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Abstract
We argue that producing maintainable high-performance implementations of

finite element methods for multiple targets requires that they are written using a
high-level domain-specific language. We make the case for using one such lan-
guage, the Unified Form Language (UFL), by discussing how it allows the gener-
ation of high-performance code from maintainable sources. We support this case
by showing that optimal implementations of a finite element solver written for a
Graphics Processing Unit and a multicore CPU require the use of different algo-
rithms and data formats that are embodied by the UFL representation. Finally we
describe a prototype compiler that generates low-level code from high-level spec-
ifications, and outline how the high-level UFL representation can be lowered to
facilitate optimisation using existing techniques prior to code generation.

1 Introduction
The development of finite element codes in low-level languages is complicated and er-
ror prone. When a code is ported to a new architecture, much of it must be rewritten
in a new language, requiring a large amount of time and effort. This process is compli-
cated by the fact that optimal data layouts and access patterns differ between targets,
especially when execution of the code spans multiple architectures. Additionally, the
optimal choice of algorithm that implements a given operation depends on characteris-
tics of the target hardware, and even the parameters of a specific problem. To produce
efficient implementations in a low-level language, developers must maintain multiple
algorithm implementations for multiple targets.

The FEniCS project [9] has shown that the Unified Form Language (UFL) provides
an appropriate level of abstraction of the finite element method for generating opti-
mised code from maintainable sources. Using UFL for writing finite element codes is
desirable as it eliminates many time-consuming and error-prone tasks required when
developing in a low-level language, and prevents many common errors. In addition to
this, we propose that unmodified UFL sources can be translated into low-level code for
multiple hardware platforms with target-specific optimisations.

The contributions of this paper are: a high-performance implementation of a fi-
nite element solver for an advection-diffusion problem written using NVidia CUDA
(Section 3), a prototype implementation of a compiler that generates CUDA code from
UFL sources (Section 4.2), and a discussion of how the UFL representation can be low-
ered to allow the use of loop nest optimisations (Section 4.3). We begin with a brief
overview of the CUDA programming language (Section 1.1) and a description of the
main stages of the finite element method (Section 2) before discussing options for its
implementation.
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1.1 CUDA
CUDA [12] is a language for programming NVidia’s Tesla Graphics Processing Units
(GPUs). GPUs have a large memory bandwidth and many processing cores, making
them ideal for computational science applications. Execution on a GPU is performed
by launching individual kernels that are executed by many threads in parallel. As GPU
memory is separate from the main memory of a machine, data must be transferred to
and from it before and after execution. Because of this overhead it is important that
a large enough workload is provided in order to benefit from GPU performance. The
workload must be decomposed into many (thousands) of data-parallel tasks that can be
mapped to individual threads to fully utilise the GPU hardware.

We highlight two performance considerations. First, groups of 32 threads (referred
to as warps) all share a single program counter, and execute the same code path concur-
rently. When threads within a warp take different paths, execution is serialised between
these two paths, reducing performance. Second, coalesced memory access is needed
for high memory bandwidth utilisation, and is achieved when groups of 16 threads con-
currently access data within a 128-byte aligned memory window. For further details of
the Tesla architecture and CUDA programming language, see [12].

2 The Finite Element Method
The finite element method is used for discretising the weak form of partial differential
equations. Solving a partial differential equation with a time-varying solution using the
finite element method typically consists of the following phases for each timestep:

Local Assembly. For each element i in the domain, an Ne×Ne matrix, Me
i , and an Ne-

length vector, be
i , are computed, where Ne is the number of nodes per element.

These are referred to as local matrices and vectors. Computing these matrices
and vectors usually involves the evaluation of integrals over the elements us-
ing Gaussian quadrature. In most implementations, every element has the same
number of nodes.

Global Assembly. The local matrices, Me
i , and vectors, be

i , are used to form a global
matrix, M, and global vector, b, respectively. This process couples the contribu-
tions of elements together.

Solution. The system of equations Mx = b is solved for x, often using an itera-
tive method, which requires computation of the sparse matrix-vector product
(SpMV) y = Mv.

For a complete treatment of the method, see [7]. We shall examine the global assembly
phase, which consists of performing the following computations:

M = AT MeA (1)

b = AT be (2)

where A is a matrix mapping the local node numbers of each element to the global
node numbers, Me is a block-diagonal matrix whose i-th block is Me

i , and be is a
vector of stacked be

i . We shall examine algorithms that can be used to implement
these computations, as the optimal choice of algorithm depends on the target hardware.
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Figure 1: Left: A 1D domain decomposed into two elements (Ωi). Right: Local node
numbering of individual elements.

Consider a two-element, three-node decomposition of a 1-dimensional domain (see
Figure 1). In this example, the matrices and vector are:
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where me

i j is the i, j-th term of the local matrix for element Ωe, and be
i is the i-th term

of the local vector for element Ωe. The structure of A arises from the geometry of the
elemental decomposition of the domain.

It is often inefficient to compute the matrix multiplications described in Equations
1 and 2 on traditional architectures due to the sparsity of A . The Addto algorithm is
usually more efficient. To describe this algorithm, we first define an array, map[e][i],
that maps the local node i of the element e to a global node number. In our example,
the array is defined as:

map[1][i] =
[

1
2

]
map[2][i] =

[
2
3

]
Algorithms 1 and 2 describe the Addto algorithm for computing M and b. Intuitively,
terms of the local matrix (or vector) of each element are summed into particular terms
in the global matrix (or vector) depending on the node numbers of the element.

Algorithm 1: Addto for global matrix assembly.
M = 0 ;
foreach Element e do

for i← 1 to Ne do
for j← 1 to Ne do

M[map[e][i],map[e][ j]]+=Me[i, j] ;

Algorithm 2: Addto for global vector assembly.
b = 0 ;
foreach Element e do

for i← 1 to Ne do
b[map[e][i]]+=be[i] ;

These algorithms are massively data-parallel, as iterations of all the loops can be
executed independently of others. Although this appears to make them ideal for imple-
menting on GPU architectures, there are two issues. First, data races occur if threads
concurrently update the same term of the global matrix. Costly atomic operations
must be used to ensure correctness. Second, M is often stored using a format such as
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Figure 2: Left: A 2D domain decomposed into three elements. Middle: Node data lay-
out in CPU implementation. Right: Node data layout in GPU implementation. Threads
accessing data in different elements (arrowed) achieve coalescing.

compressed sparse row (CSR). Finding the location in memory of a particular term re-
quires a bisection search of the sparsity structure of the matrix, leading to uncoalesced
accesses and control flow divergence within warps.

To avoid these issues, we can derive an alternative algorithm, referred to as the
Local Matrix Approach (LMA), noting that the only use of M is for computation of
the product Mv in the solution phase. We omit the global assembly of M (Equation 1)
altogether, and when computation of y = Mv is required, the following computation is
performed:

y =
(
AT (Me (Av))

)
(3)

It is not possible to avoid the assembly of b, as it is explicitly required by the solver.
However, we can eliminate the use of atomic operations by computing the matrix-
vector product b = AT be using an SpMV kernel instead of using the Addto algorithm.

We note that using the Local Matrix Approach instead of the Addto algorithms
results in an increase in computation and memory bandwidth usage in the solver phase
proportional to the average number of elements that share a single node (the variance)
of the mesh. However, its implementation avoids the use of atomic operations and
bisection searches in the global assembly phase. We demonstrate in Section 3 that the
optimal choice of algorithm depends on the target hardware.

2.1 Data Format Considerations
In general, data structures must be carefully chosen to achieve optimal performance
(e.g. for cache-optimality on a CPU), and the optimal choice of data structure depends
on characteristics of the target architecture. In order to examine the structures that can
be used when implementing the finite element method on CPUs and GPUs, we consider
a three element domain (see Figure 2).

In CPU implementations, nodal data is often stored on a per-node basis. When
data for the nodes of a single element is needed, the mapping array (map) is used to
indirectly access the nodal data. Although this can lead to poor cache performance due
to random access into the nodal data structure, reordering optimisations can be used to
minimise this overhead.

This data format is inefficient for GPU implementations, where coalesced accesses
must be used to maximise memory performance. It is difficult to achieve coalesced
access because the nodal data structure is accessed in a somewhat random fashion. We
propose that it can be more efficient to store nodal data on a per-element basis in GPU
implementations, interleaving the nodal data for each node of each element. This leads
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to some redundancy in the storage of nodal data, again proportional to the average
variance of nodes; however, it allows coalesced accesses when there is a one-to-one
mapping between threads and elements.

Maintaining low-level implementations for multiple devices that use different data
structures is time-consuming and error-prone. The complexity of managing multiple
data structures is exacerbated if data must be marshalled between devices, for example
in the case when computation is distributed between a CPU and a GPU. A UFL com-
piler that is aware of the data formats of its target devices can automatically generate
code that marshals the required data based on a UFL description of a method, as it is
possible to determine the items of data that are required from the UFL source.

3 Experiments
We evaluate the performance of the Addto algorithm and the Local Matrix Approach
on GPUs using an implementation of a test problem that solves the advection-diffusion
equation:

∂T
∂t

+u∇T = ∇ ·µ ·∇T

where T is the concentration of a tracer, t is time, u is velocity, and µ is a rank-2 tensor
of diffusivity. This problem is chosen as it is both a sub-problem and simplified model
of a full computational fluid dynamics system. The system is discretised using order-1
basis functions. A split scheme is used, solving for advection first and then diffusion
at each time step. The advection term is timestepped using a 4th-order Runge-Kutta
scheme, and the diffusion term is timestepped using an implicit theta scheme. The
problem is solved over a square domain with suitable initial conditions. For further
details of the test implementation, see [10]. We compare with a CPU implementation
to demonstrate that the optimal choice of algorithm depends on the target hardware.

3.1 CUDA and CPU Implementations and Experimental Setup
CUDA Implementations of the solver that implement both the Addto algorithm and the
Local Matrix Approach have been produced. The Local Matrix Approach is imple-
mented by considering the computation in Equation 3 in three stages:

t = Av︸ ︷︷ ︸
Stage 1

, t′ = Met︸ ︷︷ ︸
Stage 2

, y = AT t′︸ ︷︷ ︸
Stage 3

.

Since A contains only one non-zero entry per row that is always 1, Stage 1 is
implemented as a gather. This involves uncoalesced memory accesses but is more
efficient than using an SpMV kernel. The implementation of Stage 2 exploits the block-
diagonal structure of Me to achieve coalesced accesses and maximal reuse of matrix
values. Stages 1 and 2 are implemented in a single kernel. Stage 3 is implemented as
an SpMV kernel that is optimised for all the non-zero values equalling 1. Because a
global barrier is required between Stages 2 and 3, Stage 3 is implemented in a separate
kernel.

The baseline version is implemented within Fluidity [5], a finite element computa-
tional fluid dynamics code that has been chosen because it is a mature and optimised
CPU implementation. The Local Matrix Approach is not implemented in this version,
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as it is known to be less efficient than the Addto algorithm on CPUs for low-order basis
functions [15]. Node data structures are implemented using the element-wise storage
layout in the CUDA implementation, and the node-wise layout is used in the CPU
implementation.

The test hardware consists of an Intel Core 2 Duo E8400, 2GiB RAM, and an
NVidia 280GTX GPU. The Intel v10.1 compilers with the -O3 flag were used for the
CPU code (v11.0 onwards cannot compile Fluidity due to compiler bugs), and the
CUDA SDK 2.2 is used for CUDA code. The CUDA implementation uses a Conjugate
Gradient (CG) solver described in [11]; the baseline version make use of the PETSc [2]
CG solver. The simulation is run for 200 timesteps, with all computations using double
precision arithmetic. Gmsh [4] was used to generate meshes varying in size between
28710 and 331714 elements. Each simulation was run five times, and averages are
reported.

3.2 Results
Figure 3 shows the total time taken by each CUDA implementation to run the entire
simulation, and Figure 4 shows their speedup relative to the baseline version running
on 2 cores. We see that the LMA implementation is up to 2.2 times faster than the
Addto implementation on the GPU, and is over an order of magnitude faster than the
baseline implementation.

0

20

40

60

80

100

50000

100000

150000

200000

250000

300000

Ti
m

e
(s

)

Number of Elements

LMA, SpMV for RHS
Addto for Matrix and RHS

Figure 3: Total execution time of GPU implementations.

Figure 5 shows the total time taken for the local and global assembly phases in the
CUDA implementations. We observe that the Local Matrix Approach is faster than the
Matrix Addto algorithm, and that it is faster to assemble the global vector by computing
the product AT be. Table 1 shows the total time spent inside the SpMV kernels for
each implementation for the largest and smallest mesh sizes. The cost of computing(
AT (Me (Av))

)
(in the LMA implementation) is up to 2.5 times that of computing Mv

(in the Addto implementation). The performance increase of the LMA implementation
is a tradeoff between the decrease in the assembly time, and the increase in the SpMV
computation time.
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Figure 4: Speedup of GPU implementations relative to the baseline executing using 2
cores.

Elements
(
AT (Me (Av))

)
Mv

28710 1.91×106 8.48×105

331714 2.45×107 9.85×106

Table 1: Total time spent computing each product on the largest and smallest meshes
(in µsec), recorded using the CUDA Profiler.

We also investigated using graph colouring to eliminate atomic operations in the
Addto implementation (as used in [8]). We replaced atomic operations with equivalent
non-atomic operations. The resulting implementation produced incorrect results, but
gave an upper bound on the performance increase facilitated by colouring. The assem-
bly phase ran 25% faster with non-atomic operations, corresponding to a 10% speedup
in the entire simulation. Since the performance of the LMA implementation is far
greater than this, it is unnecessary to produce an implementation that uses colouring.

3.3 Remarks
Our results show that the optimal algorithm depends on the target architecture. We
speculate that it is also problem-dependent. In a 2D domain the average variance of
nodes is approximately 6. In a 3D domain, the variance is around 24, and the over-
heads of storage and computation for the local matrix approach are four times greater
than in 2D. This extra overhead may decrease performance to the point where it is
more efficient to use the Addto algorithm. Our further work involves investigating the
performance in this case.
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Figure 5: Execution time of the assembly phases for each CUDA implementation.

4 Compiling the Unified Form Language

4.1 Poisson’s Equation - A Motivating Example
Here we discuss how UFL can be used to describe the assembly and solution of a partial
differential equation. For a complete reference of UFL, see [1]. Poisson’s Equation,
and a weak form are:

∇
2u = f (4)Z

Ω

∇v ·∇u dX =
Z

Ω

v f dX (5)

We assume the boundary condition
R

∂Ω
v∇u · n ds = 0 to simplify the example.

Figure 6 gives the UFL code for the assembly and solution of the weak form. Lines 1
and 2 instruct the compiler that v and u are test and trial functions, which is known from
the mathematical formulation of the problem. The known function f is specified as a
function of coordinates within the domain. A and RHS specify the left- and right-hand
sides of Equation 5. The final line specifies that these forms are to be assembled into a
linear system, which is solved to find the solution to the problem. The solve keyword
is an addition to UFL, which is usually provided by tools that are part of the FEniCS
project.

Note that Figure 6 is a complete specification of how the problem may be solved
using the finite element method, yet contains no implementation-specific information.
This provides the flexibility to generate code for multiple architectures, using alter-
native algorithms - the code is effectively “future-proofed”. In particular, a low-level
implementation using either the Addto algorithm or the Local Matrix Approach may
be generated from this source. Compare this with a direct implementation in a low-
level language, for which it is difficult to transform the data layout or implementation
algorithm. The UFL compiler eventually commits to specific aspects of the low-level
implementation during one or more of its passes.
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v=TestFunction(P)
u=TrialFunction(P)
f=Function(P, sin(x[0])+cos(x[1]))
A=dot(grad(v),grad(u))*dx
RHS=v*f*dx
P = solve(A,RHS)

Figure 6: UFL code for the assembly and solution of Poisson’s Equation. P is assumed
to be some finite element space.

Targeting a new platform is accomplished by the development of a new compiler
backend, without modifying the UFL sources. This allows the concerns of different
developers to be separated: the work of mathematicians who test and implement new
schemes is decoupled from the work of those whose concern is the low-level imple-
mentation of codes. This separation eases the development of finite element codes by
eliminating a large proportion of the repetitive and error-prone tasks that are usually
required. The generated code can be better optimised than handwritten code, as opti-
misations often cut across the boundaries of the abstractions required for developing
software in low-level languages.

4.2 A Prototype Compiler
A first step in experimenting with generating CUDA code from UFL involved the im-
plementation of a compiler that performs a syntax-directed translation of the UFL code
to CUDA code. The generated code uses a library of kernels that perform common
operations in finite element assembly. A subset of the kernels in this library are shown
in Table 2. These kernels perform quadrature-based assembly, rather than the tensor-
based method that is used in the FEniCS project.

The compiler inputs UFL using the FEniCS UFL distribution [1] to produce Di-
rected Acyclic Graphs (DAGs) of the operations specified in a UFL source. Each DAG
node is converted to a call to a kernel implementing the required operation. This DAG
of kernel calls is passed to a code generator that is implemented using the ROSE Com-
piler Infrastructure [14]. Examples of the DAGs for the left-hand side of Equation 5
are shown in Figure 7.

v u

∇v ∇u

∇v ·∇u

A

(a) Expression DAG.

tform shape(v) tform shape(u)

tform dshape(v) tform dshape(u)

dshape dot dshape

mat addto

(b) Kernel DAG.

Figure 7: DAGs for the form
R

Ω
∇v ·∇u dX .

9



Kernel Operation

tform shape
Transforms the shape functions

of a reference element into physical space.

tform dshape
Transforms the derivatives of the shape functions

of a reference element into physical space.
dshape dot dshape Computes

R
Ω

∇v ·∇u dX .
shape shape Computes

R
Ω

vu dX .

mat addto
Adds local matrices into

a global matrix using the Addto algorithm.

Table 2: A subset of kernels in the CUDA kernel library.

The CUDA code generated by this compiler for the Poisson problem produces iden-
tical results to a handwritten CUDA implementation, as well as a CPU implementation
of the same problem. Although the generated code executes faster than the CPU im-
plementation for large meshes, we do not investigate its performance as there is only a
limited speed improvement that can be gained for steady-state problems.

4.3 Further UFL Compiler Development
Although the prototype compiler demonstrates the feasibility of generating CUDA
code from UFL sources, the requirement for a library of handwritten CUDA kernels
limits its output to a pre-defined set of forms optimised by hand. Here we describe an
intermediate phase that lowers the UFL representation to one amenable to optimisation
with established techniques before being used to generate CUDA kernels. Consider
one term from the weak form of the Helmholtz equation [7]:Z

Ω

∇v ·∇u+λvu dX (6)

There are several combinations of kernels that implement the local assembly phase
of this term that can be implemented. We can enumerate these possibilities by building
an Intermediate Representation (IR) that provides a high-level semantic representation
of each term. Sub-terms of the intermediate representation are determined by work-
ing bottom-up from leaf nodes to identify the smallest set of nodes that describes the
assembly of a local matrix. Higher sub-terms are identified as the addition or scalar
multiplication of lower-sub terms.

The IR for Equation 6 is shown in Figure 8. As there are four sub-terms, up to
four separate kernels may perform local assembly for this term. Using more kernels
increases the memory bandwidth requirements; however, larger kernels require more
resources, decreasing the total parallelism [3]. Instead of building a performance model
to evaluate each candidate implementation, a pragmatic approach is to lower this rep-
resentation to one that can be optimised using existing techniques.

Each of the nodes at the root of the sub-terms may be lowered to a loop over a
certain index. For example, the sum node corresponds to a loop over the elements that
sums the local matrices produced by the lower sub-terms. The generated loop nest can
be optimised using standard techniques, for example in the polyhedral model [13] or
the Æcute framework [6]. Our current work involves implementing a compiler that
performs this lowering.
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dX

sum

dot scalarproduct

grad grad λ outerproduct

v u v u

Figure 8: Intermediate Representation of the term
R

Ω
∇v ·∇u+λvu dX . Sub-terms are

indicated by dotted outlines.

5 Conclusions and future work
UFL is a desirable language in which to write finite element codes due to its closeness
to the mathematical representation of the finite element method. We have shown that
the optimal choice of algorithm and data format used by a low-level implementation
depends on the target hardware. The UFL representation provides freedom of choice in
the algorithm and data format used by generated code and therefore provides the right
level of abstraction for generating optimised code for multiple targets. Furthermore, the
UFL representation may be lowered before code generation to facilitate optimisation
using existing techniques.

Our long-term project is to rewrite a large portion of Fluidity using UFL. This pro-
cess will take place gradually, as integration of UFL codes within its Fortran sources
is made possible by the use of a UFL compiler whose output makes use of data struc-
tures in Fluidity. The result of this work will be a portable and maintainable high-
performance code that allows aggressive exploitation of future architectures.
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