
Professor Paul H. J. Kelly, Professor of Software Technology

Inaugural lecture: Over and over again: the discipline of
parallel software engineering

In the chair: Professor Jeff Magee, Head of Department, Department of
Computing , Imperial College London

Vote of Thanks: Professor Christian Lengauer, University of Passau, Germany

Making programs go faster
Parallel programming
Controlling complexity

Some of my prior work and its connection to this agenda
A manifesto for carrying this forward

University College London Westfield College, University of London

Imperial College London

Acknowledgements
All the hard work was done by other people

Andrew Bennett, Frank Taylor, Sergio Almeida,
Ariel Burton, Sarah Bennett, Olav Beckmann,
Kwok Yeung, David Pearce, Jeyarajan
Thiyagalingam, Junxian Liu, Ashley Saulsbury,
Qian Wu
Anton Lokhmotov, Lee Howes, Francis Russell,
Jay Cornwall, Ashley Brown, Peter Collingbourne,
Michael Mellor, Thanasis Konstantinidis
Richard Jones, Alastair Houghton, Henry
Falconer, Karen Osmond, Marc Hull, Thomas
Hansen, Jacob Refstrup, Doug Brears, Thiebaut
Weise
Tony Field, Chris Hankin, Wayne Luk, David
Bolton, Peter Osmon, John Darlington, Peter
Harrison, Sebastian Hunt, Ross Paterson
Bruno Nicoletti, Phil Parsonage, Robert Berry,
Alastair Donaldson, Scott Baden, Gerard Gorman
Paul Anderson, Tim Wilkinson, Phil Winterbottom,
Tom Stiemerling, Kevin Murray
Richard and Clarissa Stevenson

Past PhD
students and
research group
members
Current research
group members

Many, many
project and UROP
students
Fellow academics

Collaborators

Acknowledgements
Research funding:

The research presented here has been, or is
being, funded by:

EPSRC
IBM (Faculty Award, Industrial CASE)
Microsoft
The Foundry (Industrial CASE)
Codeplay (Industrial CASE)
Arup (Industrial CASE)

Thank you for your support!

The Moore School
Lectures

The first ever computer
architecture conference
July 8th to August 31st
1946, at the Moore
School of Electrical
Engineering, University
of Pennsylvania
A defining moment in
the history of computing
To have been there….

Co-inventor of, and chief engineer on, the ENIAC, arguably the first stored-
program computer (first operational Feb 14th 1946)

27 tonnes, 150KW, 5000 cycles/sec

J Presper Eckert (1919-1995)

J.G. Brainerd & T.K. Sharpless. "The ENIAC." pp 163-172 Electrical Engineering, Feb 1948.

ENIAC was a parallel
computer
Different parts of the
machine could be doing
different things at the same
time

ENIAC was designed to be set up manually by plugging
arithmetic units together (reconfigurable logic)

You could plug together quite complex configurations
Parallel - with multiple units working at the same time

ENIAC: “setting up the machine”

http://www.columbia.edu/acis/history/eniac.html

Gloria Gorden and Ester Gerston: programmers on ENIAC

ht
tp

://
w

w
w

.c
ol

um
bi

a.
ed

u/
ac

is
/h

is
to

ry
/e

ni
ac

.h
tm

l

…

Se
e

al
so

 h
ttp

://
w

w
w

.d
ig

ita
l6

0.
or

g/
bi

rth
/th

em
oo

re
sc

ho
ol

/le
ct

ur
es

.h
tm

l#
l4

5

The “big idea”: stored-program mode -
Plug the units together to build a machine that fetches
instructions from memory - and executes them
So any calculation could be set up completely
automatically – just choose the right sequence of
instructions

ENIAC: “setting up the machine”

http://www.columbia.edu/acis/history/eniac.html

The “von Neumann
bottleneck”

The price to pay:
Stored-program
mode was serial –
one instruction at a
time

How can we have our
cake - and eat it?

Flexibility and ease
of programming

Performance of
parallelism

John Backus
“Can Programming be

Liberated from the von
Neumann Style?” (1979)

www.post-gazette.com/pg/07080/771123-96.stm

John von Neumann

W
ikipedia, http://w

w
w

.lanl.gov/history/atom
icbom

b/im
ages/N

eum
annL.G

IF

http://en.wikipedia.org/wiki/John_von_Neumann

http://www.post-gazette.com/pg/07080/771123-96.stm
http://www.post-gazette.com/pg/07080/771123-96.stm
http://www.post-gazette.com/pg/07080/771123-96.stm
http://www.post-gazette.com/pg/07080/771123-96.stm
http://www.post-gazette.com/pg/07080/771123-96.stm

Does parallelism matter?

Typical 2009 personal computer
2- to 8-way multicore CPU:

Each core executes 2- to 4-wide parallel SSE instructions
Attached programmable graphics processor is also highly parallel:

Typically 8 cores, each executing a 32-wide “warp” of instructions

32
wayx86 x86 x86 x86

CacheCache

4GB
Commodity

memory

Scratchpad memoryScratchpad memory

1GB
Highly-interleaved

memory

32
way

32
way

32
way

32
way

32
way

32
way

32
way

Parallelism is everywhere

Texas Instruments OMAP4 Mobile Applications Platform
Two ARM cores + programmable graphics processor + other
more specialised accelerators
To appear in 2010 smart phones and mobile internet devices

http://focus.ti.com/docs/solution/folders/print/501.html

Lots of parallelism…

Computational science simulations demand massive parallelism

RoadRunner being built by IBM for Los Alamos National Lab
3,456 TriBlades: Two dual-core Opterons + four IBM PowerXCell + interconnect
6,120 x86 + 12,240 PowerPC + 97,920 Cell SPEs: 122,400 total (2.35MWatts)
Record-breaking 1 PetaFLOP (1000 TFLOPs, 1012 floating-point calculations per

second) achieved in June 08

ht
tp

://
w

w
w

.la
nl

.g
ov

/o
rg

s/
hp

c/
ro

ad
ru

nn
er

/in
de

x.
sh

tm
la

nd
 h

ttp
://

w
w

w
.in

fo
w

or
ld

.c
om

Why? The free lunch is over

Philip E Ross, Why CPU Frequency Stalled - http://www.spectrum.ieee.org/apr08/6106/CPU

ht
tp

://
w

w
w

.d
dj

.c
om

/w
eb

-d
ev

el
op

m
en

t/1
84

40
59

90
?p

gn
o=

2

Intel CPU introductions

Moore’s Law
“escalator”
continues

Clock speed
escalator has

stopped!

Herb Sutter, Fundamental Turn Toward Concurrency

Controlling complexity
But “It has been shown over and over again…” that
this results in a system too complicated to use

How can we get the speed and efficiency without
suffering the complexity?
What have we learned since 1946?

Controlling complexity
But “It has been shown over and over again…” that
this results in a system too complicated to use

How can we get the speed and efficiency without
suffering the complexity?
What have we learned since 1946?

Compilers and out-of-order processors can extract some
instruction-level parallelism
Explicit parallel programming in MPI, OpenMP, VHDL are
flourishing industries – they can be made to work
SQL, TBB, Cilk, Ct (all functional…), many more
speculative proposals
No attractive general-purpose solution

Controlling complexity
But “It has been shown over and over again…” that
this results in a system too complicated to use

How can we get the speed and efficiency without
suffering the complexity?
What have we learned since 1946?

Some discipline for controlling complexity
Program generation….

Programs that generate programs
That are correct by construction
The generator encapsulates parallel programming
expertise

Controlling complexity
But “It has been shown over and over again…” that
this results in a system too complicated to use

How can we get the speed and efficiency without
suffering the complexity?
What have we learned since 1946?

We really need parallelism

Example:
for (i=0; i<N; ++i) {
points[i]->x += 1;

}

Easy parallelism

x
y
z

x
y
z

x
y
z

x
y
z

x
y
z

x
y
z

x
y
z

x
y
z

x
y
z

No problem: each iteration is independent

Can the iterations
of this loop be
executed in
parallel?

Easy parallelism
Example:

for (i=0; i<N; ++i) {
points[i]->x += 1;

}

x
y
z

x
y
z

x
y
z

x
y
z

x
y
z

x
y
z

x
y
z

x
y
z

Oh no: not all the iterations are independent!
You want to re-use piece of code in different contexts
Whether it’s parallel depends on context!

Can the iterations
of this loop be
executed in
parallel?

Example:
for (i=0; i<N; ++i) {
points[i]->x += 1;

}

Easy parallelism

x
y
z

x
y
z

x
y
z

x
y
z

x
y
z

x
y
z

x
y
z

x
y
z

x
y
z

Can the iterations
of this loop be
executed in
parallel?

Sergio Almeida’s PhD thesis:

“Balloon types” ensure that each cell is reached
only by it’s owner pointer

Points-to analysis

Goal: for each pointer variable (p,q,r,s), find
the set of objects it might point to at runtime

Variable s of
function g might
point to variable
p of function g

R might point to
anything s might

point to

f’s p might point
to anything r
might point to

q might point to
anything f

returns

Thesis work of David Pearce, now at
Victoria University, New Zealand

Field-sensitivity in pointer analysis
We have quite a large constraint graph

Eg for 126.gcc from SPEC95:
194K lines of code (132K excl comments)
51K constraint variables (22K of them heap)
7.4K “trivial” constraints
39K “simple” constraints
25K “complex” constraints (due to
dereferencing)

Need to bring together several tricky techniques
to get sensible solution times

Difference-sets: propagate only changes so you
can track what has changed
Topological sort: visit nodes in order that
maximises solution propagation
Cycle detection: zero-weighted cycles can be
collapsed
Dynamically: dereferencing pointers adds new
edges
0.61s for the whole program (900MHz Athlon)

Histogram of points-
to set size at
dereference sites for
126.gcc:

Field insensitive

Field sensitive

%

%

Field-sensitivity in pointer analysis
We have quite a large constraint graph

Eg for 126.gcc from SPEC95:
194KLOC (132K without comments etc)
51K constraint variables (22K of them heap)
7.4K “trivial” constraints
39K “simple” constraints
25K “complex” constraints (due to
dereferencing)

Need to bring together several tricky techniques
to get sensible solution times

Difference-sets: propagate only changes so you
can track what has changed
Topological sort: visit nodes in order that
maximises solution propagation
Cycle detection: zero-weighted cycles can be
collapsed
Dynamically: dereferencing pointers adds new
edges
0.61s for the whole program (900MHz Athlon)

Histogram of points-
to set size at
dereference sites for
126.gcc:

Field insensitive

Field sensitive

%

%

Reimplemented for
GCC, the GNU
Compiler Collection (by
Dan Berlin, of IBM)

Released the week of
David’s PhD defence

David’s paper is cited in
the open-source code

Another loss of abstraction…
Shared memory makes parallel
programming much easier:

for(i=0; I<N; ++i)
par_for(j=0; j<M; ++j)
A[i,j] = (A[i-1,j] + A[i,j])*0.5;

par_for(i=0; I<N; ++i)
for(j=0; j<M; ++j)
A[i,j] = (A[i,j-1] + A[i,j])*0.5;

First loop operates on rows in parallel
Second loop operates on columns in
parallel
With distributed memory we would have
to program message passing to
transpose the array in between
With shared memory… no problem!

i

i
j

Loop 1:

Loop 2:

j

P1

P1

Randomisation & combining in cache-coherency protocols
G

E

G
E

G
E

C
FD

C
FD

C
FD

FF
T

FF
T

FF
T

O
ce

an
-c

on
tig

O
ce

an
-C

on
tig

O
ce

an
-c

on
tig

O
ce

an
-N

on
-C

on
tig

O
ce

an
-N

on
-C

on
tig

O
ce

an
-N

on
-C

on
tig

B
ar

ne
s

B
ar

ne
s

B
ar

ne
s

FM
M

FM
M

FM
M

W
at

er
-N

sq

W
at

er
-N

sq

W
at

er
-N

sq

-15

-10

-5

0

5

10

15

20

25

30

35

Proxy caching:
separate buffer

none
SLC

GE CFD FFT Ocean
contig

Ocean
non-

Barnes FMM Water
nsq

Sarah Bennett’s PhD thesis:

Fixing pathological
communication patterns in
large shared-memory
multiprocessors

Using proxies, combining
and randomisation

Self-optimising linear algebra library

x:=αp+x

A r x

q:=A.p θ:=r.r

χ:=q.p

α:= θ/χ

A: blocked row-major x: blocked row-wiser: blocked row-wise

transpose

p:=r

Olav Beckmann’s
PhD thesis:
Each library function
comes with metadata
describing data layout
constraints
Solve for distribution
of each variable that
minimises
redistribution cost

Easy parallelism – tricky engineering
Finding parallelism is usually
easy
Very few algorithms are inherently
sequential

But if you want a large speedup you
need to parallelise almost all of your
program

Parallelism breaks abstractions:
Whether code should run in parallel
depends on context
How data and computation should
be distributed across the machine
depends on context

“Best-effort”, opportunistic
parallelisation is almost useless:

Robust software must robustly,
predictably, exploit large-scale
parallelism

How can we build
robustly-efficient
multicore software

While maintaining the
abstractions that keep
code clean, reusable
and of long-term value?

Case study: Visual Effects
• The Foundry is a London company building visual

effects plug-ins for the movie/TV industry
(http://www.thefoundry.co.uk/)

• Core competence: image processing algorithms
• Core value: large body of C++ code based on library

of image-based primitives

Opportunity 1:
Competitive advantage from exploitation of whatever
platform the customer may have - SSE, multicore, vendor
libraries, GPUs

Opportunity 2:
Redesign of the Foundry’s Image Processing Primitives
Library

Risk:
Premature optimisation delays delivery
Performance hacking reduces value of core codebase

http://www.thefoundry.co.uk/

Visual effects in movie post-production

Nuke compositing tool (http://www.thefoundry.co.uk)

Visual effects plugins (Foundry and others) appear as nodes in the node graph
We aim to optimise individual effects for multicore CPUs, GPUs etc
In the future: tunnel optimisations across node boundaries at runtime.

(c) Heribert Raab, Softmachine. All rights reserved. Images courtesy of The Foundry

Visual effects: degrain example

Image degraining effect – a complete Foundry plug-in
Random texturing noise introduced by photographic film is
removed without compromising the clarity of the picture, either
through analysis or by matching against a database of known
film grain patterns
Based on undecimated wavelet transform
Up to several seconds per frame

Visual effects: degrain example

The recursive wavelet-based degraining visual effect in C++
Visual primitives are chained together via image temporaries to form a DAG
DAG construction is captured through delayed evaluation.

Indexed functor
Functor represents function over an image
Kernel accesses image via indexers
Indexers carry metadata that characterises kernel’s data access pattern

One-dimensional discrete wavelet transform, as indexed functor
Compilable with standard C++ compiler
Operates in either the horizontal or vertical axis

Input indexer operates on RGB components separately
Input indexer accesses ±radius elements in one (the axis) dimension

Software architecture
Use of indexed functors is optimised
using a source-to-source compiler
(based on ROSE,
www.rosecompiler.org)

DAG
capture

Source
code

analysis

Indexed
functor
kernels

Functor
composition
DAG for
visual effect

Indexed
functor
dependence
metadata

SIMD/SIMT
code

generation

Polyhedral
representation
of composite

iteration space

Schedule
transformation
– loop fusionDAG

scheduling

Array contraction
and scratchpad

staging

C
od

e
ge

ne
ra

tio
n

V
en

do
r c

om
pi

le
r

Two generic targets

Lots of cache per thread
Lower DRAM bandwidth

32
lane
32x
SMT
SIMT

x86

4-lane
SIMD

CacheCache

4GB
Commodity

DRAM

Scratchpad memoryScratchpad memory

1GB
Highly-interleaved

DRAM

×8 ×24x86

4-lane
SIMD

x86

4-lane
SIMD

x86

4-lane
SIMD

x86

4-lane
SIMD

32
lane
32x
SMT
SIMT

32
lane
32x
SMT
SIMT

32
lane
32x
SMT
SIMT

32
lane
32x
SMT
SIMT

32
lane
32x
SMT
SIMT

32
lane
32x
SMT
SIMT

32
lane
32x
SMT
SIMT

Very, very little cache per
thread
Very small scratchpad
RAM shared by blocks of
threads
Higher DRAM bandwidth

SIMD Multicore CPU SIMT Manycore GPU

Goal:
single source code, high-performance code for
multiple manycore architectures

Proof-of-concept: two targets
Very different, need very different optimisations

Fusing image filter loops
Key optimisation is loop fusion
A little tricky…for example:

“Stencil” loops are not directly fusable

for (i=1; i<N; i++)
V[i] = (U[i-1] + U[i+1])/2

for (i=1; i<N; i++)
W[i] = (V[i-1] + V[i+1])/2

Fusing image filter loops

We make them fusable by shifting:

V[1] = (U[0] + U[2])/2
for (i=2; i<N; i++) {
V[i] = (U[i-1] + U[i+1])/2
W[i-1] = (V[i-2] + V[i])/2

}
W[N-1] = (V[N-2] + V[N])/2

The middle loop is fusable
We get lots of little edge bits

Array contraction
The benefit of loop fusion comes from array
contraction - eliminating intermediate arrays:

V[1] = (U[0] + U[2])/2
for (i=2; i<N; i++) {
V[i%4] = (U[i-1] + U[i+1])/2
W[i-1] = (V[(i-2)%4] + V[i%4])/2

}
W[N-1] = (V[(N-2)%4] + V[N%4])/2

We need the last two Vs
We need 3 V locations, quicker to round up to four
Four-element contracted array, used as circular buffer
Occupies small chunk of cache, avoids trashing rest of cache

The SIMD target…
Code generation for conventional PC with
SSE (“SIMD”) instructions:

Aggressive loop fusion and array contraction
Using the CLooG code generator to generate the loop
fragments

Vectorisation and Scalar promotion
Correctness guaranteed by dependence metadata

If-conversion
Generate code to use masks to track conditionals

Memory access realignment:
In SIMD architectures where contiguous, aligned
loads/stores are faster, placement of intermediate data is
guided by metadata to make this so

Contracted load/store rescheduling:
Filters require mis-aligned SIMD loads
After contraction, these can straddle the end of the circular
buffer – we need them to wrap-around
We use a double-buffer trick…

SIMT – code generation for nVidia’s CUDA
Constant/shared memory staging

Where data needed by adjacent threads overlaps, we generate
code to stage image sub-blocks in scratchpad memory

Maximising parallelism
Moving-average filters are common in VFX, and involve a loop-
carried dependence
We catch this case with a special “eMoving” index type
We create enough threads to fill the machine, while efficiently
computing a moving average within each thread

Coordinated coalesced memory access
We shift a kernel’s iteration space, if necessary, to arrange an
thread-to-data mapping that satisfies the alignment requirements
for high-bandwidth, coalesced access to global memory
We introduce transposes to achieve coalescing in horizontal
moving-average filters

Choosing optimal scheduling parameters
Resource management and scheduling parameters are derived
from indexed functor metadata, and used to select optimal
mapping of threads onto processors.

Performance results

Performance results

Jay Cornwall’s PhD
thesis:
Currently being
delivered for use by
The Foundry
By Jay

Active libraries
Domain-specific “active” library
encapsulates specialist
performance expertise

Each new platform requires new
performance tuning effort

So domain-specialists will be
doing the performance tuning

Our challenge is to support
them

Applications

Exotic hardware

Active library

GPU Multicore FPGA Quantum?

Visual effects
Finite element

Linear algebra
Game physics

Finite difference

Active libraries…
A selection of active libraries we’ve developed

DESOBLAS (1998, Olav Beckmann)
Parallel dense matrix/vector library for clusters
Automatically selects array alignment to minimise redistribution

DESOLA (2006, Francis Russell, Mike Gist)
Dense matrix/vector linear algebra library for C++
Aggressive loop fusion
Fusion matches or exceeds hand-tuned ATLAS and IMKL

MayaVi/DSI (2005, Marc Hull, Karen Osmond, Olav Beckmann et al)
Large Python fluid dynamics visualisation tool based on VTK
Transparently parallelised for SMP and clusters (+ smart LoD, RoI)

Aggregation of remote method invocations in Java and .Net
(2003, Kwok Yeung, Michael Mellor)
Various run-time, static and hybrid implementations

Visual Effects for The Foundry (LCPC07)
Redesign of The Foundry’s Fundamental Image Processing Library
For multicore: aggressive, skewed, loop fusion, array contraction,
vectorisation
For GPU: staging, data-placement/alignment, partitioning,
transposition

Matrix assembly abstractions for finite element analysis
(ongoing, Francis Russell)

Specific technical challenges
Generalise the indexed functors concept

AEcute access-execute descriptors
Generic support for pluggable optimisations

DeepWeaver static analysis query language
Automate and guide the search for optimal
combinations of optimisations

TaskGraph code generation and metaprogramming
library

Robustness…
Static/dynamic checking of dependence metadata
Test generation for optimisations
We have a specification… can we verify the optimisations
statically?

What happens when you combine different active
libraries?

Lee Howes’ PhD

Michael Mellor’s PhD

So what of the future?

Eckert was wrong – we just
need the right…

Language
Machine
Discipline
Abstractions
Education

Eckert was right –
Avoid parallel
programming!
Isolate ordinary software
from parallelism

http://www.ralphclevenger.com/

We need tools to build
really clever parallel
implementations
And tools to deliver
them

Tools to build really
clever parallel
implementations
Tools to deliver them
And protect us from
what lurks below

Parallelism is
everywhere
Parallelism is
essential
Parallelism is
disruptive – it
breaks abstractions

	Professor Paul H. J. Kelly, Professor of Software Technology ��Inaugural lecture: Over and over again: the discipline of para
	Acknowledgements
	Acknowledgements
	The Moore School Lectures
	The “von Neumann bottleneck”
	Does parallelism matter?
	Parallelism is everywhere
	Lots of parallelism…
	Why? The free lunch is over
	Controlling complexity
	Controlling complexity
	Controlling complexity
	Controlling complexity
	Easy parallelism
	Easy parallelism
	Easy parallelism
	Points-to analysis
	Field-sensitivity in pointer analysis
	Field-sensitivity in pointer analysis
	Another loss of abstraction…
	Randomisation & combining in cache-coherency protocols
	Self-optimising linear algebra library
	Easy parallelism – tricky engineering
	Case study: Visual Effects
	Visual effects in movie post-production
	Visual effects: degrain example
	Visual effects: degrain example
	Indexed functor
	Software architecture
	Two generic targets
	Fusing image filter loops
	Fusing image filter loops
	Array contraction
	The SIMD target…
	SIMT – code generation for nVidia’s CUDA
	Performance results
	Performance results
	Active libraries
	Active libraries…
	Specific technical challenges
	So what of the future?

