niques [4–6,12], blocked and recursively-blocked array layouts [2,3,11].

3 Background

Lexicographic array storage. For anM�N two dimensional arrayA, a mappingS(i; j)
is needed, which gives the memory offset at which array element Ai; j will be stored.
Conventional solutions are row-major (for example in C and Pascal) and column-major
(as used by Fortran) mappings expressed by

S
(M;N)
rm (i; j) = N� i+ j and S

(M;N)
cm (i; j) = i+M� j

respectively. We refer to row-major and column-major as lexicographic, i.e. elements
are arranged by the sort order of the two indices (another term is “canonical”).

Blocked array storage. Traversing a row-major array in column-major order, or vice-
versa, leads to poor performance due to poor spatial locality. An attractive strategy is
to choose a storage layout which offers a compromise betweenrow-major and column-
major. For example, we could break theM�N array into small,P�Q row-major sub-
arrays, arranged as aM=P�N=Q row-major array. We define the blocked row-major
mapping function (this is the 4D layout discussed in [2]) as:

S
(M;N)
brm (i; j) = (P�Q)�S

(M=P;N=Q)
rm (i=P; j=P)+S

(P;Q)
rm (i%P; j%Q)

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

0 1 2

7

8

4 5 6

3

13 15

9 10 11

14

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

32 33 34 35

36 3837 39

40 41 42 43

44 45 46 47

48 49 50 51

52 53 54 55

56 57 58 59

60 61 62 63

12

Row−major traversal: one in four
accesses hits a new cache line

hits a new cache line.

1

2

3

4

5

6

7

i

j 0

0 1 2 3 4 5 6 7

Column−major traversal: one in four accesses

Fig. 1. Blocked row-major (“4D”) layout

S
(8;8)
brm (i; j) with block-size P= Q = 4. The

diagram illustrates that with 16-word cache
lines, illustrated by different shadings, the
cache hit rate is 75% whether the array is tra-
versed in row-major or column-major order.

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��������

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
������������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

����������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�����������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0 1

7

8

6

9

16 17

24 25

30

57

1

2

3

4

5

6

7

i

j 0

0 1 2 3 4 5 6 7

4 5

2 3

10 11

12 13

18

20

19 22

26 2714 15

2928

21

31

23

34 35

32 33 36 37

38 39

40 41

42 43

44 45

46 47

48 49 52 53

50 51 54 55

56

58

60

59

61

62 63

mz
S (5,4)

(8,8)

Fig. 2. Morton storage layout for an 8�8 ar-
ray. Location of elementA[5;4℄ is calculated by
interleaving “dilated” representations of 5 and 4
bitwise:D0(5) = 1000102, D1(4) = 0100002.
Smz(5;4) =D0(5) jD1(4) = 1100102 = 5010.

For example, consider 16-word cache blocks andP = Q = 4, as illustrated in Figure 1.
Each block holds aP�Q= 16-word subarray. In row-major traversal, the four iterations(0;0), (0;1), (0;2) and (0;3) access locations on the same block. The remaining 12
locations on this block are not accessed until later iterations of the outer loop. Thus,
for a large array, the expected cache hit rate is 75%, since each block has to be loaded
four times to satisfy 16 accesses. The same cache hit rate results with column-major
traversal, i.e. when the loop structure is “do i...do j” rather than the “do j...do
i” loop of row-major traversal.

Recursive blocking. Modern computer systems rely on a TLB to cache address transla-
tions: a typical 64-entry data TLB with 8KByte pages has an effective span of 64�8=
512KB. Unfortunately, as illustrated in Figure 3, if a blocked row-major array is tra-
versed in column-major order, only one subarray per page is usable. Thus, we find that
the blocked row-major layout is still biased towards row-major traversal. We can over-
come this by applying the blocking again, recursively. Thus, each 8KByte page (1024
doubles) would hold a 16�16 array of 2�2-element subarrays.

Modern systems often have a deep memory hierarchy, with block size, capacity
and access time increasing geometrically with depth [1]. Blocking should therefore
be applied for each level. Note, however, that this becomes very awkward if larger
blocksizes are not whole multiples of the next smaller blocksize.

Morton-order layout is an unbiased compromise between row-major and column-major.
The key property which motivates our study of Morton layout is the following:

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

...

...

...

...

...

...

...

...

...

15 31

496 5120 16 528 1008 1024 1040 1536 1552 1568 2032

3584 3600 3616 4080

4096 4112 4592

4607

2048 2064 2544 2560 2576 3056 3072 3088
158310551023543 1039 1551 1567 2047

2063 2079 2559 2575 2591 3071 3087 3103 3599 3615 3631 4095

Each 1024−word page holds 64 4x4 blocks

4x4 row−major blocks, arranged in row−major order

With column−major traversal, each new block is on a fresh page

41274111

511 527

Fig. 3. Blocked row-major layout for large array. If a large blocked row-major array is tra-
versed in column-major order, only one subarray per page is usable. The diagram shows an array
with rows of 2048 doubles, using the blocked row-major layout with 4�4 blocks. Each 8KByte
page holds 1024 doubles, in 64 blocks. When traversed in row-major order, one fresh page is ac-
cessed every 256 accesses (a hit rate of 1�1=256= 99:6%), but when traversed in column-major
order, a fresh page is accessed every 4 accesses (a hit rate of1�1=4 = 75%).

Row-major layout Morton layout Column-major layout
32B cache line 75% 50% 0%
128B cache line 93.75% 75% 0%

8KB page 99.9% 96.875% 0%

Table 1. Theoretical hit rates for row-major traversal of a large array of double words on
different levels of memory hierarchy.Possible conflict misses or additional hits due to temporal
locality are ignored. This illustrates the compromise nature of Morton layout.

– Given a cache with any even power-of-two block size, with an array mapped ac-
cording to the Morton order mappingSmz, the cache hit rate of a row-major traversal
is the same as the cache-hit rate of a column-major traversal.

– This applies given any cache hierarchy with even power-of-two block size at each
level. This is illustrated in Figure 2.

– The cache hit rate for a cache with block size 22k is 1� (1=2k).
For cache blocks of 32 bytes (4 double words,k = 1) this gives a hit rate of 50%. For
cache blocks of 128 bytes (16 double words,k = 2) the hit rate is 75% as illustrated
earlier. For 8KB pages (1024 words,k = 5), the hit rate is 96.875%. In Table 1, we
contrast these hit rates with the corresponding theoretical hit rates that would result from
row-major and column-major layout. Notice that traversingthe same array in column-
major order would result in a swap of the row-major and column-major columns, but
leave the hit rates for Morton layout unchanged.

Morton-order address calculation. The offsetS(M;N)
mz (i; j) of an element in Morton lay-

out can be calculated by bitwise interleaving of the binary digits representingi and j.
This can be calculated incrementally using ”dilated arithmetic”, but in our earlier pa-

MMijk Matrix multiply, ijk loop nest order (usually poor due to large stride)
MMikj Matrix multiply, ikj loop nest order (usually best due to unit stride)
Jacobi2DTwo-dimensional four-point stencil smoother
ADI Alternating-direction implicit kernel, ij,ij order
CholeskyK-variant (usually poor due to large stride)

Table 2. Numerical kernels used in our experimental evaluation.

System Processor Operating L1/L2/Memory Compiler
System Parameters and Flags Used

Alpha Alpha 21264 OSF1 V5.0 L1 D-cache: 2-way, 64KB, 64B cache line Compaq C
Compaq (EV6) 500MHz L2 cache: direct mapped, 4MB Compiler V6.1-020
AlphaServer Page size: 8KB -arch ev6 -fast -O4
ES40 Main Memory: 4GB RAM
Sun UltraSparcIII(v9) SunOS 5.8 L1 D-cache: 4-way, 64KB, 32B cache line Sun Workshop 6
SunFire 6800750MHz L2 cache: direct-mapped, 8MB -fast -xcrossfile

Page size: 8KB -xalias level=std
Main Memory: 24GB

PIII PentiumIII Linux 2.4.20L1 D-cache: 4-way, 16KB, 32B cache line Intel C/C++
Coppermine L2 cache: 4-way 512KB, sectored 32B cache lineCompiler v7.00
450MHz Page size: 4KB -xK -mp -ipo

Main Memory: 256MB SDRAM -O3 -static
P4 Pentium 4 Linux 2.4.20L1 D-cache: 4-way, 8KB, sectored 64B cache lineIntel C/C++

2.0 GHz L2 cache: 8-way, 512KB, sectored 128B cache lineCompiler v7.00
Page size: 4KB -xW -mp -ipo
Main Memory: 512MB DDR-RAM -O3 -static

AMD AMD Athlon Linux 2.4.20L1 D-Cache: 2-way, 64KB, 64B cache line Intel C/C++
XP 2100+ 1.8GHz L2 cache: 16-way, 256KB, 64B cache line Compiler v7.00

Page size: 4KB -xK -mp -ipo
Main Memory: 512MB DDR-RAM -static

Table 3. Cache and CPU configurations used in the experiments. Compilers and compiler
flags match those used by the vendors in their SPEC CFP2000 (base) benchmark reports [9].

per [10], we found a simple table lookup scheme works remarkably well. We use two
tables,D0 andD1, which mapi and j to their dilated representations (that is, bitwise
interleaved with zeroes, whereB(D0(i)) = 0in�1 : : :0i0 whereB(x) is the binary repre-

sentation ofx andD1(i) =D0(i)<< 1). The Morton offsetS(M;N)
mz (i; j) =D0(i)+D1(j).

The tables are small and are traversed with unit stride. In this paper, we exclusively use
the table lookup scheme.

4 Experimental setup and experimental results

Benchmark kernels and architectures. To test our hypothesis that Morton layout, imple-
mented using lookup tables, is a useful compromise between row-major and column-
major layout experimentally, we have collected a suite of simple implementations of
standard numerical kernels operating on two-dimensional arrays and carried out ex-
periments on five different architectures. The benchmarking kernels used are shown in
Table 2 and the platforms in Table 3.

Problem sizes. As mentioned in Section 2, our previous paper [10] reported perfor-
mance results for power-of-two problem sizes. For this paper, we decided to carry out

Adi Cholk Jacobi2D MMijk MMikj
min max min max min max min max min max

Alpha 27.0 84.5 24.0 167.1 6.0 139.5 42.7 177.0
Athlon 43.8 210.48.8 308.5150.6 1078.6 9.5 262.5118.2 884.2
P3 13.7 46.6 4.1 42.2 38.7 122.315.5 92.3 45.5 173.5
P4 46.2 134.14.8 266.1159.6 1337.312.6 147.3281.4 939.1
Sparc 11.3 54.4 3.5 78.4 33.2 139.2 4.8 131.9 22.7 142.8

Table 4. Baseline performance of various kernels on different systems.For each kernel, for
each machine, we show the performance range in MFLOPs for row-major array layout over all
problem sizes covered in our experiments (as shown in Figures 4–7).

an exhaustive study, collecting performance data, where possible, for all problem sizes
between 100�100 and 2048�2048. In some cases, the running-time of the benchmarks
was such that we were not able yet to collect data up to 2048�2048. In those cases, we
report data up to 1024�1024; however, we are continuing to collect measurements. In
all cases, we used square arrays.

Performance results. The performance numbers we report in this paper are all basedon
themedian of measurements taken. See [7] for more details on experimental method-
ology/framework. Table 4 shows the baseline performance achieved by each machine
using standard row-major layout. In figures 4–7 we show our interesting/important re-
sults in detail. The full range of results and annotations can be found in [7].

On nearly all systems, the results clearly show the impact ofL2 cache and TLB
span on overall performance. Frequently, when either the whole working set or some
part thereof exceeds the capacity of a particular level of memory hierarchy, a substantial
drop in performance can be observed. For example, a sudden drop in the performance
of MMijk with the column-major layout onAlpha, near the problem size 350 coincides
with the working set exceeding the size of the TLB span. (Alpha has 128–entry Data
TLB, each entry pointing to an 8KB page: This matches the sizeof a 362�362 array
of doubles). Similar observations can be made for other levels of the memory hierarchy
as well. Further, row-major and column-major layouts show wide variations in perfor-
mance with small changes in problem sizes whereas the performance of Morton layout
remains very consistent. Although padding the length of therows/columns of an ar-
ray can significantly improve performance, the amount of padding required needs to be
chosen very carefully.

For each experiment/architecture pair, we state whether Morton layout is a useful
compromise between row-major and column-major in this setting by annotating the
figures withwin, lose, etc. As an overview, we recordwins for

– Adi: Alpha, P3 and Sparc over column-major but not over row-major.
– Jacobi2D: Alpha, Sparc over column-major but not over row-major.
– MMikj: Alpha, Sparc over column-major but not over row-major.

– MMijk: Alpha, Sparc over both row-major and column-major.

This suggests that Morton layout performs well on machines with large L2 caches.

5 Conclusions and directions for further research

Using a small suite of dense kernels working on two-dimensional arrays, we have car-
ried out an extensive study of row-major, column-major and Morton layouts and the
impact of poor array layout on performance, covering non-power-of-two problem sizes
within a substantial range. On some machines, we found that Morton array layout, even
implemented with a lookup table with no compiler support, isremarkably competitive to
both row-major and column-major layouts. We also found thatusing a lookup-table for
address calculation allows flexible selection of fine-grainnon-linear array layout, while
offering attractive performance on some architectures compared with lexicographic lay-
outs on untiled loops. Although the overall performance of the basic Morton scheme,
as described in this paper, is only attractive for some architectures and kernels, a small
improvement in its performance could make it a promising alternative to lexicographic
layouts. A number of interesting issues remain:

– Non-square cache blocks and pages.In our brief analysis of spatial locality using
Morton layout (Section 3), we assumed that cache blocks and virtual memory pages
are asquare (even) power of two. This depends on the array’s element size, and
is often not the case. In these cases, Morton layout can lead to differing spatial
locality, when traversed in row-major or column-major order. A more subtle non-
linear layout might address this.

– Base address alignment.In our implementation, we have only considered the de-
fault alignment, as returned bymalloc(), of the base address of Morton arrays.
For large arrays, we have found this to be page-aligned plus 8bytes on several sys-
tems. Our studies show that alignment of the base address of Morton arrays can
make a significant difference in performance (especially when the alignment is of
cache line length or of page size). Further study and experiments are needed in this
aspect.

– Unrolling. The results presented here are based on code which uses the lookup
table for every address calculation. By strip-mining the innermost loop (which is
always valid) by a small square power-of-two factor such as 4, it is possible to
replace some lookup table accesses with constant offsets from the base of a 2�2
block. This should give higher performance for the Morton layout, at the loss of
some of the addressing flexibility which the lookup table scheme allows.

– Associativity conflicts within and between Morton arrays.Associativity con-
flicts have been studied extensively for lexicographic layouts (e.g. [8]). Our results
show evidence that associativity conflicts also impact performance with Morton
layout, and further study of the effect is needed.

– Cache contention between arrays and lookup tables.The lookup table scheme
relies for its performance on the tables, which are accessedwith unit stride, occu-
pying first-level cache. However, array accesses can displace lookup table entries.
We believe this effect may explain some features of our performance graphs and
plan to investigate further.

Win over CM for problem sizes Win over CM for problem sizes
larger than about 362�362 larger than about 700�700

0

20

40

60

80

100

100 200 300 400 500 600 700 800 900 1000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Adi on Alpha: Performance in MFLOP/s

RM Default Alignment
CM Default Alignment

Morton Default Alignment

0

10

20

30

40

50

60

500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Adi on Sparc: Performance in MFLOP/s

RM Default Alignment
CM Default Alignment

Morton Default Alignment

Lose Marginal win over CM

0

50

100

150

200

250

500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Adi on Athlon: Performance in MFLOP/s

RM Default Alignment
CM Default Alignment

Morton Default Alignment

0

5

10

15

20

25

30

35

40

45

50

500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Adi on P3: Performance in MFLOP/s

RM Default Alignment
CM Default Alignment

Morton Default Alignment

Lose

0

20

40

60

80

100

120

140

500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Adi on P4: Performance in MFLOP/s

RM Default Alignment
CM Default Alignment

Morton Default Alignment

Fig. 4. ADI performance in MFLOPs on different platforms. We compare row-major (RM),
column-major (CM) and Morton implemented using lookup tables.

Win over CM for problem sizes Marginal win over CM
larger than about 330�330

0

20

40

60

80

100

120

140

160

180

500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Jacobi2D on Alpha: Performance in MFLOP/s

RM Default Alignment
CM Default Alignment

Morton Default Alignment

0

20

40

60

80

100

120

140

500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Jacobi2D on Sparc: Performance in MFLOP/s

RM Default Alignment
CM Default Alignment

Morton Default Alignment

Lose Lose

0

200

400

600

800

1000

1200

500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Jacobi2D on Athlon: Performance in MFLOP/s

RM Default Alignment
CM Default Alignment

Morton Default Alignment

0

20

40

60

80

100

120

140

500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Jacobi2D on P3: Performance in MFLOP/s

RM Default Alignment
CM Default Alignment

Morton Default Alignment

Lose

0

200

400

600

800

1000

1200

1400

500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

Jacobi2D on P4: Performance in MFLOP/s

RM Default Alignment
CM Default Alignment

Morton Default Alignment

Fig. 5. Jacobi2D performance in MFLOPs on different platforms. We compare row-major
(RM), column-major (CM) and Morton implemented using lookup tables.

Win over CM for problem sizes Win over CM for problem sizes
larger than about 330�330 larger than about 500�500

0

20

40

60

80

100

120

140

160

180

100 200 300 400 500 600 700 800 900 1000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMikj on Alpha: Performance in MFLOP/s

RM Default Alignment
CM Default Alignment

Morton Default Alignment

0

20

40

60

80

100

120

140

160

500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMikj on Sparc: Performance in MFLOP/s

RM Default Alignment
CM Default Alignment

Morton Default Alignment

Lose Lose

0

100

200

300

400

500

600

700

800

900

500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMikj on Athlon: Performance in MFLOP/s

RM Default Alignment
CM Default Alignment

Morton Default Alignment

0

20

40

60

80

100

120

140

160

180

100 200 300 400 500 600 700 800 900 1000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMikj on P3: Performance in MFLOP/s

RM Default Alignment
CM Default Alignment

Morton Default Alignment

Marginal Win

0

100

200

300

400

500

600

700

800

900

1000

500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMikj on P4: Performance in MFLOP/s

RM Default Alignment
CM Default Alignment

Morton Default Alignment

Fig. 6. MMikj performance in MFLOPs on different platforms. We compare row-major (RM),
column-major (CM) and Morton implemented using lookup tables.

Win Win over both RM and CM for problem
sizes larger than about 750�750

0

20

40

60

80

100

120

140

100 200 300 400 500 600 700 800 900 1000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMijk on Alpha: Performance in MFLOP/s

RM Default Alignment
CM Default Alignment

Morton Default Alignment

0

20

40

60

80

100

120

140

100 200 300 400 500 600 700 800 900 1000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMijk on Sparc: Performance in MFLOP/s

RM Default Alignment
CM Default Alignment

Morton Default Alignment

Lose Lose

0

50

100

150

200

250

300

500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMijk on Athlon: Performance in MFLOP/s

RM Default Alignment
CM Default Alignment

Morton Default Alignment

0

10

20

30

40

50

60

70

80

90

100

500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMijk on P3: Performance in MFLOP/s

RM Default Alignment
CM Default Alignment

Morton Default Alignment

Lose

0

20

40

60

80

100

120

140

160

500 1000 1500 2000

P
er

fo
rm

an
ce

 in
 M

F
LO

P
/s

Square Root of Datasize

MMijk on P4: Performance in MFLOP/s

RM Default Alignment
CM Default Alignment

Morton Default Alignment

Fig. 7. MMijk performance in MFLOPs on different platforms. We compare row-major (RM),
column-major (CM) and Morton implemented using lookup tables.

– Prefetching.Most modern processors have both autonomous prefetching ofuni-
form address streams, and explicit prefetching instructions. With lexicographic
layout, fixed-stride accesses are common and autonomous prefetch mechanisms
should work well. With Morton layout, the access pattern is known in advance but
is not uniform. To sustain memory access bandwidth we need toissue prefetch
instructions carefully.

It seems unlikely that Morton layout can offer a competitivecompromise for three-
dimensional arrays, since a given lexicographic traversalwould use only 2k words of
each 23k-word cache block.

Acknowledgements. This work was partly supported by mi2g Software, a Universities UK
Overseas Research Scholarship and by the United Kingdom EPSRC-funded OSCAR project
(GR/R21486). We also thank Imperial College Parallel Computing Centre (ICPC) for access to
their equipment. We are very grateful for helpful discussions with Susanna Pelagatti and Scott
Baden, whose visits were also funded by the EPSRC (GR/N63154and GR/N35571).

References

1. Bowen Alpern, Larry Carter, Ephraim Feig, and Ted Selker.The uniform memory hierarchy
model of computation.Algorithmica, 12(2/3):72–109, 1994.

2. Siddhartha Chatterjee, Vibhor V. Jain, Alvin R. Lebeck, Shyam Mundhra, and Mithuna Thot-
tethodi. Nonlinear array layouts for hierarchical memory systems. InInternational Confer-
ence on Supercomputing, pages 444–453, 1999.

3. P. Drakenberg, F. Lundevall, and B. Lisper. An Efficient Semi-Hierarchical Array Layout.
Proc. Workshop on Interaction between Compilers and Computer Architectures (Kluwer),
2001.

4. Mahmut T. Kandemir, Alok N. Choudhary, J. Ramanujam, N. Shenoy, and Prithviraj Baner-
jee. Enhancing spatial locality via data layout optimizations. InEuropean Conference on
Parallel Processing, pages 422–434, 1998.

5. Monica S. Lam, Edward E. Rothberg, and Michael E. Wolf. Thecache performance and
optimizations of blocked algorithms.SIGPLAN Notices, 26(4):63–74, 1991.

6. Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Improving data locality with loop
transformations.ACM Transactions on Programming Languages and Systems, 18(4):424–
453, July 1996.

7. http://www.doc.ic.ac.uk/˜jeyan/MortonResults.html.
8. Gabriel Rivera and Chau-Wen Tseng. Data transformationsfor eliminating conflict misses.

In SIGPLAN Conference on Programming Language Design and Implementation, pages 38–
49, 1998.

9. http://www.specbench.org/.
10. J. Thiyagalingam and P. H. J. Kelly. Is Morton Layout Competitive for Large Two-

Dimensional Arrays?Lecture Notes in Computer Science, 2400:280–288, 2002.
11. David S. Wise, Jeremy D. Frens, Yuhong Gu, and Gregory A. Alexander. Language support

for Morton-order matrices. InProc. 2001 ACM Symp. on Principles and Practice of Parallel
Programming, SIGPLAN Not. 36, 7, July 2001.

12. Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm. InProceedings
of ACM SIGPLAN ’91 Conference on Programming Language Design and Implementation,
June 1991.

