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The Moore School 
Lectures

The first ever computer 
architecture conference
July 8th to August 31st 
1946, at the Moore 
School of Electrical 
Engineering, University 
of Pennsylvania 
A defining moment in 
the history of computing
To have been there….



Co-inventor of, and chief engineer on, the ENIAC, arguably the first stored-
program computer (first operational Feb 14th 1946)

27 tonnes, 150KW, 5000 cycles/sec

J Presper Eckert (1919-1995)



J.G. Brainerd & T.K. Sharpless. "The ENIAC." pp 163-172 Electrical Engineering, Feb 1948.

ENIAC was a parallel
computer
Different parts of the 
machine could be doing 
different things at the same 
time



ENIAC was designed to be set up manually by plugging 
arithmetic units together (reconfigurable logic)

You could plug together quite complex configurations 
Parallel - with multiple units working at the same time

ENIAC: “setting up the machine”

http://www.columbia.edu/acis/history/eniac.html



Gloria Gorden and Ester Gerston: programmers on ENIAC 
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The “big idea”: stored-program mode -
Plug the units together to build a machine that fetches 
instructions from memory - and executes them
So any calculation could be set up completely 
automatically – just choose the right sequence of 
instructions

ENIAC: “setting up the machine”

http://www.columbia.edu/acis/history/eniac.html



The “von Neumann 
bottleneck”

The price to pay:
Stored-program 
mode was serial –
one instruction at a 
time

How can we have our 
cake - and eat it?

Flexibility and ease 
of programming

Performance of 
parallelism

John Backus
“Can Programming be 

Liberated from the von 
Neumann Style?” (1979)

www.post-gazette.com/pg/07080/771123-96.stm

John von Neumann
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Does parallelism matter?

Typical 2009 personal computer
2- to 8-way multicore CPU:

Each core executes 2- to 4-wide parallel SSE instructions
Attached programmable graphics processor is also highly parallel:

Typically 8 cores, each executing a 32-wide “warp” of instructions

32
wayx86 x86 x86 x86

CacheCache

4GB
Commodity 

memory

Scratchpad memoryScratchpad memory

1GB
Highly-interleaved 

memory

32
way

32
way

32
way

32
way

32
way

32
way

32
way



Parallelism is everywhere

Texas Instruments OMAP4 Mobile Applications Platform
Two ARM cores + programmable graphics processor + other 
more specialised accelerators
To appear in 2010 smart phones and mobile internet devices

http://focus.ti.com/docs/solution/folders/print/501.html



Lots of parallelism…

Computational science simulations demand massive parallelism

RoadRunner being built by IBM for Los Alamos National Lab
3,456 TriBlades: Two dual-core Opterons + four IBM PowerXCell + interconnect
6,120 x86 + 12,240 PowerPC + 97,920 Cell SPEs: 122,400 total (2.35MWatts)
Record-breaking 1 PetaFLOP (1000 TFLOPs, 1012 floating-point calculations per 

second) achieved in June 08
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Why? The free lunch is over

Philip E Ross, Why CPU Frequency Stalled - http://www.spectrum.ieee.org/apr08/6106/CPU
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Intel CPU introductions

Moore’s Law 
“escalator”
continues

Clock speed 
escalator has 

stopped!

Herb Sutter, Fundamental Turn Toward Concurrency 



Controlling complexity
But “It has been shown over and over again…” that 
this results in a system too complicated to use 

How can we get the speed and efficiency without 
suffering the complexity?
What have we learned since 1946?



Controlling complexity
But “It has been shown over and over again…” that 
this results in a system too complicated to use 

How can we get the speed and efficiency without 
suffering the complexity?
What have we learned since 1946?

Compilers and out-of-order processors can extract some 
instruction-level parallelism
Explicit parallel programming in MPI, OpenMP, VHDL are 
flourishing industries – they can be made to work
SQL, TBB, Cilk, Ct (all functional…), many more 
speculative proposals
No attractive general-purpose solution



Controlling complexity
But “It has been shown over and over again…” that 
this results in a system too complicated to use 

How can we get the speed and efficiency without 
suffering the complexity?
What have we learned since 1946?

Some discipline for controlling complexity
Program generation….

Programs that generate programs
That are correct by construction
The generator encapsulates parallel programming 
expertise



Controlling complexity
But “It has been shown over and over again…” that 
this results in a system too complicated to use 

How can we get the speed and efficiency without 
suffering the complexity?
What have we learned since 1946?

We really need parallelism



Example:
for (i=0; i<N; ++i) {
points[i]->x += 1;

}

Easy parallelism
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No problem: each iteration is independent

Can the iterations 
of this loop be 
executed in 
parallel?



Easy parallelism
Example:

for (i=0; i<N; ++i) {
points[i]->x += 1;

}
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Oh no: not all the iterations are independent! 
You want to re-use piece of code in different contexts
Whether it’s parallel depends on context!

Can the iterations 
of this loop be 
executed in 
parallel?



Example:
for (i=0; i<N; ++i) {
points[i]->x += 1;

}

Easy parallelism
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Can the iterations 
of this loop be 
executed in 
parallel?

Sergio Almeida’s PhD thesis:

“Balloon types” ensure that each cell is reached 
only by it’s owner pointer



Points-to analysis

Goal: for each pointer variable (p,q,r,s), find 
the set of objects it might point to at runtime

Variable s of 
function g might 
point to variable 
p of function g

R might point to 
anything s might 

point to

f’s p might point 
to anything r 
might point to

q might point to 
anything f 

returns

Thesis work of David Pearce, now at 
Victoria University, New Zealand



Field-sensitivity in pointer analysis
We have quite a large constraint graph

Eg for 126.gcc from SPEC95:
194K lines of code (132K excl comments)
51K constraint variables (22K of them heap)
7.4K “trivial” constraints 
39K “simple” constraints 
25K “complex” constraints (due to 
dereferencing)

Need to bring together several tricky techniques 
to get sensible solution times

Difference-sets: propagate only changes so you 
can track what has changed
Topological sort:  visit nodes in order that 
maximises solution propagation
Cycle detection: zero-weighted cycles can be 
collapsed
Dynamically: dereferencing pointers adds new 
edges
0.61s for the whole program (900MHz Athlon)

Histogram of points-
to set size at 
dereference sites for 
126.gcc:

Field insensitive

Field sensitive

%

%



Field-sensitivity in pointer analysis
We have quite a large constraint graph

Eg for 126.gcc from SPEC95:
194KLOC (132K without comments etc)
51K constraint variables (22K of them heap)
7.4K “trivial” constraints 
39K “simple” constraints 
25K “complex” constraints (due to 
dereferencing)

Need to bring together several tricky techniques 
to get sensible solution times

Difference-sets: propagate only changes so you 
can track what has changed
Topological sort:  visit nodes in order that 
maximises solution propagation
Cycle detection: zero-weighted cycles can be 
collapsed
Dynamically: dereferencing pointers adds new 
edges
0.61s for the whole program (900MHz Athlon)

Histogram of points-
to set size at 
dereference sites for 
126.gcc:

Field insensitive

Field sensitive

%

%

Reimplemented for 
GCC, the GNU 
Compiler Collection (by 
Dan Berlin, of IBM)

Released the week of 
David’s PhD defence

David’s paper is cited in 
the open-source code



Another loss of abstraction…
Shared memory makes parallel 
programming much easier:

for(i=0; I<N; ++i) 
par_for(j=0; j<M; ++j) 
A[i,j] = (A[i-1,j] + A[i,j])*0.5;

par_for(i=0; I<N; ++i) 
for(j=0; j<M; ++j) 
A[i,j] = (A[i,j-1] + A[i,j])*0.5;

First loop operates on rows in parallel
Second loop operates on columns in 
parallel
With distributed memory we would have 
to program message passing to 
transpose the array in between
With shared memory… no problem!

i

i
j

Loop 1:

Loop 2:

j

P1

P1



Randomisation & combining in cache-coherency protocols
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Sarah Bennett’s PhD thesis:

Fixing pathological 
communication patterns in 
large shared-memory 
multiprocessors

Using proxies, combining 
and randomisation



Self-optimising linear algebra library

x:=αp+x

A r x

q:=A.p θ:=r.r

χ:=q.p

α:= θ/χ

A: blocked row-major x: blocked row-wiser: blocked row-wise

transpose

p:=r

Olav Beckmann’s 
PhD thesis:
Each library function 
comes with metadata 
describing data layout 
constraints
Solve for distribution 
of each variable that 
minimises
redistribution cost



Easy parallelism – tricky engineering
Finding parallelism is usually 
easy
Very few algorithms are inherently 
sequential

But if you want a large speedup you 
need to parallelise almost all of your 
program

Parallelism breaks abstractions:
Whether code should run in parallel 
depends on context
How data and computation should 
be distributed across the machine 
depends on context

“Best-effort”, opportunistic 
parallelisation is almost useless:

Robust software must robustly, 
predictably, exploit large-scale 
parallelism

How can we build 
robustly-efficient 
multicore software

While maintaining the 
abstractions that keep 
code clean, reusable 
and of long-term value?



Case study: Visual Effects
• The Foundry is a London company building visual 

effects plug-ins for the movie/TV industry 
(http://www.thefoundry.co.uk/)

• Core competence: image processing algorithms
• Core value: large body of C++ code based on library 

of image-based primitives

Opportunity 1:
Competitive advantage from exploitation of whatever 
platform the customer may have - SSE, multicore, vendor 
libraries, GPUs

Opportunity 2:
Redesign of the Foundry’s Image Processing Primitives 
Library

Risk:
Premature optimisation delays delivery
Performance hacking reduces value of core codebase

http://www.thefoundry.co.uk/


Visual effects in movie post-production

Nuke compositing tool (http://www.thefoundry.co.uk) 

Visual effects plugins (Foundry and others) appear as nodes in the node graph
We aim to optimise individual effects for multicore CPUs, GPUs etc
In the future: tunnel optimisations across node boundaries at runtime.

(c) Heribert Raab, Softmachine.  All rights reserved.  Images courtesy of The Foundry



Visual effects: degrain example

Image degraining effect – a complete Foundry plug-in
Random texturing noise introduced by photographic film is 
removed without compromising the clarity of the picture, either 
through analysis or by matching against a database of known 
film grain patterns
Based on undecimated wavelet transform
Up to several seconds per frame



Visual effects: degrain example

The recursive wavelet-based degraining visual effect in C++
Visual primitives are chained together via image temporaries to form a DAG
DAG construction is captured through delayed evaluation.



Indexed functor
Functor represents function over an image
Kernel accesses image via indexers
Indexers carry metadata that characterises kernel’s data access pattern

One-dimensional discrete wavelet transform, as indexed functor
Compilable with standard C++ compiler
Operates in either the horizontal or vertical axis

Input indexer operates on RGB components separately
Input indexer accesses ±radius elements in one (the axis) dimension



Software architecture
Use of indexed functors is optimised
using a source-to-source compiler 
(based on ROSE, 
www.rosecompiler.org)

DAG 
capture

Source 
code 

analysis

Indexed 
functor
kernels

Functor
composition 
DAG for 
visual effect

Indexed 
functor
dependence 
metadata

SIMD/SIMT 
code 

generation

Polyhedral 
representation 
of composite 

iteration space 

Schedule 
transformation 
– loop fusionDAG 

scheduling

Array contraction 
and scratchpad 
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Two generic targets

Lots of cache per thread
Lower DRAM bandwidth

32
lane
32x
SMT
SIMT

x86

4-lane
SIMD

CacheCache

4GB
Commodity 

DRAM

Scratchpad memoryScratchpad memory

1GB
Highly-interleaved 

DRAM

×8 ×24x86

4-lane
SIMD

x86

4-lane
SIMD

x86

4-lane
SIMD

x86

4-lane
SIMD

32
lane
32x
SMT
SIMT

32
lane
32x
SMT
SIMT

32
lane
32x
SMT
SIMT

32
lane
32x
SMT
SIMT

32
lane
32x
SMT
SIMT

32
lane
32x
SMT
SIMT

32
lane
32x
SMT
SIMT

Very, very little cache per 
thread
Very small scratchpad 
RAM shared by blocks of 
threads
Higher DRAM bandwidth

SIMD Multicore CPU SIMT Manycore GPU

Goal: 
single source code, high-performance code for 
multiple manycore architectures

Proof-of-concept: two targets
Very different, need very different optimisations



Fusing image filter loops
Key optimisation is loop fusion
A little tricky…for example:

“Stencil” loops are not directly fusable

for (i=1; i<N; i++)
V[i] = (U[i-1] + U[i+1])/2

for (i=1; i<N; i++)
W[i] = (V[i-1] + V[i+1])/2



Fusing image filter loops

We make them fusable by shifting:

V[1] = (U[0] + U[2])/2
for (i=2; i<N; i++) {
V[i] = (U[i-1] + U[i+1])/2
W[i-1] = (V[i-2] + V[i])/2

}
W[N-1] = (V[N-2] + V[N])/2

The middle loop is fusable
We get lots of little edge bits



Array contraction
The benefit of loop fusion comes from array 
contraction - eliminating intermediate arrays:

V[1] = (U[0] + U[2])/2
for (i=2; i<N; i++) {
V[i%4] = (U[i-1] + U[i+1])/2
W[i-1] = (V[(i-2)%4] + V[i%4])/2

}
W[N-1] = (V[(N-2)%4] + V[N%4])/2

We need the last two Vs
We need 3 V locations, quicker to round up to four
Four-element contracted array, used as circular buffer
Occupies small chunk of cache, avoids trashing rest of cache



The SIMD target…
Code generation for conventional PC with 
SSE (“SIMD”) instructions:

Aggressive loop fusion and array contraction
Using the CLooG code generator to generate the loop 
fragments

Vectorisation and Scalar promotion
Correctness guaranteed by dependence metadata

If-conversion
Generate code to use masks to track conditionals

Memory access realignment:
In SIMD architectures where contiguous, aligned 
loads/stores are faster, placement of intermediate data is 
guided by metadata to make this so

Contracted load/store rescheduling:
Filters require mis-aligned SIMD loads
After contraction, these can straddle the end of the circular 
buffer – we need them to wrap-around
We use a double-buffer trick…



SIMT – code generation for nVidia’s CUDA
Constant/shared memory staging

Where data needed by adjacent threads overlaps, we generate 
code to stage image sub-blocks in scratchpad memory

Maximising parallelism
Moving-average filters are common in VFX, and involve a loop-
carried dependence
We catch this case with a special “eMoving” index type
We create enough threads to fill the machine, while efficiently 
computing a moving average within each thread

Coordinated coalesced memory access
We shift a kernel’s iteration space, if necessary, to arrange an 
thread-to-data mapping that satisfies the alignment requirements 
for high-bandwidth, coalesced access to global memory
We introduce transposes to achieve coalescing in horizontal 
moving-average filters 

Choosing optimal scheduling parameters
Resource management and scheduling parameters are derived 
from indexed functor metadata, and used to select optimal 
mapping of threads onto processors.



Performance results



Performance results

Jay Cornwall’s PhD 
thesis:
Currently being 
delivered for use by 
The Foundry
By Jay



Active libraries
Domain-specific “active” library 
encapsulates specialist 
performance expertise

Each new platform requires new 
performance tuning effort

So domain-specialists will be 
doing the performance tuning

Our challenge is to support 
them

Applications

Exotic hardware

Active library

GPU Multicore FPGA Quantum?

Visual effects
Finite element

Linear algebra
Game physics

Finite difference



Active libraries…
A selection of active libraries we’ve developed

DESOBLAS (1998, Olav Beckmann)
Parallel dense matrix/vector library for clusters
Automatically selects array alignment to minimise redistribution

DESOLA (2006, Francis Russell, Mike Gist)
Dense matrix/vector linear algebra library for C++
Aggressive loop fusion
Fusion matches or exceeds hand-tuned ATLAS and IMKL 

MayaVi/DSI (2005, Marc Hull, Karen Osmond, Olav Beckmann et al)
Large Python fluid dynamics visualisation tool based on VTK
Transparently parallelised for SMP and clusters (+ smart LoD, RoI)

Aggregation of remote method invocations in Java and .Net 
(2003, Kwok Yeung, Michael Mellor)
Various run-time, static and hybrid implementations 

Visual Effects for The Foundry (LCPC07)
Redesign of The Foundry’s Fundamental Image Processing Library
For multicore: aggressive, skewed, loop fusion, array contraction, 
vectorisation
For GPU: staging, data-placement/alignment, partitioning, 
transposition

Matrix assembly abstractions for finite element analysis 
(ongoing, Francis Russell)



Specific technical challenges
Generalise the indexed functors concept

AEcute access-execute descriptors
Generic support for pluggable optimisations

DeepWeaver static analysis query language
Automate and guide the search for optimal 
combinations of optimisations

TaskGraph code generation and metaprogramming
library

Robustness…
Static/dynamic checking of dependence metadata
Test generation for optimisations
We have a specification… can we verify the optimisations 
statically?

What happens when you combine different active 
libraries?

Lee Howes’ PhD

Michael Mellor’s PhD



So  what of the future?

Eckert was wrong – we just 
need the right…

Language
Machine
Discipline
Abstractions
Education

Eckert was right –
Avoid parallel 
programming!
Isolate ordinary software 
from parallelism

http://www.ralphclevenger.com/

We need tools to build 
really clever parallel 
implementations
And tools to deliver 
them

Tools to build really 
clever parallel 
implementations
Tools to deliver them
And protect us from 
what lurks below

Parallelism is 
everywhere
Parallelism is 
essential
Parallelism is 
disruptive – it 
breaks abstractions
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