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Abstract— Current and potential users for field-programmable
gate arrays (FPGAs) are increasingly looking to high-level
languages as a means to widen applicability and cope with ever-
increasing transistor counts.

We present a transformation system for one such high-level
language for electronic circuit design, which goes some way
towards bridging the growing gulf between the domain and
architecture experts. We demonstrate its effectiveness by realistic,
albeit relatively small, case studies; performance improvements
of up to 70% have been achieved.

I. INTRODUCTION

We present CML [1], a user-customisable transformation
system for a high-level hardware description language.

CML provides three main contributions to high-level hard-
ware design. Architecture experts, working separately from
domain experts, can:

1) define transformations for the automatic derivation of
efficient hardware designs from a naive C-based speci-
fication;

2) encapsulate knowledge of restructuring strategies as
rewrite rules which can selectively be used to refine
naive code;

3) automatically apply transformations in a number of com-
binations to find the solution with the best performance.

CML’s core language design is based on Boekhold’s
CTT [2], using the hardware language Cobble [3], a Handel-
C [4]-based language, as the subject for transformation.

Demonstration transformations for path shortening, code
unwinding and automatic parallelisation with or without hard-
ware duplication are shown to produce execution time im-
provements of 35-70%.

II. APPLICATION AREA

High-level language to hardware design technology provides
a faster development model than hand-crafting digital systems.
The ultimate aim is to take software code and produce an
efficient digital system design.

Celoxica’s Handel-C [4] language is an example of this
technology, allowing the specification of hardware designs
in a C-like syntax. The language removes some features of
ANSI C, such as side-effects, but adds constructs for explicit
statement-level parallelism. Strict timing semantics constrain
the optimisations available to the compiler; each statement is
defined to take one cycle to execute.

Electronic circuit design requires fine control over paral-
lelism to provide the best performance. “Best performance”

need not necessarily be speed – power is an important per-
formance measurement too. At the same time, users from
diverse areas unfamiliar with low-level hardware details are
moving into the FPGA arena, for example to accelerate
scientific applications. Separating domain-specific knowledge
from architecture-specific knowledge is especially useful under
these conditions.

Figure 1 shows the application of two transformations to
a naive piece of Handel-C code, illustating how a simple
code fragment becomes more complicated in the pursuit of
performance.

finished = 0;
for(i = 0; i < 5; i++) {
  c[i] = a[i]+b[i];
}
finished = 1;

finished = 0;
i = 0;
while(i < 5) {
  c[i] = a[i]+b[i];
  i++;
}
finished = 1;

par {
  finished = 0;
  i = 0;
}
while(i < 5) {
  par {

c[i] = a[i]+b[i];
    i++;
  }
}
finished = 1;

Fig. 1. CML Transformation Steps: 1) Original Handel-C code; 2) After for
loops converted to while loops; 3) After automatic parallelisation.

III. THE CML LANGUAGE: EXAMPLE

A CML transformation consists of a rewrite rule defined
using fragments of the Cobble language. The left-hand side
of this rule, “pattern”, matches an AST fragment and the
right-hand side of the rewrite rule, “generate”, provides a
replacement code fragment which is inserted into the AST
at the match point. An optional “conditions” block specifies



when the rewrite rule is valid. The wildcards “cmlstmt”
and “cmlstmtlist” match, respectively, a statement or list of
statements, binding them to a name.

The following code fragment defines a transformation to
execute non-dependent statements in parallel:

transform a u t o p a r {
p a t t e r n { / / f i n d two c o n s e c u t i v e s t a t e m e n t s

c m l s t m t l i s t ( p reamble ) ;
cmlstmt ( pa r1 ) ;
cmlstmt ( pa r2 ) ;
c m l s t m t l i s t ( p o s t a m b l e ) ;

}
g e n e r a t e {

c m l s t m t l i s t ( p reamble ) ;
par { / / p l a c e s t a t e m e n t s i n p a r a l l e l

cmlstmt ( pa r1 ) ;
cmlstmt ( pa r2 ) ;

}
c m l s t m t l i s t ( p o s t a m b l e ) ;

}
c o n d i t i o n s {

/ / don ’ t a s s i g n t o t h e same p l a c e
d e f s ( cmlstmt ( pa r1 ) ) & d e f s ( cmlstmt ( pa r2 ) ) == {} ;
/ / s econd s t a t e m e n t n o t w a i t i n g on f i r s t
d e f s ( cmlstmt ( pa r1 ) ) & uses ( cmlstmt ( pa r2 ) ) == {} ;

}
}

IV. RESULTS

We present an illustrative set of results showing the effect
of transformations applied to a naive matrix-multiply imple-
mentation. At each stage an extra transformation from the
following is added to the available pool:

• autopar - as defined above, run adjacent independent
statements concurrently.

• fortowhile - for loops are converted to while loops,
providing opportunities for parallelisation.

• lttoeq - for-loop conditions using “less-than” compar-
isons are converted to “equal-to” comparisons, where the
loop counter allows this.

• matrixpar - a specific area of the matrix multiplication
code is specifically targeted for pipelining – the transfor-
mation is not re-usable.

Figure 2 demonstrates the decrease in execution time
as successive transformations are added to the transforma-
tion database. Generic transformations can produce 30-40%
speedup, with application targeted ones adding an additional
30%.

V. FINDING THE BEST SOLUTION

A. Interactions

We were able to illustrate the effectiveness of small trans-
formations applied in composition, instead of a larger complex
transformation, which is harder to verify as correct.

Also of note was the behaviour of transformations on differ-
ing hardware platforms, with transformations which improve
the maximum clock rate on one architecture harming it on
another.
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Fig. 2. Matrix Multiply Best Execution Time.

B. Design Space Exploration

Unpredictability of optimisations on FPGA performance
has caused the adoption of “design-space exploration”, the
automatic generation and compilation of several circuit designs
to find the fastest.

Cobble-CML supports a design-space exploration mode
which generates a range of solutions, whilst taking steps
to manage the combinatorial explosion of results. Transfor-
mations are effectively applied in all valid combinations to
produce a range of solutions from which the best performing
is found.

VI. CONCLUSION

This simple design provides performance improvements,
though complex restructuring is difficult. Transformations can
be prototyped in a development environment, then re-used in
automatic design-space exploration.

More complex transformations involve sophisticated anal-
ysis, for example to select how arrays can be mapped onto
registers, RAMs and shift registers. Integration of more so-
phisticated synthesis and optimisation algorithms is needed,
for example for scheduling onto finite resources.

The issue of strategy is an important, but difficult one.
Currently all possible orderings of transformations are tried
using design space exploration. A strategy for the directed
application of transformations is challenging due to the un-
predictability of the optimisations across different platforms.
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