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Abstract. Developers need to be able to write code using high-level,
reusable black-box components. Also essential is confidence that code
can be mapped to an efficient implementation on the available hard-
ware, with robust high performance. In this paper we present a pro-
totype component library being developed to deliver this for industrial
visual effects applications. Components are based on abstract algorith-
mic skeletons that provide metadata characterizing data accesses and
dependence constraints. Metadata is combined at run-time to build a
polytope representation which supports aggressive inter-component loop
fusion. We present results for a wavelet-transform-based degraining filter
running on multicore PC hardware, demonstrating 3.4x–5.3x speed-ups,
improved parallel efficiency and a 30% reduction in memory consumption
without compromising the program structure.

1 Introduction

Component-based programming is a software development paradigm in which
interoperable and composable components are written, tested and debugged in
isolation of one another. They can then be composed into useful programs, per-
haps from a library of reusable components. This idea comes so naturally that it
has become the primary mode of user interaction in professional video composit-
ing applications, where the user composes effects and video clips into workflows.
Elegant design comes at a price, however, and the goals of component-based
programming are frequently at odds with performance.

In this paper we explore the barriers to high performance in an industrial
visual effect by building a dynamic, self-optimising library from its constituent
algorithms. At the heart of our library is the concept of dependence metadata,
which enables complex code transformations without expensive dependence anal-
yses. We focus on an effect called degraining [21], produced by our industrial
collaborators The Foundry, designed to suppress the random texturing noise in-
troduced by photographic film without compromising an image’s clarity. This is
achieved by first analysing the grain, or by matching it against a database of
grain patterns, and then applying a wavelet-based removal algorithm. The latter
is more computationally intensive and thus forms the focus of our work.

This work was partly funded by the EPSRC (ref EP/E002412).
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Fig. 1. One iteration of degraining in component form, replicated four times with an
appropriate terminator. Dark boxes represent components, while light boxes represent
data handles. Handles feed component outputs to other inputs without an intermediate
data set necessarily existing, unless the programmer explicitly evaluates the handle.

Figure 1 shows a breakdown of one iteration of the degraining algorithm into
components. The complete algorithm chains this graph four times in succession.
Our breakdown is faithful to the industrial codebase except that we split sum-
mation from the proprietary component, a small improvement in design that our
optimising framework allows us to afford. Note that this will artificially inflate
our performance gains somewhat, but we believe this to be the most desirable
construction; emphasised by the difficulties we encountered in debugging the
partially fused implementation. The original algorithm was written in a sim-
ilar component-based structure; partly to promote reusability and to simplify
debugging, and partly due to the difficulty of managing heavily fused code.

From a performance perspective, the optimum structure looks very differ-
ent. Some knowledge of the dependence structures for each component reveals
great redundancy in iteration over intermediate results. Each component is im-
plicitly a whole new iteration. Large data sets carry information from one com-
ponent to the next, spilling into higher levels of the memory hierarchy, when
restructuring transformations could greatly reduce their size. Opportunities for
instruction-level parallelism (ILP), an important tool in superscalar architec-
tures, are limited by the barriers between the computations of each component.
Crucially, none of these optimisations could be applied directly to the code with-
out greatly disrupting the component-based design. This tension between good
design and high performance tends to lead programmers to choose one at the
expense of the other.

We argue that these optimisations are crucial for performance and that, with
some innovative programming, they can be consistent with good design. Our so-
lution avoids disruption in the original code by promoting a generative approach,
in which components are equipped with functionality to create their own imple-
mentations. Problem-specific kernel code is left to the programmer as before,
while we take control of the loops and collect high-level metadata describing
each component’s dependence structure. Delayed evaluation reveals component
compositions and runtime code generation allows us to produce context-sensitive
optimised implementations. The fundamental transformations leading to faster
code are made safe and precise by dependence metadata. These are used to build
a polytope representation of the loop nests from which optimised code can be
instantiated.



In summary, the main contributions of this paper are:

– Dependence metadata as a tool for optimisation. In Section 2 we
discuss the role and collection of dependence metadata in a component en-
vironment through algorithmic skeletons. This information enables precise
loop shifting, loop fusion and array contraction without difficult analysis of
the implementation.

– Evaluation of an active visual effects library. In Section 3 we present a
complete active visual effects library built around a polytope code generation
framework. We evaluate its performance with a component-based industrial
visual effect.

2 System Design

An overview of our design is shown in Figure 2. We have chosen to adopt an offline
phase in which optimised code is compiled and linked to the client application.
This contrasts with other approaches that maintain client/library separation by
moving this phase to runtime. Our approach benefits from requiring no build
environment on the end-user system and from having no code generation or
compile-time overhead. We lose the ability to specialise to dynamic parameters
without pre-tracing every instance of them, but consider this to be a worthwhile
trade-off given the large interactive variability of those parameters in our target
applications. In practice, we only generate multiple traces when the component
graph changes with a parameter (e.g. by disabling or reordering operations).
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Fig. 2. Stages of the optimisation workflow. The client is run with the library in a trace
mode. Optimised aggregate library code is generated and embedded manually into the
client application. A second library mode invokes this aggregate code in normal usage.

2.1 Library Front-End

We have designed the front-end to our active library with transparency in mind.
The goal is to present an interface to the programmer which matches the existing
imperative execution model, while retaining the flexibility to switch to a delayed
evaluation mode. Our solution uses proxy functions to build a graph of compo-
nents connected by abstract data handles at runtime, as shown in Listing 1.1.
This code excerpt produces the graph for one iteration of degraining as shown



in Figure 1. Run in an imperative mode, the same program would invoke the
correct components in sequence and instantiate data handles with real data sets
on-demand. This is useful for generating traces, invoking aggregate code and for
debugging the optimisation engine without changing the client application.

/∗ Real data s e t s for reading/wr i t ing data . ∗/
Handle input (new Image ( width , height , components ) ) ;
Handle pSum2(new Image ( width , height , components ) ) ;
Handle LL(new Image ( width , height , components ) ) ;

/∗ Virtua l data s e t s for automatic i n s t an t i a t i on . ∗/
Handle highY , lowY ,HH,LH,HL,HHx,LHx,HLx, pSum1 ;

VertDWT( input , highY , lowY , f i l t e rH e i g h t , pass ) ;
HorizDWT(highY ,HH,LH, f i l t e rWidth , pass ) ;
HorizDWT( lowY ,HL,LL , f i l t e rWidth , pass ) ;

Propr i e ta ry (HH,HHx) ;
Propr i e ta ry (LH,LHx ) ;
Propr i e ta ry (HL,HLx ) ;

Sum(HHx,LHx, pSum1 ) ;
Sum(pSum1 ,HLx, pSum2 ) ;

Listing 1.1. Component-based front-end with data sets, handles
and proxy functions for a single iteration of degraining.

Components are constructed through an algorithmic skeleton interface. The
goal of skeletons in our library is twofold. Firstly, we need to separate loops
from programmer-written kernels so that transformations can be applied to the
iteration space. Secondly, we need to extract high-level metadata describing an
algorithm’s dependence structure in order to determine which transformations
can be applied and in what order. We make loose use of the skeleton terminology
from Nicolescu and Jonker’s work on skeletons in image processing [14] but do
not distinguish the numbers of inputs or outputs; instead these parameterise the
skeleton.

We place some constraints on the use of skeletons in our library for perfor-
mance reasons. By controlling the loop structures we can enforce an iteration
order and ensure that each element in the output is computed only once. The
latter constraint may be relieved through a scatter skeleton but note that this
will block loop fusion if the scatter distance is not limited to a subset of the
output (i.e. it is not a global operation). The former constraint is somewhat
configurable by the algorithm, in being able to choose forwards/backwards and
horizontal/vertical iteration parameters. This provides enough flexibility in man-
aging loop-carried dependencies to account for all of the components we have
investigated so far, but we plan to explore more complex skeletons in the future.

Figure 3 classifies the three non-proprietary components of degraining as
skeletons. Summation matches a simple point skeleton parameterised by two in-
puts and one output. There are two per-iteration data dependencies from the
inputs to a corresponding point in the output. Both the vertical and horizontal
DWT match the filter skeleton, parameterised by one input, two outputs and
the direction and dimensions of the filter. Dependencies from the input to both



outputs cover the filter area. As a result, the dependence structures of the hor-
izontal and vertical DWT components change dynamically with the filter size
parameter. Our optimisation engine accounts for this by generating aggregate
loops with an iteration space parameterised by this variable.

Summation

(2:1 / Point Skeleton)
Horizontal DWT

(1:2 / Filter Skeleton)

Vertical DWT

(1:2 / Filter Skeleton)

Fig. 3. Skeleton classifications for the non-proprietary components of degraining.

To illustrate the use of skeletons in our library, Listing 1.2 shows a partial im-
plementation of the vertical DWT component. The component object subclasses
an appropriate skeleton. The programmer provides a scalar kernel and an op-
tional vector kernel, expressed in terms of the arrays in1, out1, and out2, and
indices y, x and c. Our code generator is free to use whichever implementation it
prefers but the current implementation will always choose the vector kernel if it
can be used throughout the entire graph; otherwise scalar is chosen. filterHeight
is a parameter to the skeleton that is used inside the kernel and inside the ge-
tRadius function. The getRadius function encodes dependence metadata for the
skeleton by defining a windowed access region over the in1 array, centred over
the current iteration point (x, y) – this is discussed in more detail in the fol-
lowing subsection. Thus the metadata is provided by the programmer through
a simple overloaded function call in the skeleton.

2.2 Deriving Transformation Parameters from Metadata

We focus on loop fusion and array contraction [2] as potentially beneficial cross-
component optimisations to apply to the component graph, as demonstrated in
earlier work [18]. In order to apply these transformations safely we must derive
two parameters: the loop shift required for fusion and the contracted size of
intermediate data sets. Computing these parameters normally requires detailed
region and liveness analyses. We aim to demonstrate that explicit dependence
metadata can achieve the same result at a much lower cost.



class VertDWTSkel : public Fi l t e r1DSke l e ton {
void s ca l a rKe rne l ( . . . ) {

f loat valT = in1 [ y−( f i l t e r H e i g h t / 2 ) ] [ x ] [ c ] ;
f loat valM = in1 [ y ] [ x ] [ c ] ;
f loat valB = in1 [ y+( f i l t e r H e i g h t / 2 ) ] [ x ] [ c ] ;
out1 [ y ] [ x ] [ c ] = (valM−(valL+valR )∗0 . 5 f )∗0 . 5 f ;
out2 [ y ] [ x ] [ c ] = valM−out1 [ y ] [ x ] [ c ] ;

}

void vectorKerne l ( . . . ) {
m128 valT = in1 [ y−( f i l t e r H e i g h t / 2 ) ] [ x ] ;
m128 valM = in1 [ y ] [ x ] ;
m128 valB = in1 [ y+( f i l t e r H e i g h t / 2 ) ] [ x ] ;

out1 [ y ] [ x ] = (valM−(valL+valR )∗0 . 5 f )∗0 . 5 f ;
out2 [ y ] [ x ] = valM−out1 [ y ] [ x ] ;

}

void getRadius ( int ∗ rad iu s ) {
rad iu s [ 0 ] = f i l t e r H e i g h t ;
r ad iu s [ 1 ] = 0 ;

}
} ;

Listing 1.2. Partial implementation of the Vertical DWT.

Our metadata is inspired by the THEMIS proposal [12]. THEMIS mapped
out a set of properties to describe a procedure’s dependence structure. At each
point in its iteration domain and for each operand to a procedure, a set of indices
which may be read by the procedure is defined. Similarly for the data items which
may be written to, further sets are defined. The precise representation of this
information is left to the programmer. The authors give an example where affine
functions are sufficient to represent dependencies for each iteration relative to
the position in the iteration domain. We find that a similar approximation is
suitable for all of the components in the degraining algorithm.

We assume that each skeleton’s kernel writes once to all points in the out-
put data set(s). This is not the case for our ”scatter” skeleton (not used in this
algorithm), which potentially overwrites a single point many times, but in that
case we simply introduce a larger shift to ensure that we do not read values from
the preceding component until they have permanently left the scatter window.
Dependence metadata is defined as the dimensions of a window centred over cor-
responding points in all of the input data sets. For a point skeleton this is simply
(1,1). The vertical filter skeleton will have dependence metadata represented by
(1,n), where n is the filter height, while the horizontal filter skeleton is similarly
characterised by (n,1). This simple scheme is sufficient to enable computation of
the transformation parameters for maximal fusion across the entire degraining
algorithm.

For a detailed explanation of deriving optimal array contraction parameters
see [20]. However, our approach allows these parameters to be derived trivially.
Their value is equal to the loop shift of the succeeding component (i.e. pre-
cisely the number of iterations that the intermediate data should be held for).
We use a small optimisation trick in computing the contracted size by noting
that indexing a contracted array requires an expensive modulus operation. How-



ever, by padding the contracted size to the nearest power-of-two, cheap bitwise
operations can be substituted for modulus arithmetic.

Finally, we put all of this together with a simple propagative algorithm that
walks the component graph, computing loop shifts and contracted data set sizes
from the getRadius dependence metadata and the input transformation param-
eters to each component.

2.3 Code Generation

Our code generation scheme is slightly unusual. While it would be trivial to gen-
erate some text representing the shifted loops, fusion is a difficult transformation
to apply. By recognising loop fusion as an iteration space scanning problem –
that is, to consolidate kernels in common slices of a domain – we leverage the
polytope model for a solution. Polytopes are a mathematical formulation of a
loop nest, its statements and their dependence. Loop fusion in this model is
trivially solved by overlapping multiple polytopes.

We make use of the CLooG (Chunky Loop Generator) library [3] to achieve
this. CLooG is a loop generation tool based on the polytope model. It devises
an iteration scheme to visit all of the integral points in a polyhedron under a
system of scheduling constraints. Of the many possible loop nests that arise,
CLooG picks the one most optimised in control flow. A side effect of this choice
is that loop unrolling and fusion are applied implicitly in the polyhedral scanning
process. CLooG will not perform enabling transformations, such as loop shifting,
by itself. Instead, we provide the library with pre-shifted iteration spaces and
kernels with shifted and contracted array indexing, along with a guarantee that
no loop-carried dependencies exist between statements of different kernels.

CLooG requires a client code generator to fill the loops it generates with
appropriate kernels. The client supplies a unique identifier for a kernel when
creating a polytope, and is provided with sequences of the same identifiers dur-
ing fused code generation. One way to capture programmer-written kernels from
the target application, as demonstrated in the TaskGraph [4] library, is to use
template metaprogramming to build a high-level representation of the kernel
which can later be unparsed back to text. This approach provides a semantic
advantage and opportunities to modify the kernel. However, it imposes a syn-
tactic structure that is limited in flexibility and familiarity to the programmer.
We chose a less intrusive approach, using a simple pre-processing script to copy
kernels from C++ source files into strings within the skeleton classes. In the
future we could use source-to-source translators, such as ROSE [19], to perform
optimisations on the string-based kernels.

Kernel chaining and array contraction are applied in a pattern matching pre-
generation pass. The inN and outN references from programmer-defined kernels
are chained together with unique arrays called named arrX. These arrays are
instantiated with the contracted sizes computed in Section 2.2. They are freed
after the loops have finished. User-supplied input and output arrays are refer-
enced directly and are not involved in contraction. Listing 1.3 shows a fragment
of CLooG’s output for the degraining algorithm. Loop shifting, unrolling (not



shown here), fusion and array contraction have all taken place to orchestrate
the fully optimised algorithm. In the most aggressively fused case, the complete
listing extends to over fifteen thousand lines of code, ninety loops and numerous
unrolled fragments.

for ( y=29;y<=paddedHeight−16;y++) {
. . .
for ( x=6;x<=9;x++) {

// Ver t i ca l DWT
{ m128 vValT = mm load ps(& named arr0 [ y−1] [ x ] [ 0 ] ) ;

m128 vValM = mm load ps(& named arr0 [ y ] [ x ] [ 0 ] ) ;
m128 vValB = mm load ps(& named arr0 [ y+1] [ x ] [ 0 ] ) ;

named arr2 [ i &3] = (vValM−(vValT+vValB)∗ vPoint5 )∗ vPoint5 ;
named arr3 [ i &3] = vValM− named arr2 [ i &3] ;}
. . .
// Ver t i ca l DWT
{ m128 vValT = named arr5 [((−2−2)∗paddedWidth+i )&32767] ;

m128 vValM = named arr5 [((−2)∗paddedWidth+i )&32767] ;
m128 vValB = named arr5 [((+2−2)∗paddedWidth+i )&32767] ;

named arr6 [ i &7] = (vValM−(vValT+vValB)∗ vPoint5 )∗ vPoint5 ;
named arr7 [ i &7] = vValM− named arr6 [ i &7] ;}

}
}

Listing 1.3. A fragment of CLooG’s output for degraining.

3 Experimental Results

The degraining algorithm is implemented in C++ with our skeleton optimisa-
tion framework. Two implementations are considered throughout this chapter:
one written with scalar operations and the other with SSE intrinsics. This com-
putation is trivially parallelised by statically partitioning the image to utilise all
cores of a multicore system. We allow the compiler to vectorise the scalar code
as it sees fit, but in practice it is able to do very little. Our target compiler is
Intel C/C++ 10.0.025 on the Linux 2.6 operating system, in 64-bit mode where
processor support was available. A brief comparison with GCC 4.1.2 showed this
to be the favourable choice for performance on all benchmarking systems. We use
the flag set ’-O3 -funroll-loops’ and append an architecture-specific optimisation
flag as recommended by the manual – using -xW for non-Intel processors.

Before looking at the experimental results it is worth noting a design decision
which impacts performance throughout this chapter. All of our benchmarks oper-
ate upon three-component interleaved RGB single-precision floating-point data.
In order to simplify the vector processing front-end, we chose to pad this data
to RGBA with an unused alpha channel in the SSE intrinsic implementations.
This raises memory pressure over the scalar implementations and introduces
significant redundant computation. One alternative design that we considered
involved separating colour channels into contiguous regions. Another used loop
unrolling to process RGBR, GBRG and BRGB pixel fragments. Both of these
approaches relieve memory pressure but complicate the front-end or back-end of
our optimisation framework. We leave these considerations for future work.



3.1 Baseline Performance

Figure 4 introduces the baseline performance of our algorithm in scalar and SSE
intrinsic forms. A spectrum of benchmarking platforms spreads the observed
throughput to between 1 MPixel/s and 4 MPixels/s for useful image sizes. There
is a clear reduction in performance on three out of four systems with the SSE
implementation. In spite of the greater computational performance of SSE in-
struction units, memory performance dominates and suffers from the 33% larger
RGBA pixels. On the Xeon, this almost perfectly correlates to a 33% drop in per-
fomance as the eight-core compute-heavy architecture is largely memory bound
in this algorithm.
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Fig. 4. Baseline throughput for scalar (left) and SSE intrinsic (right) implementations
of degraining on interleaved RGB data for a range of practical image sizes. The SSE
implementation pads RGB to RGBA before processing and unpads afterwards.

We build upon this data by recording the significant memory allocations
and deallocations made by the algorithm during its lifetime. A single image size
of 4000x3000x3 is used for comparison in later subsections; measurements scale
proportionally to other image sizes. Peak memory consumption is a performance-
limiting factor here – 970MiB for the scalar implementation and 1210MiB for
SSE. This clearly demonstrates the padding that has occurred in order to sim-
plify SSE application. Correlating this information with Figure 4 explains the
absence of data for the Pentium 4 on images larger than 12 MPixels. The peak
memory consumption exceeds the benchmarking system’s capacity, resulting in
page swapping and unstable performance. We omit data points where this has
occurred due to the difficulty in obtaining representative samples.

3.2 Fusion within a Single Iteration

We now explore the benefits of loop fusion and array contraction within a sin-
gle iteration of degraining. In fact, these transformations could also be applied
across iterations of the algorithm to achieve maximal fusion. This comes at the
expense of large loop shifts and an explosion in loop fragments in the output



code, however. The impact of these factors is explored in Section 3.3, but we
begin by constraining our transformations to a single iteration of the algorithm.

Figure 5 reports degraining performance with loop shifting and fusion applied
to all components in the graph. First we show results of fusiona alone; shortly
we show the impact of array contraction. Speed-ups are reported relative to the
faster baseline results from Figure 4 – the scalar implementations in this case.
Fusion is a risky optimisation in a component environment because it displaces
the deallocations of temporary data from in-between loops. The fused loop nest
accumulates a large number of allocations beforehand, leading to a 230% increase
in peak memory consumption. Relative speed-ups are unimpressive and in fact
degraded throughput has occurred in several cases.

 0

 0.5

 1

 1.5

 2

 0  2  4  6  8  10  12  14  16

R
el

at
iv

e 
S

pe
ed

-U
p

Image Size (MPixels)

Xeon X5355, 2.6GHz, 8MB L2, 4GB, 8 core(s)
Core 2 Duo, 2.6GHz, 4MB L2, 4GB, 2 core(s)

Opteron 275, 2.2GHz, 2MB L2, 2GB, 4 core(s)
Pentium 4, 3.2GHz, 2MB L2, 1GB, 1 core(s)

 0

 0.5

 1

 1.5

 2

 0  2  4  6  8  10  12  14  16

R
el

at
iv

e 
S

pe
ed

-U
p

Image Size (MPixels)

Xeon X5355, 2.6GHz, 8MB L2, 4GB, 8 core(s)
Core 2 Duo, 2.6GHz, 4MB L2, 4GB, 2 core(s)

Opteron 275, 2.2GHz, 2MB L2, 2GB, 4 core(s)
Pentium 4, 3.2GHz, 2MB L2, 1GB, 1 core(s)

Fig. 5. Fused (but not contracted) speed-ups for scalar (left) and SSE intrinsic (right)
implementations of degraining on interleaved RGB data, relative to the faster baseline
implementations in Figure 4. The SSE implementation pads RGB to RGBA before
processing and unpads afterwards.

Loop fusion is not applied in vain, however. By consolidating kernels inside a
single loop nest, the transformation enables an array contraction optimisation.
There is only a need to hold intermediate data for the duration of its reuse
distance. We can communicate this information to the compiler by explicitly
reducing the size of connecting data sets and by wrapping accesses to their ar-
rays inside the contracted size. Figure 6 shows the final optimised speed-ups of
degraining with loop shifting, fusion and array contraction applied. Performance
is very positive in the scalar implementation with speed-ups ranging from 1.6x
to 4.8x. Peak memory consumption has been reduced by 30% over the origi-
nal implementation. Interestingly, the SSE implementation now begins to show
promise with speed-ups between 3.4x and 5.3x.

3.3 Fusion across Multiple Iterations

In the preceding section we chose to arbitrarily constrain fusion to within one
iteration of the degraining algorithm. We now explore the effects of fusion across
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Fig. 6. Fused and contracted speed-ups for scalar (left) and SSE intrinsic (right)
implementations of degraining on interleaved RGB data, relative to the fastest baseline
implementations in Figure 4. The SSE implementation pads RGB to RGBA before
processing and unpads afterwards.

multiple iterations, right up to complete fusion of the component graph. Cru-
cially, fusing between iterations will result in loop shifts rising from 60KB to
nearly 1MB because the vertical DWT component has a row-striding window.
In addition, the amount of generated code grows superlinearly with the number
of fusions applied. These effects result in larger working sets, greater register
pressure and poorer instruction cache performance. Nevertheless, two large in-
termediate data sets can be contracted per iteration, following loop fusion, to
improve memory performance.

Figure 7 presents results for fusion and contraction across one, two, three and
four iterations of the algorithm. Only SSE intrinsic implementations are consid-
ered here, since they gave better average speed-ups in the preceding section. We
find that performance isn’t affected significantly in most cases. The Xeon system
sees a small improvement with two fused iterations over one and experiences a
similar drop from three to four fused iterations. We speculate that the heavily
memory bound system benefits from inter-iterative contraction and suffers less
from inflated working sets with its large L2 cache. The optimum average case
fusion appears to be at two iterations.

3.4 Impact on Multicore Scalability

A final experimental analysis concerns the scalability of the pre- and post-
optimised algorithm. The prevalence of multicore architectures places great em-
phasis upon scalability for current and future performance gains. Our optimisa-
tions do not target this factor directly, but may indirectly shift scaling bottle-
necks by reducing memory pressure.

Figure 8 graphs the throughput of four implementations of degraining on the
Xeon system as they scale up to eight cores. These have been fully fused within
iterations but not between. An ideal result here would be linear scalability, but
contention for shared resources and redundant processing at the edges – a side
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Fig. 7. Fusion and contraction within and across iterations of the SSE intrinsic imple-
mentation of degraining. At the fourth level of fusion, the entire algorithm is contained
within a single aggressively fused loop nest.

effect of naive data parallelism, albeit small compared to the full data set – results
in sublinear scalability in all cases. The post-optimised scalar implementation
achieves closer to linear scalability than either pre-optimised case. However, the
post-optimised SSE implementation experiences poor scalability after only two
cores. It is worth noting that both implementations achieve roughly the same
throughput with large numbers of cores – as both hit the memory wall – while
SSE gives substantial improvements when fewer are in use.

Explaining these results is difficult because we have no direct method to de-
termine which data points are CPU or memory bound. We believe that memory
pressure is much lower in the optimised case, hence the large speed-ups, but
that the algorithm remains memory bound. There is some indirect evidence to
support this. Scalability is better when using scalar operations, particularly in
the optimised case. Overall performance is of course lower but the algorithm
scales more smoothly on a per-core basis. This is because SSE trades memory
bandwidth for higher computational performance, so the vectorised cases exhibit
high per-core performance but hit memory bottlenecks much sooner. Additional
evidence comes from the speed-ups gained from vectorisation: 2.1x with one
core in use and a little under 1.0x with eight cores. Padded data in the SSE
implementation allows this figure to drop below one.

4 Related Work

Cross-component optimisation encompasses a spectrum of interprocedural tech-
niques including data placement [6], loop transformation [1, 18] and implementa-
tion selection [11]. The key challenge is to tunnel across the execution and code
visibility barriers present in a component-based programming model without
compromising the program structure. Two enabling technologies, delayed evalu-
ation [5] and runtime code generation [5, 4], have been demonstrated as effective
and attractive infrastructure for cross-component optimisation [15]. Generative
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Fig. 8. Scalability of four implementations of degraining for a 4000x3000x3 image on
a Dual Xeon X5355 2.6GHz (8 cores) with 8MB L2 cache and 4GB RAM in total.

programming is a paradigm which encapsulates this functionality into metapro-
grammed self-optimising libraries [22, 10], termed active libraries. Kelly et al.
proposed a metadata scheme [12] to carry information about component depen-
dence to an optimising engine. This information is critical in ensuring correctness
in code restructuring and efficiency in parallel data placement optimisations.

Algorithmic skeletons separate the problem-specific details of an algorithm,
expressed in the full power of the underlying language, from structural features
such as data dependence and iteration order. Skeletons have been researched ex-
tensively in parallel computing – as surveyed in [17] – as a programming model
with explicit parallelism and communication semantics. Benoit et al. later re-
fined the model to incorporate context-sensitive selection of operational param-
eters [7]. Adobe’s Generic Image Library [8] is an implementation of the skeleton
concept in the domain of image processing, enhancing fundamental data types
with colour information and providing relevant algorithmic patterns.

Polytopes, in the context of software optimisation, are a mathematical for-
mulation of loops, statements and dependence. In his seminal work on loop
parallelisation [13] Lengauer illustrated the decomposition of a program into the
polytope model and scheduling transformations to satisfy different processing
goals. Code generation is a polyhedral scanning problem surveyed by Bastoul
in [3] and incorporated into the CLooG library. Ongoing work by Pop et al. fo-
cuses on the integration of polytope transformations, through the CLooG library,
into the GCC compiler [16]. Cohen et al. achieved similar integration with the
Open64/ORC compiler [9], citing benefits in finding transformation sequences.

5 Conclusions and Further Work

In this paper we presented a visual effects library which takes an active role
in the cross-component loop and data optimisations in a client application. We
demonstrated the role of dependence metadata in replacing the complex pro-
gram analyses previously required to apply these code transformations safely.



Algorithmic skeletons underpin our metadata collection interface and proved
flexible enough to annotate all of the components in the degraining algorithm.
We implemented a code generation framework in the polytope model with the
CLooG library, which proved robust enough to correctly generate over fifteen
thousand lines of code and ninety loops in the most aggressively fused case.

Our evaluation showed that loop shifting and loop fusion alone were not suf-
ficient to make gains in performance, and in many cases resulted in degraded
throughput due to inflation of the memory profile. Array contraction substan-
tially improved memory performance thereafter, giving 3.4x–5.3x speed-ups in
the SSE vector implementation. Peak memory consumption was reduced by 30%
as a side effect of this transformation. We explored the impact of our optimi-
sations on multicore scalability and demonstrated closer to linear scalability in
the post-optimised case. The SSE vector implementation initially scaled better
but hit the memory wall after only four out of eight cores were in use.

The work described in this paper is part of an ongoing project to develop a
domain-specific optimisation framework for industrial visual effects. Metadata
underpins our approach to performance optimisation, retaining useful informa-
tion that is lost or obscured within the program. We are presently exploring a
range of increasingly complex visual effects in order to identify new metadata
and to broaden the applicability of our collection system. In particular, we are
investigating the limits of algorithmic skeletons as a means of describing the
behaviour of industrial visual effects algorithms. We are also interested in iden-
tifying domain-specific metadata which may enable targeted optimisations in
the visual effects field or for subsets of the algorithms within.
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