
E�cient Interprocedural Data PlacementOptimisation in a Parallel LibraryOlav Beckmann and Paul H J KellyDepartment of Computing, Imperial College180 Queen's Gate, London SW7 2BZ, U.K.fob3,phjkg@doc.ic.ac.ukAbstract. This paper describes a combination of methods which makeinterprocedural data placement optimisation available to parallel libra-ries. We propose a delayed-evaluation, self-optimising (DESO) numericallibrary for a distributed-memory multicomputer. Delayed evaluation al-lows us to capture the control-ow of a user program from within thelibrary at runtime, and to construct an optimised execution plan bypropagating data placement constraints backwards through the DAGrepresenting the computation to be performed.Our strategy for optimising data placements at runtime consists of ane�cient representation for data distributions, a greedy optimisation al-gorithm, which because of delayed evaluation can take account of thefull context of operations, and of re-using the results of previous run-time optimisations on contexts we have encountered before. We showperformance �gures for our library on a cluster of Pentium II Linuxworkstations, which demonstrate that the overhead of our delayed eval-uation method is very small, and which show both the parallel speedupwe obtain and the bene�t of the optimisations we describe.1 IntroductionParallelising applications by using parallel libraries is an attractive propositionbecause it allows users to use any top-level calling language convenient to them,such as Fortran, C, C++ or spreadsheets. Further, it has been argued [10, 11]that, at least for the time being, library-oriented parallelism, i.e. the use ofcarefully tuned routines for core operations, is often the only way to achieve sat-isfactory performance. A disadvantage of accessing parallelism through libraries,however, is that we seem set to miss opportunities for optimisation across librarycalls.We propose a delayed evaluation, self-optimising (DESO) parallel linear alge-bra library as a way of avoiding this drawback: the actual execution of functioncalls is delayed for as long as possible. This provides the opportunity to cap-ture the control ow of a user program at runtime. We refer to those pointsin a program where execution cannot be delayed anymore as force points. Themost common reasons for this are output or conditional tests which depend onthe result of a sequence of delayed operations. On encountering a force-point,



we can construct an optimised execution plan for the DAG representing thecomputation to be performed.
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 �	xfx (~{ ) = ( 1 00 1 )~{+ ( 00 ),,,,,,=Fig. 1. DAG for the �rst iteration of the conjugate gradient algorithm. The \openends" are: A, the parameter matrix, x the initial guess for a solution vector and r, theinitial remainder-vector, r = b � Ax. The DAG has been annotated with the a�neplacement functions for the results of all operations. We refer to these in Section 2.1.Example. Consider the DAG shown in Figure 1. The highlighted dot-product,� = q:p, gives rise to a data placement conict: If p is blocked over the rowsof a mesh of processors, then the natural parallel implementation of the vector-matrix product q = Ap means that q is blocked down the columns. Therefore, weneed to redistribute either p or q in order to calculate the dot-product � = q:p.If we perform the computation immediately, we have no information availableabout the future use of p and q to guide our choice. Delayed evaluation allows usto make a better decision by taking account of the use of p in the vector updatex = �p+ x.Key issues. The main challenge in optimising at run-time is that optimisationitself has to be very e�cient. We achieve this with a combination of the followingtechniques:{ Working from aggregate loop nests, which have been optimised in isolationand which are not re-optimised at run-time.



{ Using a purely mathematical formulation for data distributions, which allowsus to calculate, rather than search for optimal distributions.{ Re-using optimised execution plans for previously encountered DAGs. Avalue-numbering scheme is used to recognise cases where this may be possi-ble. The value numbers are used to index a cache of optimisation results, andwe use a technique adapted from hardware dynamic branch prediction fordeciding whether to further optimise DAGs we have previously encountered.Delayed evaluation introduces runtime anti-dependence hazards which we over-come using a mechanism analogous to register renaming [18].Related Work, Contribution of this Paper. This paper builds on related workin the �eld of automatic data placement [9, 15], runtime parallelisation [6, 17],automatic, compile-time parallelisation [3, 7], interprocedural optimisation [12]and conventional compiler and architecture technology [1, 8]. In our earlier pa-per [5] we described our method for re-using runtime-optimised execution plansin more fundamental terms. In this current paper, we add to this by describingour actual optimisation algorithm and by illustrating the bene�ts of our re-usestrategy when combined with this particular algorithm.Structure of this paper. We begin in Section 2 by outlining the fundamentals ofour approach towards fast, runtime optimisation. Section 3 describes the opti-misation algorithm we use and Section 4 presents our techniques for avoidingre-optimisation where appropriate. Finally, Section 5 shows performance resultsfor our library. This is followed by a concluding discussion in Section 6, whichincludes a review of related and future work.2 Basic Approach2.1 Data Distributions.Our representation for data distributions is based on a combination of a�netransformation functions (\alignment" in HPF [14]) and non-a�ne folding func-tions (\distribution" in HPF), together with a copying function which representsdata replication.{ We augment the dimensionality of all arrays in an optimisation problem tothe highest number of dimensions occurring in that problem: for the exampleshown in Figure 1, the matrix A is the array with the highest number ofdimensions. We therefore augment scalars and vectors to two dimensions,treating them as 1� 1 and 1�N matrices respectively. Thus we refer to thei th element of a vector as element ( 0i ).{ A�ne transformation functions act on array index vectors i and map themonto virtual processor indices. They take the formf(i ) = Ai+ t . (1)



Example. The a�ne transformation function for mapping an N -elementvector down column 0 of a virtual processor mesh is f (i ) = ( 0 11 0 ) i + ( 00 ),that is, vector element ( 0i ) is mapped to virtual processor ( i0 ).{ The replication of scalars and vectors, such as whether or not a vector whichis mapped down the �rst column of a virtual processor mesh is replicated onall columns, is represented by a special copying function which we will notdescribe further here.{ Between any two a�ne placement functions f and g, we can calculate aredistribution function r such that g = r�f , which is itself an a�ne function.We optimise with respect to a�ne placement functions, aiming to minimise thecost of a�ne redistributions.2.2 Library Operator Placement ConstraintsEach of our library operators has one or more parallel implementations. For eachimplementation, we formulate placement constraints as follows.{ Operators are implemented for one arbitrarily but reasonably chosen set ofplacements for the result and the operands. Naturally, when these placementsare obeyed, the loop nest will execute correctly. As an example, for vector-matrix products, such as q = A:p in Figure 1, the chosen placements arefA(i ) = fp(i ) = ( 1 00 1 ) i+ ( 00 ) andfq(i ) = ( 0 11 0 ) i+ ( 00 ) .We also use the notation Aq = ( 0 11 0 ) and tq = ( 00 ).{ From that, we can calculate constraint equations which characterise each op-erator implementation by describing the relationship between the placementsof the result and of the operands. In our example, we haveAA = ( 0 11 0 )Aq Ap = ( 0 11 0 )AqtA = tq tp = tq . (2){ For \open ends" in a DAG, i.e. for nodes representing either arrays whichhave already been evaluated or the result of a force, the placement is �xedand we obtain constraint equations such as (for Figure 1)Ar = ( 1 00 1 ) tr = ( 00 ) . (3){ Our optimiser is permitted to change the placement of the result or of oneof the operands of a node in the DAG at optimisation time in order toavoid data redistributions. If that happens, we re-calculate the placementsfor the other arrays involved in the computation at that node by means ofthe constraint equations described above. Further, we dynamically transformthe operator's loop nest, loop bounds and communication pattern. See [3]for a basic introduction to the techniques required.When a value is forced, the optimisation problem we need to solve consists ofthe union of of the equations as shown in (2) and (3) for all nodes in a DAG.



3 Optimisation3.1 Calculating Required RedistributionsOnce we have a DAG available for optimisation, our algorithm begins by calcu-lating the a�ne redistribution functions (see Section 2.1) between the placementsof arrays at the source and sink of all edges in the DAG. Let nodes in a DAG bedenoted by the values they calculate. For an edge a ! b, we denote the place-ment of a at the source by fa and the placement at the sink by fab . We thende�ne the redistribution function for this edge to be the a�ne function ra!bsuch that fa = ra!b � fab . (4)For our example in Figure 1, p is generated with distribution fp = ( 1 00 1 ) i+ ( 00 )and used in the dot-product � = q:p with distribution fp� = ( 0 11 0 ) i + ( 00 ),i.e. aligned with q. The redistribution function for the edge p ! � therefore isrp!�(i ) = ( 0 11 0 ) i+ ( 00 ) .3.2 A Cost Model for RedistributionsWe de�ne the size vector Na of an array a to be the vector consisting of thearray's data size in all dimensions, so for an n�m matrix M, we have NM = ( nm ),and for an n-element vector v, Nv = ( 1n ). Next, we de�ne �r to be the functionobtained from a redistribution function r by substituting all diagonal elementsin the matrix A with 0. For identity functions, we obtain a matrix A = ( 0 00 0 )and for the transpose in our example, �rp!� = rp!�. Then, we de�ne the weightWa!b of an edge a! b as Wa!b = k�ra!b(Na)k2 . (5)In our example, assuming that p is an n-element vector, Wp!� � n. This modelcaptures the amount of data movement involved in a redistribution and we haveso far found it to give a su�ciently accurate reection of which redistributionsin a DAG are the most costly and should therefore be eliminated �rst.3.3 The Algorithm.1. We select the edge with the highest weight. Suppose this is an edge a! b.2. We change the distribution at the sink of the edge such that the redistribu-tion ra!b is avoided, i.e., we substitute fab  fa. We then use the constraintequations at node b for calculating the resulting placement of b and anyother operands and forward-propagate this change through the DAG.3. We check the weight of the DAG following the change. If the weight has goneup, we abandon the change and proceed to step 4. If the weight has gonedown, we jump to step 6.



4. We change the distribution at the source of the edge by substituting fb  fab .We update the placements of the operands at node a and backwards-propa-gate the change through the DAG.5. We check the weight of the DAG. If it has gone up, we abandon the changeand mark the edge a! b as \attempted". Otherwise, we accept the change.6. If the weight of the DAG has become zero, or, if the remaining weight isentirely due to edges which have already been attempted, we stop optimising.Otherwise, we have the option of optimising further. We describe in Section 4how we decide whether or not to do this.3.4 Related Work.Our optimisation algorithm resembles that of Feautrier [9] in that we optimisewith respect to a�ne placement functions disregarding the non-a�ne mappingof virtual processors onto physical ones, and use a greedy algorithm, attemptingto resolve edges with the highest weight �rst. However, our approach di�ers inthat we work from aggregate data structures and use a di�erent cost model forcommunication. The fact that we work at runtime and capture the control owof a program by delayed evaluation means that we do not have to impose anyrestrictions on the user's source code, as is the case in [9], where programs arerequired to be of \static control".4 Re-Using Execution PlansThe previous section has described our algorithm for �nding an optimal execu-tion plan for any one DAG. In real programs, essentially identical DAGs oftenrecur. In such situations, our runtime approach is set to su�er a signi�cant per-formance disadvantage over compile-time techniques unless we can reuse theresults of previous optimisations we have performed. This section shows how wecan ensure that our optimiser does not have to carry out any more work thanan optimising compiler would have to do, unless there is the prospect of a per-formance bene�t by doing more optimisation than would be possible with staticinformation.4.1 Run-Time Optimisation StrategiesWe begin by discussing and comparing two di�erent basic strategies for perform-ing run-time optimisation. We will refer to them as \Forward Propagation Only"and \Forward And Backward Propagation". We use the following terminology: nis the number of operator calls in a sequence, a the maximum arity of operators,m is the maximum number of di�erent methods per operator. If we work witha �xed set of data placements, s is the number of di�erent placements, and inDAGs, d refers to the degree of the shared node (see [15]) with maximum degree.
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m MethodsFig. 2. Left. Optimisation of a linear stream of operators under Forward PropagationOnly. Complexity is �(mn). Right.The only type of DAG we can recognise as suchunder Forward Propagation Only.Forward Propagation Only. This is the only strategy open to us if we performrun-time optimisation of a sequence of library operators under strict evaluation:We optimise the placements for each new operator based purely on informationabout its ancestors.{ In Figure 2, we illustrate that the total optimisation time for a linear se-quence of n operators with m di�erent available methods per operator underthis strategy has complexity �(mn).{ For our library (where, as stated in Section 2.2, each method captures anumber of possible placements for operands), we would be able to optimisethe placement of any a-ary operator in O(a) time, i.e., the time for optimisingany call graph would be O(an).{ Linear complexity in the number of operators is probably all we can a�ordin a runtime system.{ However, as we already illustrated in Figure 1, the price we pay for usingsuch an algorithm is that it may give a signi�cantly suboptimal answer. Thisproblem is present even for trees, but it is much worse for DAGs: Figure 2shows the only type of DAG we can recognise as a DAG under ForwardPropagation Only. All other DAGs can not be handled in an optimal way.Note 1. If we choose to use Forward Propagation Only, there is no bene�t in de-laying optimisation decisions, since we already have all optimisation informationavailable at the time when operators are called.Forward And Backward Propagation. Delayed evaluation gives us the op-portunity to propagate placement constraint information backwards through aDAG since we accumulate a full DAG before we begin to optimise.{ We illustrate in Figure 3 that this type of optimisation is much more complexthan Forward Propagation Only.{ Mace [15] has shown it to be NP-complete for general DAGs, but presentsalgorithms with complexity O((m + s2)n) for trees and with complexityO(sd+1n) for a restricted class of DAG.
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m MethodsFig. 3. Optimisation of a linear stream of operators under Forward And BackwardPropagation. The additional complexity derives from the fact that it may be necessaryto choose sub-optimal placements for one step in the calculation in order to gain optimalperformance overall: we need to calculate the cost of generating each result in everypossible shape, not just the cheapest for that step.{ Our own greedy optimisation algorithm does not enumerate di�erent possi-ble placements, but captures all distributions with one representation (seeSection 2.2). This means that the complexity of our optimisation algorithmis independent of the number of possible placements we allow. Its complexityis similar to that of Gaussian elimination, i.e. O((kn)2) for some constantk. Note that this is an upper bound, the algorithm will often run in lineartime.{ The point to note here is that Forward and Backward Propagation does giveus the opportunity to �nd the optimal solution to a problem, provided weare prepared to spend the time required.What we would like to do therefore is to use the full context information toderive correct, optimal placements, but to then re-use the results of such a fulloptimisation whenever the same optimisation problem occurs.4.2 Recognising Opportunities for ReuseWe now deal with the problem of how to recognise a DAG, i.e. optimisation prob-lem, which we have encountered before. The full optimisation problem, charac-terised by the full DAG or the resulting system of equations, is a large structure.To avoid having to traverse it to check for cache hits, we derive a hashed \valuenumber" [1, 8] for each node and use that value number to determine whetherwe have encountered a DAG before.{ Our value numbers have to encode data placements and placement con-straints, not actual data values. For nodes which are already evaluated, wesimply apply a hash function to the placement descriptor of that node. Fornodes which are not yet evaluated, we have to apply a hash function to theplacement constraints on that node.



{ The key observation is that by seeking to encode all placement constraintson a node in our value numbers, we are in danger of deriving an algorithmfor calculating value numbers which has the same O-complexity as Forwardand Backward Propagation optimisation algorithms: each node in a DAGcan potentially exert a placement constraint over every other node.{ Our algorithm for calculating value numbers is therefore based on ForwardPropagation Only : we calculate value numbers for unevaluated nodes byapplying a hash function to those placement constraints deriving from theirimmediate ancestor nodes only.{ According to Note 1, there is therefore no point in delaying the calculation ofvalue numbers; they are generated on-the-y, as library operators are called.{ The only way to detect hash conicts would be to traverse the full DAGswhich the value numbers represent. Apart from the fact that such a validationwould have O(n) complexity, it would also mean having to store full DAGswhich we have previously encountered and optimised. We return to this pointshortly.4.3 When to Re-Use and When to Optimise.We now discuss when we re-use the results of previous optimisations and whenwe re-optimise a problem. Because our value numbers are calculated on ForwardPropagation Only information, we have to address the problem of how to handlethose cases where nodes which have identical value numbers are used in a di�er-ent context later on; in other words, how to to avoid the drawbacks of ForwardPropagation Only optimisation. This is a branch-prediction problem, and we usea technique adapted from hardware dynamic branch prediction (see [13]) forpredicting heuristically whether identical value numbers will result in identicalfuture use of the corresponding node and hence identical optimisation problems.We store a bit, OPTIMISE, to implement a strategy of re-optimising in thefollowing three situations:1. A DAG has not been encountered before.2. We have encountered a DAG before and successfully performed some opti-misation when we last saw it. We \predict" that more optimisation mightlead to further improvements.3. We re-used a previously stored execution plan when we last encountered aDAG, but found this execution plan to give sub-optimal performance.{ In all other cases, we have seen the encountered DAG before, and we re-usea cached execution plan (see below).{ Point 3 deals with the problem of false cache hits, which we cannot detectdirectly. The run-time system automatically introduces any necessary redis-tributions, so the e�ect of using a wrong cached plan is that the number ofredistributions may be larger than expected.{ The metrics which are required for deciding whether or not to invoke the op-timiser therefore are (a) the success or otherwise of the optimiser in reducing



the \weight" of a DAG when we last encountered it, (b) the communication-cost of evaluating the DAG when we last encountered it, and (c) the com-munication cost of the `optimal' execution plan for a DAG. We have instru-mented our system such that these metrics are available.Caching Execution Plans. Value numbers and `dynamic branch prediction'together provide us with a fairly reliable mechanism for recognising the fact thatwe have encountered a node in the same context before. Assuming that we opti-mised the placement of that node when we �rst encountered it, our task is thensimply to re-use the placement which the optimiser derived. We do this by usinga \cache" of optimised placements, which is indexed by value numbers. Eachcache entry has a valid-tag which is set by our branch prediction mechanism.Competitive Optimisation. As we showed in Section 4.1, full optimisationbased on Forward And Backward Propagation can be very expensive. Each timewe invoke the optimiser on a DAG, we therefore only spend a limited timeoptimising that DAG. For a DAG which we encounter only once, this meansthat we only spend very little time trying to eliminate the worst redistributions.For DAGs which recur, our strategy is to gradually improve the execution planused until our optimisation algorithm can �nd no further improvements.Finally, it should be pointed out that although our value numbers are calcu-lated on-the-y, under Forward Propagation Only, we still delay the executionof DAGs we have encountered before. This is to allow new, yet unseen contextsto trigger a re-optimisation of DAGs which we have already optimised for othercontexts.Summary. We use the full optimisation information, i.e. Forward and Back-ward Propagation, to optimise. We obtain access to this information by delayedevaluation. We use a scheme based on Forward Propagation Only, with linearcomplexity in program length, to ensure that we re-use the results of previousoptimisations.5 Implementation and PerformanceThe implementation of our library is based on MPI. This o�ers portability and,MPI allows parallel libraries to be designed in such a way that they can safely beused together with other communication libraries and in user programs whichthemselves carry out communication [11]. In this Section, we show performance�gures for our library on a cluster of desktop Pentium II Linux workstationshere at Imperial College. As a benchmark we used the non-preconditioned con-jugate gradient iterative algorithm. The pseudo-code for the algorithm (adaptedfrom [4]) and the source code when implemented using our library are shown inFigure 4.



r(0) = b�Ax(0)for i = 1; : : : ; imax�i�1 = r(i�1)T r(i�1)if i = 1p(1) = r(0)else �i�1 = �i�1=�i�2p(i) = r(i�1) + �(i�1)p(i�1)endifq(i) = Ap(i)�i = �i�1=p(i)T q(i)x(i) = x(i�1) + �ip(i)r(i) = r(i�1) � �iq(i)check convergenceend

for(i = 1; i <= max iter; i++) fif (i != 1)L Dcopy(rho, &rho o);L Ddot(r, r, &rho);if (i == 1)L Dcopy(r, &p);else fL Ddiv(rho o, rho, &beta);L Daxpy(beta, p, r, &p);g;L Dgemv(one, A, p, zero, q, &q);L Ddot(q, p, &alpha);L Ddiv(alpha, rho, &alpha);L Daxpy(alpha, p, x, &x);L Dscal(alpha, minusone, &alpha);L Daxpy(alpha, q, r, &r);/* Check convergence. */g;Fig. 4. Pseudo-code for the conjugate gradient algorithm (left) and source code(slightly cut down) when implemented using our library.5.1 Comparison with Sequential, Compiled ModelFigure 5 compares the performance of the single processor version of our parallelcode with two di�erent purely sequential implementations of the same algorithm.One of these uses the same BLAS kernels which our parallel code calls; these areroutines which we have manually optimised for the Pentium II processor. Theother version links with the Intel / ASCI Red [2] BLAS kernels.There is virtually no distinction between the performance of our parallel coderunning on 1 processor and the \best e�ort" purely sequential version whichcalls our own optimised BLAS implementation. For the smallest data size in ourexperiment (512 � 512 parameter matrix), the code using our parallel libraryhas about 10% less performance in terms of MFLOP/s, but this becomes almostindistinguishable for larger data sizes. Both the codes using our BLAS kernelsdo, however consistently perform somewhat better than the purely sequentialcode which links with the Intel / ASCI Red BLAS kernels. This demonstratesthat the overhead of our delayed evaluation scheme is very small and that thebaseline sequential performance of our code is very respectable.5.2 Parallel PerformanceTable 1 shows the parallel speedup we obtain with our library on a clusterof Pentium II Linux workstations. As noted in the caption of the table, these�gures underestimate the actual parallel speedup we obtain. Nevertheless, aparallel speedup of 2.65 for 4 processors is encouraging, given the nature of theplatform. On our current con�guration, and with the problem size we used (this
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Fig. 5. Performance comparison of the single processor version of our parallel code withtwo di�erent purely sequential implementations of the same algorithm on a Pentium II233 with 128MB RAM running Linux 2.0.30. Both purely sequential codes are a directtranscription of the conjugate gradient template which is distributed with [4]; the onlydi�erence is in the underlying BLAS implementation they call.is limited by the machine with least free RAM), our benchmark does not scalewell to 9 processors.5.3 Performance of Our OptimisationsTables 1 and 2 show detailed measurements which break up the overall timespent by our benchmark into di�erent categories. Note that the CG algorithmhas O(N2) computation complexity, but only O(N) communication complexity.This can be seen in Table 2.{ Our optimiser avoids two out of three vector transposes. This was determinedby analysis and by tracing communication.{ Optimisation achieves a reduction in communication time of between 30%and 40%. We do not achieve more because a signi�cant proportion of thecommunication in this algorithm is due to reduce-operations.{ Runtime overhead and optimisation time are virtually independent of thenumber of processors and of the problem size. We suspect that the slightdi�erences are due to cache e�ects.{ With caching of optimisation results, the overall time spent by our optimiseris very small. On platforms with less powerful nodes than PII 300{233s, thisaspect or our optimisation strategy is crucial. On such platforms, optimisa-tion without re-use can easily result in overall slowdown.{ The optimisations we have described in this paper achieve speedups over thenon-optimised code using our library of between 9% and 29% for reasonablylarge problem sizes. The overall bene�t of our optimisations decreases withincreasing problem size on the same number of processors. This is due to theCG algorithm's O(N2) computation complexity with only only O(N) com-munication complexity. However, the bene�t of our optimisations increaseswith the amount of parallelism we use to solve a problem.



P Comp. Memory Overh. Comms. Opt. Total O-Speedup P-SpeedupN 1 21276.13 5.83 11.69 0.00 0.00 21293.65 1.00 1.00O 1 21280.05 5.95 9.93 0.00 8.69 21304.62 1.00 1.00C 1 21276.56 5.84 9.54 0.00 0.63 21292.57 1.00 1.00N 4 5286.77 5.08 9.39 4047.85 0.00 9349.09 1.00 2.28O 4 5264.42 4.39 8.15 2771.15 8.38 8056.51 1.16 2.64C 4 5251.73 4.48 8.57 2778.93 0.62 8044.33 1.16 2.65N 9 2625.52 5.43 10.10 3992.16 0.00 6633.23 1.00 3.21O 9 2608.84 4.69 8.70 2516.95 9.18 5148.36 1.29 4.14C 9 2610.86 4.63 8.49 2516.98 0.66 5141.62 1.29 4.14Table 1. Time in milliseconds for 20 iterations of conjugate gradient, with a 4992 �4992 parameter matrix (about 190 MB) on varying numbers of processors. N denotestimings without any optimisation, O timings with optimisation but no caching, andC timings with optimisation and caching of optimisation results. O-Speedup shows thespeedup due to our optimisations, and P-Speedup the speedup due to parallelisation. Allprocessors are Pentium IIs running Linux 2.0.32. Note however, that their speci�cationdecreases from processor 0 (dual 300 MHz, 512 MB RAM) to processor 8 (233 MHz, 64MB). Further, processors 0{3 are connected by fast ethernet (100 Mb/s), whereas someof the remaining ones are connected by 10 Mb/s ethernet. Hence, the above numbersfor parallel speedup do not actually show the full potential of our library.6 ConclusionsWe have presented an an approach to interprocedural data placement optimisa-tion which exploits run-time control-ow information and is applicable in con-texts where the calling program cannot easily be analysed statically. We presentpreliminary experimental evidence that the bene�ts can easily outweigh the run-time costs.6.1 Run-Time vs. Compile-Time Optimisation.To see some of the relative advantages of our technique and of compile-timemethods, consider the following loop, assuming that there are no force-pointsinside the loop and that we encounter the loop a number of times and each timeforce evaluation after the loop.for(i = 0; i < N; ++i) {if <unknown conditional><do A>else<do B>}This loop can have up to 2N control-paths. A compile-time optimiser wouldhave to �nd one compromise execution plan for all invocations of this loop. Withour approach, we would optimise the actual DAG which has been generated on



N Comp. Memory Overh. Comms. Opt. Total O-Speedup MFLOP/sN 1024 218.81 5.00 9.28 783.81 0.00 1016.90 1.00 45.64O 1024 219.13 4.27 8.09 395.25 8.24 634.99 1.60 73.09C 1024 217.79 4.35 7.99 394.27 0.61 625.01 1.63 74.26N 2048 848.32 5.02 9.12 1522.06 0.00 2384.53 1.00 77.63O 2048 851.87 4.26 8.24 1123.02 8.25 1995.64 1.19 92.75C 2048 839.00 4.26 7.88 1058.75 0.61 1910.50 1.25 96.89N 3072 2411.17 5.21 9.63 2910.47 0.00 5336.47 1.00 77.97O 3072 2343.11 4.27 8.16 2083.26 8.11 4446.89 1.20 93.56C 3072 2337.84 4.32 8.02 2025.89 0.62 4376.68 1.22 95.06N 4096 4236.84 5.11 9.23 5354.08 0.00 9605.26 1.00 76.97O 4096 4267.31 4.32 8.15 4500.90 8.34 8789.02 1.09 84.12C 4096 4273.14 4.36 8.02 4502.32 0.62 8788.47 1.09 84.12Table 2. Time in milliseconds for 20 iterations of conjugate gradient on four PentiumII Linux workstations, with varying problem sizes. N, O and C are as in Table 1.each occasion. If the number of di�erent DAGs is high, compile-time methodswould probably have the edge over ours, since we would optimise each timeand could not reuse execution plans. If, however, the number of di�erent DAGsgenerated is small, our execution plans for the actual DAGs will be superior tocompile-time compromise solutions, and by reusing them, we limit the time wespend optimising.6.2 Related Work.Most successful work on parallelising compilers for distributed-memory sys-tems has relied on explicit control over data placement, using e.g. Fortran-Dor HPF [14]. The problem for a compiler is then reduced to optimising the com-munications which are required.There is a large amount of work on the problem of automatically parallelisingan a�ne nested loop [7, 9]. The �rst stage of that process is to map each arrayelement and each operation onto a virtual processor, in such a way that as manynon-local data accesses as possible are avoided.We have already mentioned how our optimisation algorithm is related tothat of Feautrier [9] in Section 3.4. Our approach has similarities with that ofMace [15] in that both work on aggregate arrays, rather than individual dataelements. Mace gives a precise formulation of our optimisation problem in itsfullest sense and shows it to be NP-complete.Hall et al. [12] describe a one-pass, optimising interprocedural compilationsystem for Fortran D and also demonstrate the vital importance of interproce-dural analysis for optimising parallelisation.Saltz et al. [17] address the basic problem of how to parallelise loops where thedependence structure is not known statically. Loops are translated into an inspec-tor loop which determines the dependence structure at runtime and constructs a



schedule, and an executor loop which carries out the calculations planned by theinspector. Saltz et al. discuss the possibility of reusing a previously constructedschedule, but rely on user annotations for doing so. Ponnusamy et al. [16] pro-pose a simple conservative model which avoids the user having to indicate to thecompiler when a schedule may be reused.Benkner et al. [6] describe the reuse of parallel schedules via explicit direc-tives in HPF+: REUSE directives for indicating that the schedule computed fora certain loop can be reused and SCHEDULE variables which allow a schedule tobe saved and reused in other code sections.Value numbering schemes were pioneered by Ershov [8], who proposed theuse of \convention numbers" for denoting the results of computations and avoidhaving to recompute them. More recent work on this subject is described byAho et al. [1].6.3 Future work.{ The most direct next step is to store cached execution plans persistently, sothat they can be reused subsequently for this or similar applications.{ Although we can derive some bene�t from exploiting run-time control-owinformation, we also have the opportunity to make run-time optimisationdecisions based on run-time properties of data; we plan to extend this workto address sparse matrices shortly.{ The run-time system has to make on-the-y data placement decisions. Anintriguing question raised by this work is to compare this with an optimalo�-line schedule.Acknowledgments. This work was partially supported by the EPSRC, under theFuturespace and CRAMP projects (references GR/J 87015 and GR/J 99117).We extend special thanks to Fujitsu and the Imperial College / Fujitsu ParallelComputing Research Centre for providing access to their AP1000 multicom-puter, and to the Imperial College Parallel Computing Centre for the use oftheir AP3000 machine.References1. Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers. Addison-Wesley,Reading, Massachusetts, 1986.2. ASCI Red Pentium Pro BLAS 1.1e. Seehttp://www.cs.utk.edu/~ghenry/distrib/ andhttp://developer.intel.com/design/perftool/perflibst/.3. Uptal Banerjee. Unimodular transformations of double loops. Technical ReportTR{1036, Center for Supercomputing Research and Development (CSRD), Uni-versity of Illinois at Urbana-Champaign, 1990.4. Richard Barrett, Mike Berry, Tony Chan, Jim Demmel, June Donato, Jack Don-garra, Victor Eijkhout, Roldan Pozo, Chuck Romine, and Henk van der Vorst.Templates for the Solution of Linear Systems: Building Blocks for Iterative Meth-ods. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,USA, 1994.
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