
OPTIMISING COMPONENT COMPOSITION USING INDEXED DEPENDENCE METADATA

Lee W. Howes, Anton Lokhmotov, Paul H. J. Kelly, A. J. Field

Department of Computing, Imperial College London

email: {lwh01, anton, phjk, ajf}@doc.ic.ac.uk

ABSTRACT

This paper explores the use of dependence metadata for op-

timising composition in component-based parallel programs.

The idea is for each component to carry additional informa-

tion about how points in its iteration space map to memory

locations associated with its input and output data structures.

When two components are composed this information can

be used to implement optimisations that would otherwise

require expensive analysis of the components’ code at the

time of composition. This dependence metadata facilitates

a number of cross-component optimisations – in this paper

we focus on loop fusion and array contraction. We describe

a prototype framework, based on the CLooG loop generator

tool, that embodies these ideas and report experimental per-

formance results for three non-trivial parallel benchmarks.

Our results show execution time reductions of up to 50%

using the proposed framework on an 8 core xeon.

1. INTRODUCTION

Component based programming consists of writing software

entities to fulfill specified interfaces. Component models al-

low multiple component implementations to satisfy the same

interface, offering flexibility on the choice of implementa-

tion for a particular problem or computing platform. How-

ever, treating components as black boxes described by their

interfaces can limit the scope for optimisation. In particu-

lar, whilst individual components can be statically optimised

when the component is defined, component compositions

can only be optimised at the point of use. This requires an

element of dynamic optimisation that exploits context infor-

mation.

Powerful but expensive inter-procedural compiler opti-

misations such as enabled by the polyhedral framework [1]

could be used once the composite component structure is

known. However, the cost of the analysis would have to be

paid each time the same components were composed in the

same way.

Adaptive components are explicitly programmed to make

use of context information, e.g. knowledge of the compo-

nents with which they are composed, in order to produce op-

timised execution schedules. In this paper we propose to im-

plement a form of adaptive behaviour through the use of sup-

plied component metadata and to use that metadata to iden-

tify dynamic optimisation opportunities at the time of com-

position. The fact that the metadata is supplied rather than

extracted at composition time, obviates the need to analyse

a component’s code each time it is used, in order to identify

whether cross-component optimisation opportunities exist.

The metadata we explore in this paper, which we refer to

as indexed dependence metadata, defines the set of memory

locations that a component may access at a particular point

in its iteration space. The relationship between these map-

pings in different components serves to define implicitly the

communication requirements of their compositions.

By examining the memory dependence metadata of the

components in a composition, we seek to expose opportuni-

ties for cross-component optimisation that are not possible

by optimising the individual components in isolation.

Specifically, in this paper we use the dependence meta-

data to determine whether two loops occurring separately in

the components of a composition can be aligned whilst re-

specting dependences, in which case the loops can be fused.

Fusion in turn may facilitate array contraction, reducing the

space requirements of the composition, and inter-processor

communication in the case where the components themselves

comprise parallel loops. We use CLooG [2, 3] to generate

the code for a fused loop using a scheduling matrix gener-

ated from an analysis of the components’ metadata and a

matrix representation of the iteration space generated from

the components’ source code.

The contributions of the paper are as follows:

• We introduce the idea of indexed dependence meta-

data, which defines the set of memory locations that

may be read from and written to by a component at

each point in its iteration space (Section 3).

• We show how the dependence metadata can be used

in conjunction with a representation of the compo-

nents’ iteration spaces to implement loop fusion and

array contraction across the component boundaries in

a composition (Section 5). In particular, we extend

this to parallel components, where the contraction re-

duces inter-processor communication.

• We describe a prototype software component frame-

work incorporating the above ideas, which has poten-

tial applications in multi-core software development

(Sections 2 and 4).

• We illustrate the power of the approach by showing

substantial performance improvements through fusion

of parallel components in linear algebra and image

processing benchmarks and a 3D multigrid solver (Sec-

tion 6). On an eight-core Intel Xeon system, maxi-

mum performance improvements on these examples

range from 12% to 50%.

<interface id="iContourfilter">

<input type="float" name="image_in"

format="array(in_x,in_y)" />

<output type="float" name="image_out"

format="array(out_x,out_y)" />

</interface>

<interface id="iConvolution">

<input type="float" name="image_in"

format="array(in_x,in_y)" />

<input type="float" name="filter_in"

format="array(filter_x,filter_y)" />

<output type="float" name="image_out"

format="array(out_x,out_y)" />

</interface>

Listing 1. Interface specifications for the contour filter and

convolution.

<component id="cf" >

<implements id="iContourfilter" />

<uses name="conv">

iConvolution(

image_in(in_x, in_y), filter_in(3, 3),

image_out(out_x, out_y) flow to F1)

</uses>

<constraint type="equality">

conv.in_x=in_x

</constraint>

...

</component>

Listing 2. Part of the contourfilter component specification.

2. ARCHITECTURE OVERVIEW

Our component programming system is designed to select

and generate code from a library of components. Compo-

nents carry metadata describing functional interfaces and

data dependence relationships. We identify three elements:

Component, Interface and Manager.

The application and individual components depend on

one or more interfaces. Components also implement inter-

faces, satisfying the contract defined by the interface. The

manager maintains the component dependence graph and

allocates component implementations to the interfaces as

necessary. If a component C1 depends on an interface that

image_in

image_in

image_out

image_out

F1

F2

iContourfilter

iConvolution

iDilation

iDifference

(in_x, in_y)

(out_x, out_y)

(in_x, in_y)

(out_x, out_y)

image_in (in_x, in_y)

image2_in
(in_x, in_y)

image1_in
(in_x, in_y)

image_out (out_x, out_y)

filter_in
(3, 3)

image_out (out_x, out_y)

Fig. 1. A contour filter example showing dependencies, data

flows and size descriptions of inputs and outputs.

is implemented by a component C2, we say that C2 is a

subcomponent of C1. We generate the dependency graph of

an application by recursively expanding the dependencies in

the component graph. The assignment of components to in-

terfaces is performed during a later graph pass.

Figure 1 shows the dependency relationships for an im-

age filtering example. We see a iContourfilter interface with

one input and one output, implemented by a component that

depends on iConvolution, iDilation and iDifference inter-

faces to perform its computation. Flow annotations F1 and

F2 define data flow dependencies at the composition level.

Listing 1 shows the specification for two of the inter-

faces in Figure 1: iContourfilter and iConvolution. List-

ing 2 shows part of the component specification for the con-

tour filter (cf), including its dependence on its convolution

subcomponent.1 The cf component, which implements the

iContourfilter interface, depends on the iConvolution inter-

face. We name the dimensions of the input and output pa-

rameters, and specify a constant 3 × 3 size for the filter pa-

rameter. The flow to keyword names a data flow as in Fig-

ure 1.

The implementation language for a given component is

flexible. We currently support C/C++, a high level polyhe-

dral representation of C, or pre-compiled binaries. In prin-

ciple the system can integrate components in any language,

given support in the component manager.

1Note that our implementation currently uses XML to define interfaces,

component specifications and dependence metadata, although we envisage

the use of automated or GUI based tools in the future.

3. COMPONENT METADATA

In general, the input and output variables of components

need to interact with those in their subcomponents. For

example, variables in subcomponents can be configured to

share values of variables in the parent component, and hence

values can propagate through the component graph. Addi-

tional metadata can be attached to a component specification

in order to express these properties. For example, Listing 2

shows an equality constraint specifying that the value in x in

the interface matches the in x in the subcomponent named

conv.2 Additionally, data can flow from one subcomponent

to another, and hence through various levels of the compo-

nent graph when combined with parent/child relationships.

In the example, the image out value of iConvolution is con-

nected (flows to) the flow F1, which will be connected again

to an input variable in another dependency of the compo-

nent. Component graph data flows are defined in the meta-

data, to avoid composition-time component analysis.

It should be emphasised that the aim is to provide depen-

dence relationships on the component inputs and outputs at

composition time, without analysis of the component code;

indeed, this code might be in binary form, which could pre-

clude such analysis.

3.1. Indexed Dependence Metadata

Indexed dependence metadata defines a set of memory ad-

dresses that a component may access at a point in its iter-

ation space. By interpreting the metadata, the component

manager can map a given set of iterations onto a set of mem-

ory locations and, assuming predictable and reasonably sim-

ple patterns, can infer dependencies across sets of iterations.

In Figure 2 we see the region constraints of our convo-

lution filter from the running example, assuming a 3 × 3
filter. Listing 3 shows the generic component specification

for the convolution filter assuming an arbitrary-sized filter.

The specification includes various pieces of metadata that

the component manager can use to optimise the composition

to its context. Note that omitting some or all of the metadata

will not break the code; it will simply limit the scope for

optimisation.

The iteration space of the component corresponds to the

indices into the input image (image in), as shown. For each

point in the iteration space a 3× 3 rectangular region of im-

age in, relative to the point, will be read. This corresponds

to a radius of size 1 in each dimension around the point.

Additionally, the whole of filter in will be read and the cor-

responding point in image out (i.e. a radius of size 0 in each

dimension) will be written. The filter input variables are de-

2To generalise this, we can specify inequalities rather than equalities

to constraints, and hence define the possible ranges for subcomponent pa-

rameters. Relaxing the requirements of a subcomponent can allow more

specific and efficient subcomponents to be selected.

Input Region of

image_in

Convolution computation

at (x,y) in iteration space

Output Region of

image_out

3

3
All of filter_in

filter_y = 3

filter_x = 3

1

1

Fig. 2. Region dependencies at a point in the iteration space.

fined in the interface and their values propagated through the

component graph.

<component id="convolution">

<iteration_space

dimensions="(image_in.width,image_in.height)"

/>

<constraint type="dependentregion"

shape="rectangle">

<constraintinput name="image_in"

placement="relative"

radius="((filter_in.w-1)/2,(filter_in.h-1)/2)"

/>

<constraintinput name="filter_in"

placement="absolute"

range="(0->filter_in.w-1,0->filter_in.h-1)"

/>

<constraintoutput name="image_out"

radius="(0,0)" />

</constraint>

</component>

Listing 3. Constraints in the specification of a component.

3.2. Component relationships through metadata

Metadata directly affects the relationships between compo-

nents. If two components communicate either through a

functional dependence, or through a data flow, the metadata

will need to be propagated.

A component’s metadata must be combined with the meta-

data of other components to give a full specification of a

relationship. For example, in Listing 2 the contour filter re-

quires a 3×3 convolution operation, which defines an access

region on its input. The size of this access region depends on

the size of the filter. Therefore, to specify fully the convolu-

tion’s metadata we need to propagate the filter size specified

by the contour filter through the graph. This propagation

can be achieved by passing metadata bindings through par-

ent/child and data-flow relationships.

When the application requests an interface, values are

bound to the interface’s parameters. These values are com-

bined with constraints and dependence metadata throughout

the component graph to bind values to variables and define

component relationships as accurately as possible. Compo-

nent selection or composition uses the propagated informa-

tion to limit the binding of components to interfaces or to

b)

c)

c1

c2

d1

d2

c1

c2

d1

d2

c d
a)

Convolution Dilation

Halo

Input data Output dataCommunicated data

Fig. 3. The addition of region descriptors enables more effi-

cient parallelism.

define possible composition optimisation opportunities.

Figure 3 shows how the information provided by com-

bining region definitions with the size of the dataset can re-

duce the size of the required communication between two

components, in this case the convolution and dilation com-

ponents from Figure 1. Figure 3(a) is an example of a simple

component composition communicating via an intermediate

data set. If we parallelise the components with no knowl-

edge of the components’ internals, we do not know how

much of the data each thread will need and must commu-

nicate it all. In this case the individual components would

be parallel but not their composition, as illustrated in Fig-

ure 3(b).

With full region information we can minimise the com-

munication between parallel components. For example, if

the dilation component depends also on a 3 × 3 filter then

parallelisation of the component as shown in Figure 3(c) re-

quires only half the data set, plus an additional halo strip,

to be sent from each convolution thread to its corresponding

dilation thread. As a consequence, data can be kept in more

localised, faster, memory for longer and communication is

more predictable. If ci and di both execute in the same mem-

ory region, only the halo strips would need to pass through

higher levels in the memory hierarchy.

3.3. Scalability

The component metadata in the examples are currently writ-

ten by hand. We envisage that in practice the information

will be, at least partially, obtained by component analysis

at construction time. Clearly, complicated components limit

the feasibility of analysis. By limiting the dependence infor-

mation to the input and output data structures of the compo-

nent, and assuming the contents are correct, we simplify the

run time workload, and improve scalability in that manner,

ensuring that the complexity of individual components does

not affect composition time scalability. Generation time anal-

ysis may not be possible for all components. However, the

discussed system localises analysis at construction time and,

as a result, increases the possibility of correct dependence

construction over fully general system-wide analysis of all

possible interactions.

4. CODE GENERATION

Our system supports components in various forms. In the

simplest case we use a pre-compiled binary, which is linked

at run time. Alternatively, we can compile and link a com-

ponent code at run time. Delaying compilation to run-time

offers scope for performance improvements as the compiler

may have more information about the code, or the system.

A further possibility is to generate code at run time, be-

fore compilation and linking. Earlier work such as Task-

graph [4] shows that run time code generation and compi-

lation can be effective. In this system we view both run

time code generation and compilation as a lowering from

one implementation level to another. For example, we can

lower from a high level source representation, to C++; then

through compilation of C++ to a binary. Each stage takes

a component as input, and generates a replacement com-

ponent as output, with correct lowered annotations. This

approach is flexible and conveniently supports component

caching.

We use the CLooG [2, 3] code generator to construct the

code for compilation. CLooG-based components are high-

level representations of iteration spaces, and are converted to

C++ components in the first stage of the lowering process.

COMPONENT_TARGET(difference)

{

POLYHEDRAL_LOOP(i) [i < image1_in.height();

i >= 0;] {

POLYHEDRAL_LOOP(j) [j < image1_in.width();

j >= 0;] {

image_out(x,y) = image1_in(x,y)-image2_in(x,y)

}

}

}

Listing 4. A simple polyhedral representation of the itera-

tion space of an image difference operation.

CLooG is based on the polyhedral model [1] which rep-

resents execution schedules as polyhedra in multi-dimensional

iteration spaces. CLooG’s input defines a polyhedral iter-

ation space using a set of affine half-spaces as individual

inequalities in the rows of a matrix. An example of the in-

put matrix can be seen in Figure 5(b). CLooG outputs the

code necessary for each statement to visit each integer point

within the polyhedron. CLooG does not perform depen-

dence analysis and so for ill-considered input will generate

incorrect output. As a result, our input to the code generator

must satisfy data dependencies.

0 1 2
0

1

for int i = 0 to 2
 b(i) = ...;
end for
for int i = 0 to 2
 ... = b(i);
end for

0 1 2
0/1

for int i = 0 to 2
 b(i) = ...;
 ... = b(i);
end for

0 1 2
0

1

for int i = 0 to 2
 b(i) = ...;
end for
for int i = 0 to 2
 ...= b(i−1)+
 b(i+1);
end for

0 1 2 3
0

1

0 1 2 3
0/1

b(0) = ...;
for int i = 1 to 2
 b(i) = ...;
 ... = b(i−2) + b(i);
end for
... = b(1) + b(3);

a − Without skew b − With skew

Original

Fused

Original

Shifted

Fused

Fig. 4. A simplified one-dimensional loop fusion example.

We generate input to CLooG from a component imple-

mentation as in Listing 4. Full analysis of C code or a binary

representation of analysed dependencies as polyhedra would

work equally well but this syntax offers us a simple basis to

work with for experimentation. We specify the execution

polyhedron of the kernel using nesting to define dimensions

and lists of inequalities to define ranges for the variables.

This inequality syntax is converted into CLooG’s input ma-

trices during the process of lowering from CLooG input to

C++. CLooG is capable of generating hundreds or thou-

sands of lines of code to cover complicated iteration spaces

which would be extremely difficult to write by hand.

5. USING METADATA FOR OPTIMISATIONS

The presence of dependence metadata on components al-

lows the manager to perform component mapping decisions

and, in addition, cross-component optimisations. In this

work we illustrate the potential by applying loop fusion (and

the enabled array contraction) to a connected subgraph of

components.

5.1. Increasing temporal locality with loop fusion

Loop fusion [5] takes two or more consecutive loops and

merges the bodies together as illustrated in Figure 4(a). Fu-

sion reduces the number of control instructions, improves

the temporal locality of data and, when fusing parallel loops,

avoids unnecessary synchronisation (albeit with the risk of

harming cache performance or instruction scheduling).

Loop dependencies can complicate fusion. In Figure 4(b)

for example, statement 1 has a forward data dependence on

the output of statement 0. These two statements from the

same iteration number of the original loops cannot execute

in the same iteration of the fused loop. The dependence

can be resolved by shifting the iteration space of the sec-

ond loop. The shift allows each loop to perform its given set

of iterations with all dependencies satisfied before the data

is required. The result of this fusion and shift (sometimes

called “shift and peel” [6]) is a guarded or partially unrolled

loop nest as in Figure 4(b), with a necessary loss of paral-

lelism at the edges.

S1

S2

S1 & S2 without shift S1 & shifted S2

eq i1 j1 i j c
0 1 0 −1 0 0
0 0 1 0 −1 0

0 1 0 −1 0 0
0 0 1 0 −1 0

eq i1 j1 i j c
0 1 0 −1 0 0
0 0 1 0 −1 0

0 1 0 −1 0 −1
0 0 1 0 −1 −1

(a) (b) (c)

S1:

S2:

S1:

S2:

Fig. 5. The scatter matrix can be used to schedule the loop

by changing the logical execution time of a given iteration.

Input and output regions defined in the metadata make

the data dependencies explicit. We know which data values

may be read or written at a given point in a component’s

iteration space, and hence can compute the shift necessary

to resolve data dependencies.

We use CLooG to generate code representing the fused

set of components. We supply the individual input matrices

that define the iteration space. We also provide a mapping

of points in the iteration space to a logical execution time,

known as the scatter matrix. As demonstrated in Figure 5,

we can specify that a point (i, j) in the iteration space (a) of

a component can be mapped to (ti, tj) in time, where either

ti = i and tj = j (b), or ti = i + 1 and tj = j + 1 (c),

shifting the schedule.

The amount of shift required depends on the dependence

relationship between two components. These relationships

are computed from the access region metadata. For exam-

ple, a 3×3 region as input to the second component requires

a shift of 1 in the iteration space of the second component

so that the output of the first is ready when it is needed. In

the general case, we need to compute the last iteration in

the source component that may generate data needed by the

matching iteration in the target component. If the depen-

dence distance is constant, we can compute a static schedule

correction. We parameterise the scatter matrix by a set of

shift values computed from the dependence relationships to

shift the logical time of the component and therefore of its

statements. With a correct scheduling defined in the scatter

matrix, CLooG will generate a series of loops that respects

the inter-component data dependencies.

Component selection for fusion depends on the flow of

data between components. Unrelated components are easy

to fuse, but unlikely to benefit from fusion. Components

that share inputs, or communicate using a intermediate data

structure, are more likely to benefit. Having analysed the

data flow in the parent component at construction time, we

can fuse the children at composition time. Calls to the sub-

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Size of dataset (MPix)

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

Contour filter with SSE

1 thread

1 thread fused and contracted

4 threads
4 threads fused and contracted

8 threads

8 threads fused and contracted

Fig. 6. Execution time of the contour filter example.

components can be replaced with calls to stub functions that

merely prepare data structures. The execution of the fused

component can be delayed until the last subcomponent call.

As a result, the parent component itself need not change.

5.2. Reducing storage through contraction

Loop fusion reduces the period between generation and use

of intermediate data values, often leading to more efficient

use of the cache and improved performance. Array contrac-

tion offers further scope for improvements and can be a key

enabler of high performance in large parallel fused loops [7].

Rather than storing entire intermediate arrays, we reduce the

intermediate storage to the minimum required to satisfy data

flow requirements, reducing the use of memory bandwidth

due to cache displacement.

6. EXPERIMENTAL RESULTS

We implement three examples using our component frame-

work to demonstrate its capabilities and how we can im-

prove the performance of an application. These examples

possess different data flow situations and hence show varied

performance.

To enable fusion, all subcomponents are implemented in

a high-level polyhedral representation, as in Listing 4, and

have appropriate dependent region and data flow metadata

attached to describe the relationships between component

inputs and outputs.

We compile using Intel C/C++ 10.1 or GCC 4.2 (whichever

performs better) on an eight core, dual-socket Intel Xeon

based machine running a 64-bit Linux 2.6 kernel and paral-

lelise using OpenMP. The single threaded code is the unpar-

allelised, sequential version.

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

300

Size of matrix dimension

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

Biconjugate gradient

1 thread

1 thread MKL
1 thread fused

4 thread MKL

4 thread fused
8 thread MKL

8 thread fused

Fig. 7. Comparing MKL, with custom version of biconju-

gate gradient for 1, 4 and 8 threads (custom without fusion

shown only for 1 thread).

6.1. Image processing

The contour filter (Figure 1) operates on four-component

(RGBA) data and is vectorised using SSE instructions.

The dilation subcomponent selects a maximum value in

a region of the output of the convolution subcomponent. To

allow for this dependence, the fused execution space must

shift. The execution of the elements of both the dilation and

difference are delayed by the radius of the region.

Figure 6 shows performance results for the contour fil-

ter with SSE. There is a substantial reduction in execution

time for fusion combined with contraction. Execution time

is reduced by 21% for a single thread, 35% for four threads

and 48% for eight threads. While not plotted on the graphs,

fusion alone offers 4%, 11% and 20% respectively. The im-

provement from fusion alone is slightly erratic, but tends to

decrease with data set size as the larger range of visited ad-

dresses increases the chance of an individual element being

removed from the cache. A similar effect is not seen with

the contracted data sets where the accessed address range is

reduced to a circular buffer of a few image rows in size.

6.2. Linear Algebra

Our linear algebra example is a biconjugate gradient solver

from the Iterative Template Library [8], with components

defining various aspects of the computation flow. We al-

low fusion to occur between a standard matrix/vector mul-

tiplication, and a transposed matrix/vector multiplication.

Note that in this benchmark we share input matrices between

components, rather than having data flow from one compo-

nent to another. A result of this lack of data flow is that

there is no communicated array to contract and hence this

example supports fusion only.

In this example we use 1× 1 access regions because the

execution maps a single iteration space point to a single data

0 1 2 3 4 5

x 10
6

0

50

100

150

200

250

300

350

400

Size of dataset

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

3D Multigrid

1 thread

1 thread fused

4 threads
4 threads fused

8 threads

8 threads fused

Fig. 8. Execution time for single and four and eight threaded

3D multigrid solver kernel.

element from each input. As the input and output vectors

are present in a single dimension only, the mapping is a pro-

jection onto that dimension.

Figure 7 graphs performance results for the fused ver-

sions of the biconjugate gradient solver as well as results for

Intel’s Math Kernel Library (MKL) [9] as a baseline with a

comparison with the original version on a single thread. We

can see that while there is an improvement in performance

over MKL for all numbers of threads, this improvement is

more pronounced for 4 and 8 threads where memory con-

tention between cores is reduced by fusion.

6.3. 3D Multigrid

Multigrid solves differential equations using a hierarchy of

discretisation levels. We adapted this example from the NAS

Parallel benchmarks suite [10] using fixed boundary con-

ditions.3 We created a sequence of dependent components

based on the core functions that iterate on the data: Data

initialisation, Interpolation from a lower resolution compu-

tation stage, Computation of residuals and Application of a

smoother to the data.

The four components are related by region and data flow

dependencies describing how a value in the iteration space

of one component relates to a value in the iteration space of

the next in sequence. We require 3 × 3 × 3 regions around

the input to the interpolation, residual and smoother appli-

cations. We make the kernel more efficient by absorbing the

inner dimension of the loop nest, allowing hand tuning of

the inner loop. Given such a kernel, our access region speci-

fies an entire row of the data set in one dimension and a 3×3
region in the other two. Note that the component manager

3In the original code the computation is complicated by a cyclic depen-

dency due to a wrap-around boundary condition. While fusion is still pos-

sible with the cyclic dependency, performance benefits are lost due to the

increased loop shift necessary to support wrapping on all three dimensions.

need not know that our tuned kernel has a carefully written

inner loop, only that it needs to access an entire row of the

data set to perform its work.

Figure 8 offers performance results for 1, 4 and 8 threads.

The improvement from fusion peaks at 4 threads where we

see a mean reduction in execution time of 12% over the

range shown. For larger data sets the performance of fusion

falls off as the amount of data maintained by the 3D com-

putation skew creates stress on the cache and other shared

data structures of the CPU. The peak at 4 threads is simi-

larly explained because the L2 cache is shared between pairs

of cores, reducing the effective cache size per core when 8

threads are used.

7. RELATED WORK

Adaptive component models have been widely studied, for

example in embedded systems (e.g. see [11]), as well as

more generally in distributed systems (e.g. [12]). Dowling

and Cahill [13] offer a useful framework, emphasising the

importance of separating adaptational from computational

code. Recent work on the Common Component Architec-

ture (CCA) looks at composing, substituting and reconfigur-

ing components during application execution [14].

Our component composition builds on work on Archi-

tecture Description Languages (ADLs) such as Darwin [15]

and xADL [16], and is similar to Think [17]. Our work dif-

fers from other ADLs in its support for indexed dependence

metadata, that denotes dependence relationships for individ-

ual iteration space points.

CLooG arises from Bastoul’s work [3] and builds on ear-

lier work on code generation in the polyhedral model by

Griebl and Wetzel [1]. Griebl [18] applies the polyhedral

model to parallelisation of loop nests while recent work by

Pop et al. [19] looks at integrating polyhedron based analy-

sis into GCC.

This paper is an attempt to realise the THEMIS [20] pro-

posal and is part of a larger body of work including the Task-

graph [4] library, related work from Cornwall [7] and active

libraries in linear algebra from Russell [21].

ZPL [22] (a precursor of Chapel [23]) and KeLP [24]

(which led to Chombo [25]) had explicit regions - in fact

a “region calculus”. However their regions represent parti-

tions of iteration and data spaces - whereas in this work we

represent the mapping between points in the iteration space

and memory locations.

Languages like StreamIt [26] use the concept of sequences

of data items, called streams, which are operated on by pure

functions, called filters. Clear (and often static) data-flow re-

lationships between filters enable cross-component optimi-

sations. In contrast, our framework enables cross-component

optimisations for general programs operating on arbitrary

data sets.

8. CONCLUSIONS AND FUTURE WORK

We have shown how interfaces with indexed dependence

metadata can be used to improve the performance of com-

ponent compositions. Our experimental results show that

metadata can be used to perform aggressive component fu-

sion, generating hundreds of lines of code (200-300 in the

contour filter and over 1500 for the multigrid example) that

would be challenging to implement by hand. We have also

confirmed that loop fusion can substantially reduce execu-

tion time through improvements in temporal locality of data.

The THEMIS proposal discusses more possibilities for

metadata than we have been able to implement to date. In

the future we hope to proceed further with this investigation,

particularly in the area of applying cross-component optimi-

sation techniques to data layout by adding metadata annota-

tions describing the access patterns for data. More varied

access descriptors and tighter integration into the program-

ming language using C++ pragmas or compiler support for

iterator classes are other targets.

The multigrid example shows that in some cases fusion

gives only a small benefit. In these cases we plan to use

adaptive component mapping to use the original components

rather than fused sets when a fusion attempt reduces perfor-

mance. Optimal combinations may include calls to vendor

libraries wrapped in components, as used in the MKL com-

parison for the linear algebra example.

Novel architectures such as heterogeneous multicore plat-

forms require novel optimisation strategies. Hand coding

is often impractical. We envisage that adaptive, metadata-

driven optimisation techniques will be of increasing rele-

vance as technology develops.

9. REFERENCES

[1] M. Griebl, C. Lengauer, and S. Wetzel, Code generation in

the polytope model, Proc. PACT, IEEE Comp. Soc., 1998.

[2] CLooG, http://www.cloog.org/.

[3] C. Bastoul, Code generation in the polyhedral model is easier

than you think, Proc. PACT, IEEE Comp. Soc., 2004.

[4] O. Beckmann, A. Houghton, P. H. J. Kelly, and M. Mel-

lor, Run-time code generation in C++ as a foundation for

domain-specific optimisation, Proc. Domain-Specific Pro-

gram Generation International Seminar, 2003.

[5] K. Kennedy and K. S. McKinley, Maximizing loop paral-

lelism and improving data locality via loop fusion and dis-

tribution, Proc. LCPC, Springer, 1994.

[6] N. Manjikian and T. S. Abdelrahman, Fusion of loops for

parallelism and locality, IEEE Trans. Parallel Distrib. Sys.

[7] J. L. T. Cornwall, P. H. J. Kelly, P. Parsonage, and B. Nico-

letti, Explicit dependence metadata in an active visual effects

library, Proc. LCPC, Springer, 2007.

[8] A. Lumsdaine, L.-Q. Lee, and J. Siek. Iterative template

library, http://www.osl.iu.edu/research/itl/, 2001.

[9] Intel. Math Kernel Library, 2008

[10] B. L. Chamberlain, S. J. Deitz, and L. Snyder, A comparative

study of the NAS MG benchmark across parallel languages

and architectures, Proc. SC, IEEE Comp. Soc., 2000.

[11] H. Ma, I.-L. Yen, F. Bastani, and K. Cooper, Composition

analysis of QoS properties for adaptive integration of embed-

ded software components, Proc. ISSRE, 2003.

[12] L. Baresi, S. Guinea, and G. Tamburrelli, Towards decentral-

ized self-adaptive component-based systems, Proc. SEAMS,

ACM, 2008.

[13] J. Dowling and V. Cahill, The k-component architecture

meta-model for self-adaptive software, Proc. of the Third In-

ternational Conference on Metalevel Architectures and Sepa-

ration of Crosscutting Concerns, Springer, 2001.

[14] L. C. McInnes et al, Computational quality of service for

scientific CCA applications: Composition, substitution, and

reconfiguration, Argonne Nat. Lab., Tech. Rep. 2006

[15] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, Specifying

distributed software architectures, Proc. European Software

Engineering Conference, Springer, 1995.

[16] E. Dashofy, A. van der Hoek, and R. Taylor, A highly-

extensible, XML-based architecture description language,

Software Architecture, 2001.

[17] A. E. Özcan, O. Layaida, and J.-B. Stefani, A component-

based approach for MPSoC SW design: Experience with OS

customization for H.264 decoding, ESTImedia, IEEE Comp.

Soc., 2005.

[18] M. Griebl, Automatic Parallelization of Loop Programs for

Distributed Memory Architectures, Habilitation Thesis, Uni-

versity of Passau, 2004

[19] S. Pop, G.-A. Silber, A. Cohen, C. Bastoul, S. Girbal, and

N. Vasilache, GRAPHITE: Polyhedral analyses and opti-

mizations for GCC, Proc. GCC Summit, 2006.

[20] P. Kelly, O. Beckmann, A. J. Field, and S. Baden,

THEMIS: Component dependence metadata in adaptive

parallel computations, Parallel Processing Letters, 2001

[21] F. P. Russell, M. R. Mellor, P. H. J. Kelly, and O. Beckmann,

An active linear algebra library using delayed evaluation and

runtime code generation, Proc. LCSD, 2006.

[22] B. L. Chamberlain, E. C. Lewis, C. Lin, and L. Snyder,

Regions: an abstraction for expressing array computation,

SIGAPL APL Quote Quad, 1998.

[23] B. Chamberlain, D. Callahan, and H. Zima, Parallel pro-

grammability and the chapel language, Int. J. High Perf.

Comp. Appl., 1997.

[24] S. J. Fink, S. B. Baden, and S. R. Kohn, Efficient run-time

support for irregular block-structured applications, J. Paral-

lel Distrib. Comp., 1998

[25] P. Colella et al. Performance and scaling of locally-structured

grid methods for partial differential equations, SciDAC 2007

Annual Meeting.

[26] W. Thies, M. Karczmarek, and S. Amarasinghe, StreamIt: A

Language for Streaming Applications, Proc. Compiler Con-

struction, Springer, 2002.

