
Is Morton layout ompetitive for largetwo-dimensional arrays?Jeyarajan Thiyagalingam and Paul H J KellyDepartment of Computing, Imperial College180 Queen's Gate, London SW7 2BZ, U.K.fjeyan,phjkg�do.i.a.ukAbstrat. Two-dimensional arrays are generally arranged in memoryin row-major order or olumn-major order. Sophistiated programmers,or oasionally sophistiated ompilers, math the loop struture to thelanguage's storage layout in order to maximise spatial loality. Unsophis-tiated programmers do not, and the performane loss is often dramati| up to a fator of 20. With knowledge of how the array will be used,it is often possible to hoose between the two layouts in order to max-imise spatial loality. In this paper we study the Morton storage layout,whih has substantial spatial loality whether traversed in row-major orolumn-major order. We present results from a suite of simple applia-tion kernels whih show that, on the AMD Athlon and Pentium III, forarrays larger than 256 � 256, Morton array layout, even implementedwith a lookup table with no ompiler support, is always within 61% ofboth row-major and olumn-major | and is sometimes faster.1 IntrodutionEvery student learns that multidimensional arrays are stored in \lexiographi"order: row-major (for Pasal et) or olumn-major (for Fortran). Modern pro-essors rely heavily on ahes and spatial loality, and this works well when theaess pattern mathes the storage layout. However, aessing a row-major arrayin olumn-major order leads to dismal performane (and vie-versa). The Mor-ton layout for arrays (for bakground and history see [13, 3℄) o�ers a ompromise,with some spatial loality whether traversed in row-major or olumn-major or-der | although in neither ase is spatial loality as high as the best ase forrow-major or olumn-major. A further disadvantage is the ost of alulating ad-dresses. So, should language implementors onsider using Morton layout for allmultidimensional arrays? This paper explores this question, and provides somequali�ed answers.Perhaps ontroversially, we on�ne our attention to \naively" written odes,where a mismath between aess order and layout is reasonably likely. We alsoassume that the ompiler does not help, neither by adjusting storage layout,nor by loop nest restruturing suh as loop interhange or tiling. Naturally, wefervently hope that users will be expert and that ompilers will suessfully

analyse and optimise the ode, but we reognise that very often, neither is thease.The idea is this: if we know how the array is going to be used, we ould hooseoptimally between the two lexiographi layouts. If we don't know how the arraywill be used, we an guess. If we guess right, we an expet good performane.If wrong, we may su�er very badly.One way to evaluate the use of Morton layout to avoid suh worst-ase be-haviour is by analogy with ompetitive on-line algorithms. Suppose we have anoptimal array layout sheme OPT. Following [9, 11℄, a memory layout shemeALG is -ompetitive (for a onstant \eÆieny" fator) if there exists a on-stant � suh that for all utilisation senarios �,COSTALG(�) � �COSTOPT(�) + �In this paper we evaluate experimentally whether the Morton layout is -ompetitivewith respet to a sheme OPT, in whih the faster of the two lexiographi lay-outs is hosen. The key issue is whether the ompetitive eÆieny is low enoughin pratie.We use a small suite of simple appliation kernels to test this hypothesis,and evaluate the ompetitive eÆieny for various omputer systems. We alsoevaluate the slowdown whih ours with these appliations when the wronglayout is hosen.2 Related workCompiler tehniques Loality an be enhaned by restruturing loops to tra-verse the data in an appropriate order [14, 12℄. Tiling an su�er disappointingperformane due to assoiativity onits, whih, in turn, an be avoided byopying the data aessed by the tile into ontiguous memory [10℄. Copying anbe avoided by building the array in this layout. More generally, storage layoutan be seleted to math exeution order [8℄. While loop restruturing is limitedby what the ompiler an infer about the dependene struture of the loops,adjusting the storage layout is always valid. However, eah array is generallytraversed by more than one loop, whih may impose layout onstraint onitswhih an be resolved only with foreknowledge of program behaviour.Bloked and reursively-bloked array layout Wise et al. [13℄ advoate Mortonlayout for multidimensional arrays, and present a prototype ompiler that im-plements the dilated arithmeti address alulation sheme whih we evaluatein Setion 4. They found it hard to overome the overheads of Morton addressalulation, and ahieve onvining results only with reursive formulations ofthe loop nests.Chatterjee et al. [3℄ study Morton layout and a bloked \4D" layout (ex-plained below). They fous on tiled implementations, for whih they �nd thatthe 4D layout ahieves higher performane than the Morton layout beause theaddress alulation problem is easier, while muh or all the spatial loality is

still exploited. Their work has similar goals to ours, but all their benhmark ap-pliations are tiled (or \shakled") for temporal loality; they show impressiveperformane, with the further advantage that performane is less sensitive tosmall hanges in tile size and problem size, whih an result in ahe assoiativ-ity onits with onventional layouts.In ontrast, the goal of our work is to evaluate whether Morton layout ansimplify the performane programming model for unsophistiated programmers,without relying on very powerful ompiler tehnology.3 BakgroundHere we briey review various array mappings and the resulting spatial loality.3.1 Lexiographi array storageFor an M � N two dimensional array A, a mapping S(i; j) is needed, whihgives the memory o�set at whih array element Ai;j will be stored. Conventionalsolutions are row-major (for example in Pasal) and Column-major (as used byFortran) mappings expressed byS(N;M)rm (i; j) = N � i+ j and S(N;M)m (i; j) = i+M � jrespetively. We refer to row-major and olumn-major as lexiographi layouts,i.e. the sort order of the two indies (another term is \anonial"). Historially,array layout has been mandated in the language spei�ation.3.2 Opaque array storage: array desriptorsIn more modern languages, suh as Fortran 90 (and notable earlier designs |Algol 68, APL), arrays are represented by a desriptor whih provides run-timeinformation on how the address alulation should be done [5℄. This is neededto support multidimensional array sliing | where the array desriptor hidesthe atual array representation, and allows the implementor freedom to seletstorage layout at will.Using a desriptor allows a single fragment of soure ode to operate on arrayswhose layout varies from all to all | a form of \shape" polymorphism [7℄. Thisraises performane problems. The storage layout is not known at ompile-time |the stride of suessive memory aesses depends on how the funtion is alled.For optimal performane, di�erent variants of eah funtion need to be generatedfor eah ombination of array operand layouts. There may be many distintombinations requiring distint ode variants. The variants an be seleted byrun-time dispath. More aggressively, the appropriate proedure \lone" an bealled aording to all site ontext [4℄.

3.3 Bloked array storageHow an we redue the number of ode variants needed to ahieve high perfor-mane? An attrative strategy is to hoose a storage layout whih o�ers a om-promise between row-major and olumn-major. For example, we ould break theN �M array into small, P �Q row-major subarrays, arranged as a N=P �M=Qrow-major array. We de�ne the bloked row-major mapping funtion (this is the4D layout disussed in [3℄) as:S(N;M)brm (i; j) = (P �Q)� S(N=P;M=Q)rm (i=P; j=P) + S(P;Q)rm (i%P; j%Q)For example, onsider 16-word ahe bloks and P = Q = 4. Eah blok holdsa P � Q = 16-word subarray. The four iterations (0; 0), (0; 1), (0; 2) and (0; 3)aess loations on the same blok. The remaining 12 loations on this blokare not aessed until later iterations of the outer loop. Thus, for a large array,the expeted ahe hit rate is 75%, sine eah blok has to be loaded four timesto satisfy 16 aesses. The ahe hit rates alulated above apply whether thearray is aessed in row-major or olumn-major order (i.e. whether the loop is\do j...do i" as shown, or \do i...do j").
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

����
����
����
����
����

����
����
����
����
����

0 1 4 5 16 17 20 21

2 3 6 7 18 19 22 23

10 11 14 15 26 27 30 31

32 33 36 37 48 49 52 53

34 35 38 39 50 51 54 55

40 41 44 45 56 57 60 61

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

S (5,4)
(8,8)

mz

i

j

8 9 12 13 24 25 28 29

42 43 46 47 58 59 62 63Fig. 1. Morton storage layout for 8� 8 array. Loation of element A[4; 5℄ is alulatedby interleaving \dilated" representations of 4 and 5 bitwise: D0(4) = 0100002 , D1(5) =1000102 . Smz(5; 4) = D0(5) j D1(4) = 1100102 = 5010. A 4-word ahe blok holds a2 � 2 subarray; a 16-word ahe blok holds a 4 � 4 subarray. Row-order traversal ofthe array uses 2 words of eah 4-word ahe blok on eah sweep of its inner loop, and4 words of eah 16-word blok. Column-order traversal ahieves the same hit rate.3.4 Larger ahe bloks and virtual memory pagesWith larger ahe bloks, we an get a higher hit rate. Although many urrentproessors have the same ahe blok size at all levels of the ahe, there are

exeptions (e.g. SunFire 6800 has a bloksize of 32 bytes at level 1, and 64 bytesat level 2). Virtual memory pages are also a major onsideration | a typial64-entry data TLB with 8KByte pages has an e�etive span of 64�8 = 512KB.3.5 Reursive blokingUnfortunately, if the bloked row-major array is traversed in row-major order,only one subarray per page is usable. Thus, we �nd that the bloked row-majorlayout is still biased towards olumn-major traversal. We an overome this byapplying the bloking again, reursively. Thus, eah 8KByte page (1024 doubles)would hold a 16� 16 array of 2� 2-element subarrays.In general, modern systems have a deep memory hierarhy, with blok size,apaity and aess time inreasing geometrially with depth [1℄. Bloking shouldbe applied for eah level. However, we must now onsider the omplexity ofalulating array loations.#define ONES_1 0x55555555#define ONES_0 0xaaaaaaaa#define INC_1(vx) (((vx + ONES_0) + 1) & ONES_1)#define INC_0(vx) (((vx + ONES_1) + 1) & ONES_0)void mm_ikj_da(double A[SZ*SZ℄, double B[SZ*SZ℄, double C[SZ*SZ℄){ int i_0, j_1, k_0;double r;int SZ_0 = Dilate(SZ);int SZ_1 = SZ_0 << 1;for (i_0 = 0; i_0 < SZ_0; i_0 = INC_0(i_0))for (k_0 = 0; k_0 < SZ_0; k_0 = INC_0(k_0)){unsigned int k_1 = k_0 << 1;r = A[i_0 + k_1℄;for (j_1 = 0; j_1 < SZ_1; j_1 = INC_1(j_1))C[i_0 + j_1℄ += r * B[k_0 + j_1℄;}}
Fig. 2. Morton-ordermatrix-multiply im-plementation usingdilated arithmeti forthe address alula-tion. Variables i 0 andk 0 are dilated repre-sentations of the loopontrol ounter D0(i)and D0(k). Counterj is represented byj 1= D1(j). The fun-tion Dilate onverts anormal integer into adilated integer.3.6 Bit-interleavingAssume for the time being that, for an N �M array, N = 2n, M = 2m. Writethe array indies i and j asB(i) = in�1in�2 : : : i3i2i1i0 and B(j) = jn�1jn�2 : : : j3j2j1j0respetively. Now the lexiographi mappings an be expressed as bit-onatenation(written \k"):S(N;M)rm (i; j) = N � i+ j = B(i)kB(j)= in�1in�2 : : : i3i2i1i0jn�1jn�2 : : : j3j2j1j0S(N;M)m (i; j) = i+M � j = B(j)kB(i)= jn�1jn�2 : : : j3j2j1j0in�1in�2 : : : i3i2i1i0

If P = 2p and Q = 2q, the bloked row-major mapping isS(N;M)brm (i; j) = (P �Q)� S(N=P;M=Q)m (i; j) + S(P;Q)rm (i%P; j%Q)= B(i)(n�1):::pkB(j)(m�1):::qkB(i)(p�1):::0kB(j)(q�1):::0Now, hoose P = Q = 2, and apply bloking reursively:S(N;M)mz (i; j) = in�1jn�1in�2jn�2 : : : i3j3i2j2i1j1i0j0This mapping is alled the Morton Z-order, and is illustrated in Fig. 1.3.7 Cahe performane with Morton-order layoutGiven a ahe with any even power-of-two blok size, with an array mappedaording to the Morton order mapping Smz, the ahe hit rate of a row-majortraversal is the same as the ahe-hit rate of a olumn-major traversal. In fat,this applies given any ahe hierarhy with even power-of-two blok size at eahlevel. This is illustrated in Fig. 1. The problem of alulating the atual aheperformane with Morton layout is somewhat involved; an interesting analysisfor matrix multiply is presented in [6℄.void mm_ikj_tb(double A[SZ*SZ℄, double B[SZ*SZ℄, double C[SZ*SZ℄,unsigned int MortonTabEven[℄,unsigned int MortonTabOdd[℄){ int i, j, k;double r;for (i = 0; i < SZ; i++)for (k = 0; k < SZ; k++){r = A[MortonTabEven[i℄ + MortonTabOdd[k℄℄;for (j = 0; j < SZ; j++)C[MortonTabEven[i℄ + MortonTabOdd[j℄℄+= r * B[MortonTabEven[k℄ + MortonTabOdd[j℄℄;}}
Fig. 3. Morton-ordermatrix-multiply imple-mentation using tablelookup for the ad-dress alulation. Theompiler detets thatMortonTabEven[i℄ andMortonTabEven[k℄ areloop invariant, leavingjust one table lookupin the inner loop.4 Morton-order address alulation4.1 Dilated arithmetiBit-interleaving is too omplex to exeute at every loop iteration. Wise et al. [13℄explore an intriguing alternative: represent eah loop ontrol variable i as a\dilated" integer, where the i's bits are interleaved with zeroes. De�ne D0 andD1 suh thatB(D0(i)) = 0in�10in�20 : : : 0i20i10i0 and B(D1(i)) = in�10in�20 : : : i20i10i00

0

20

40

60

80

100

120

140

160

180

32 64 128 256 512 1024 2048

Size

%

AMD

PIII

SUN

ALPHA

PIV

Baseline

0

20

40

60

80

100

120

140

160

180

32 64 128 256 512 1024 2048

Size

%

AMD

PIII

SUN

ALPHA

PIV

Baseline

Fig. 4. Matrix multiply (ikj) performane (in MFLOPs) of (left) dilated arithmetiMorton address alulation (see Fig. 2) versus (right) table-based Morton address alu-lation (see Fig. 3). The graphs show MFLOPs normalised to the performane ahievedby the standard row-major ikj implementation at eah problem size on eah system.Details of the systems are given in Table 1. At worst, the table lookup sheme is 46%slower than the dilated-arithmeti sheme on P4. For problem sizes larger than 256 theworst �gure is 24% on PIII. On the SunFire 6800 the lookup table implementation isalways faster. Larger numbers are better.Now we an express the Morton address mapping as S(N;M)mz (i; j) = D0(i) j D1(j),where \j" denotes bitwise-or. At eah loop iteration we inrement the loop ontrolvariable; this is fairly straightforward:D0(i+ 1) = ((D0(i) j Ones0) + 1) & Ones1D1(i+ 1) = ((D1(i) j Ones1) + 1) & Ones0where \&" denotes bitwise-and, andB(Ones0) = 01010 : : :10101 and B(Ones1) = 10101 : : :01010This is illustrated in Fig. 2, whih shows the ikj variant of matrix multiply.4.2 Morton-order address alulation using a lookup tableThe dilated arithmeti approah works when the array is aessed using anindution variable whih an be inremented using dilated addition. We foundthat a muh simpler sheme often works nearly as well: we simply pre-ompute atable for the two mappings D0(i) and D1(i). We illustrate this for the ikj matrixmultiply variant in Fig. 3. Note that the table aesses are very likely ahe hits,as their range is small and they have unit stride.One small but important detail: we use addition instead of logial \or". Thismay improve instrution seletion. It also allows the same loop to work on lexio-graphi layout using suitable tables. If the array is non-square, 2n� 2m, n < m,we onstrut the table so that the j index is dilated only up to bit n.

0

1

2

3

4

5

6

Sl
ow

do
wn

 re
lat

ive
 to

 be
st

lay
ou

t

1

6

11

16

21

 A
DI

Ch
ol

-K

Ja
c2

D LU

M
M

ijk

M
M

ikj AD
I

Ch
ol

-K

Ja
c2

D LU

M
M

ijk

M
M

ikj AD
I

Ch
ol

-K

Ja
c2

D LU

M
M

ijk

M
M

ikj AD
I

Ch
ol

-K

Ja
c2

D LU

M
M

ijk

M
M

ikj AD
I

Ch
ol

-K

Ja
c2

D LU

M
M

ijk

M
M

ikj

Sp
ee

du
p r

ela
tiv

e t
o w

or
st

lay
ou

t

AMD
PIII
Sun
Alpha
P4

Fig. 5. Performane of table-lookup-based implementation of Morton layout for variousommon dense kernels. In the upper graph we show how muh slower Morton layoutan be ompared with row-major layout (whih for our benhmarks is usually fastest).In eah ase we show the maximum and minimum slowdown over a range of problemsizes from 256 � 256 to 2048 � 2048. In the lower graph, we show how muh fasterMorton layout an be ompared with olumn-major layout. In eah ase we show themaximum and minimum speedup over the same range of problem sizes.Fig. 4 shows the performane of these two variants on a variety of omputersystems. In the remainder of the paper, we use the table lookup sheme exlu-sively. With ompiler support, many appliations ould bene�t from the dilatedarithmeti approah, leading in many ases to more positive onlusions.5 Experimental resultsWe have argued that Morton layout is a good ompromise between row-majorand olumn-major. The notion of -ompetitiveness provides a way to quantifythis laim. The ompetitive eÆieny is the maximum slowdown we shouldsu�er relative to making the best layout hoie.To test this experimentally, we have olleted a suite of simple implementa-tions of standard numerial kernels operating on two-dimensional arrays:MMijk Matrix multiply, ijk loop nest order (usually poor due to large stride)MMikj Matrix multiply, ikj loop nest order (usually best due to unit stride)LU LU deomposition with pivoting (based on Numerial Reipes)Jaobi2D Two-dimensional four-point stenil smootherADI Alternating-diretion impliit kernel, ij,ij orderCholesky k variant (usually poor due to large stride)

Alpha Alpha 21264 (EV6) 500MHz,Compaq L1 D-ahe: 2-way, 64KB, 64B ahe blokAlphaServer ES40 L2 ahe: diret mapped, 4MB. Compiler: Compaq C V6.1-020 \-fast"Sun UltraSpar III (v9) 750MHzSunFire 6800 L1 D-ahe: 4-way, 64KB, 32B ahe blokL2 ahe: diret-mapped, 8MB.Compiler: Sun Workshop 6 \-xO5" (update 1 C 5.2 Path 109513-07)PIII Intel Pentium III Coppermine, 1GHzL1 D-ahe: 4-way, 16KB, 32B ahe blokL2 ahe: 8-way 256KB, setored 32B ahe blok512MB SDRAM. Compiler \g-2.95 -O3"P4 Pentium 4, 1.3 GHzL1 D-ahe: 8-way, 8KB, setored 64B ahe blokL2 ahe: 8-way, 256KB, setored 64B ahe blok256MB RDRAM. Compiler \g-2.95 -O3"AMD AMD Athlon Thunderbird, 1.4GHZL1 D-Cahe: 2-way, 64KB, 64B ahe blokL2 ahe: 8-way, 256KB, 64B ahe blok512MB DDR RAM. Compiler \g-2.95 -O3"Table 1. Cahe and CPU on�gurations used in the experiments.In eah ase we run the ode on square arrays of various sizes, repeating the al-ulation if neessary to ensure adequate timing resolution. The system on�gu-rations are detailed in Table 1. Table 2 shows the baseline performane ahievedby eah mahine using standard row-major layout. Results using Morton layoutare summarised in Fig. 5 and shown in more detail in Figures 6 and 7.ADI Chol-K Jaobi2D LU MMijk MMikjmin max min max min max min max min max min maxAMD 33.81 34.72 11.05 47.61 195.84 199.25 16.76 83.02 10.05 32.18 90.27 92.72PIII 21.17 23.71 16.05 26.99 122.21 128.90 32.44 69.32 27.44 37.19 58.90 59.20SunFire 37.64 40.35 16.12 21.62 140.69 411.78 44.48 77.08 16.16 69.90 125.57 137.24Alpha 49.77 63.47 12.02 41.90 120.23 245.53 30.22 112.28 14.41 95.34 148.78 254.13P4 65.04 67.56 23.05 43.15 410.16 419.32 41.72 73.98 32.35 34.98 293.51 297.92Table 2. Performane of various kernels on di�erent systems. For eah kernel, for eahmahine, we show performane range in MFLOPs for row-major array layout, for arraysizes ranging from 256� 256 to 1024� 1024.Our results show that Morton layout is not e�etive for arrays smaller than256 � 256. We therefore on�ne our attention to larger problem sizes. On theAMD Athlon PC and Pentium III, we �nd that Morton layout is often fasterthan both row-major and olumn-major, and is never more than 61% slower.Furthermore, the osts of poor layout hoie on these mahines are partiularlyaute - in extreme ases a fator of 20. We have only studied up to 2048� 2048(32MB), and further investigation is needed for very large problems.On the other mahines, the piture is less lear. Kernels with high spatialloality, suh as MMikj and Jaobi2D, run lose to the mahine's peak perfor-mane; so bandwidth to L1 ahe for table aess is probably a major fator.

6 Conlusions and diretions for further researhThe main ontributions of this paper are:{ Using a small suite of dense kernels working on two-dimensional arrays, westudied the impat of poor array layout/array traversal order. If an array'slayout does not math the traversal order, performane is poor, with a slow-down of more than 20 (Matrix multiply, ikj variant, on the AMD Athlon).{ On the AMD Athlon and Pentium III, for arrays larger than 256� 256, wefound that Morton array layout, even implemented with a lookup table withno ompiler support, is always within 61% of both row-major and olumn-major. In fat, it is sometimes faster.{ On other mahines, the bene�ts an also be very large | but further workis needed to avoid serious slowdown for some high-performane kernels.{ Using a lookup-table for address alulation allows exible seletion of �ne-grain non-linear array layout, while still o�ering attrative performane om-pared with lexiographi layouts, on untiled loops.The advantage of Morton layout on existing odes is unlikely to be large as usersnormally do avoid worst-ase performane. However, simplifying the performanemodel should allow programmers to fous on building funtionally-robust soft-ware. Furthermore, if a loop an be tiled (or shakled, or exeuted in a reursiveform with high temporal reuse) the overheads of our lookup table sheme areexessive. Layout then has to be seleted in ombination with loop restruturing.{ The next step is building Morton layout into a ompiler, or perhaps a self-optimizing BLAS library [2℄ (whih would allow run-time layout seletion).{ It should be possible to ahieve better results using ompetitive redistri-bution - i.e. instrument memory aesses and opy the array into a moreappropriate distribution if indiated.{ We should evaluate adding hardware support for non-linear layouts.{ We have not used non-square arrays in this paper, but the approah handlesthem reasonably e�etively (see Setion 4.2), at the ost of padding eahdimension to the next power of two.{ In our brief analysis of spatial loality using Morton layout (Setion 3.7,Fig. 1), we assumed that ahe bloks and VM pages are a square (even)power of two. This depends on the array's element size, and is often not thease. Then, row-major and olumn-major traversal of Morton layout lead todi�ering spatial loality. A more subtle non-linear layout ould address this.{ It seems less likely that Morton layout an o�er a ompetitive ompromisefor arrays with more than two dimensions.Aknowledgements. This work was partly supported by mi2g Software, and a Uni-versities UK Overseas Researh Sholarship. We also thank Imperial College ParallelComputing Centre (ICPC) for aess to their equipment.

Referenes1. Bowen Alpern, Larry Carter, Ephraim Feig, and Ted Selker. The uniform memoryhierarhy model of omputation. Algorithmia, 12(2/3):72{109, 1994.2. Olav Bekmann and Paul H. J. Kelly. EÆient interproedural data plaementoptimisation in a parallel library. In LCR98: Languages, Compilers and Run-timeSystems for Salable Computers, number 1511 in LNCS, pages 123{138. Springer-Verlag, May 1998.3. Siddhartha Chatterjee, Vibhor V. Jain, Alvin R. Lebek, Shyam Mundhra, andMithuna Thottethodi. Nonlinear array layouts for hierarhial memory systems.In International Conferene on Superomputing, pages 444{453, 1999.4. K. Cooper, M. W. Hall, and K. Kennedy. Proedure loning. In Proeedings of the1992 IEEE International Conferene on Computer Language, Oakland, CA, 1992.5. Leo J. Guibas and Douglas K. Wyatt. Compilation and delayed evaluation inAPL. In Conferene reord of the Fifth Annual ACM Symposium on Priniples ofProgramming Languages, pages 1{8. ACM Press, January 1978.6. P. J. Hanlon, D. Chung, S. Chatterjee, D. Genius, A. R. Lebek, , and E. Parker.The ombinatoris of ahe misses during matrix multipliation. 2000. to appearin the Journal of Computer Sienes and Systems.7. C. Barry Jay. Shape in omputing. ACM Computing Surveys, 28(2):355{357, 1996.8. Mahmut T. Kandemir, Alok N. Choudhary, J. Ramanujam, N. Shenoy, and Prithvi-raj Banerjee. Enhaning spatial loality via data layout optimizations. In EuropeanConferene on Parallel Proessing, pages 422{434, 1998.9. A. Karlin, M. Manasse, L. Rudolph, and D. Sleator. Competitive snoopy ahing.Algorithmia, 3(1), 1988.10. Monia S. Lam, Edward E. Rothberg, and Mihael E. Wolf. The ahe performaneand optimizations of bloked algorithms. SIGPLAN Noties, 26(4):63{74, 1991.11. Mark Manasse, Lyle MGeoh, and Daniel Sleator. Competitive algorithms foron-line problems. In Proeedings of the 1988 Twentieth Annual ACM Symposiumon Theory of Computing, pages 322{333. ACM Press New York, NY, USA, 1988.12. Kathryn S. MKinley, Steve Carr, and Chau-Wen Tseng. Improving data loalitywith loop transformations. ACM Transations on Programming Languages andSystems, 18(4):424{453, July 1996.13. David S. Wise, Jeremy D. Frens, Yuhong Gu, , and Gregory A. Alexander. Lan-guage support for Morton-order matries. In Pro. 2001 ACM Symp. on Priniplesand Pratie of Parallel Programming, SIGPLAN Not. 36, 7, 2001.14. Mihael E. Wolf and Monia S. Lam. A data loality optimizing algorithm. InProeedings of ACM SIGPLAN '91 Conferene on Programming Language Designand Implementation, 1991.

0

20

40

60

80

100

120

140

160

32 64 128 256 512 1024 2048

Size

%

AMD
PIII
SunFire
Alpha
BaseLine
P4

0

200

400

600

800

1000

1200

32 64 128 256 512 1024 2048

Size

%

AMD
PIII
SunFire
Alpha
BaseLine
P4ADI

0

50

100

150

200

250

300

32 64 128 256 512 1024

Size

%

AMD
PIII
SunFire
Alpha
P4
baseline

0

50

100

150

200

250

300

350

400

32 64 128 256 512 1024

Size

%

AMD
PIII
SunFire
Alpha
P4
baselineChol-k

0

20

40

60

80

100

120

140

160

180

32 64 128 256 512 1024 2048

Size

%

AMD
PIII
SunFire
Alpha
P4
BaseLine

0

200

400

600

800

1000

1200

32 64 128 256 512 1024 2048

Size

%

AMD
PIII
SunFire
Alpha
P4
BaseLineJaobi2dFig. 6. Various ommon dense kernels: The left-hand graphs show performane of theMorton layout version relative to the performane (at eah problem size) with all arraysin row-major layout. The right-hand graphs show performane of the Morton layoutversion relative to the (usually muh lower) performane with all arrays in olumn-major. Note the sales of eah graph are di�erent. (inluded for refereeing only; seeSetion 5)

0

20

40

60

80

100

120

32 64 128 256 512 1024

Size

%

AMD
PIII
SunFire
Alpha
P4
Baseline

0

20

40

60

80

100

120

140

160

180

200

32 64 128 256 512 1024

Size

%

AMD
PIII
SunFire
Alpha
P4
BaselineLU

0

100

200

300

400

500

600

700

800

32 64 128 256 512 1024

Size

%

AMD
PIII
SunFire
Alpha
P4
BaseLine

0

100

200

300

400

500

600

700

800

900

32 64 128 256 512 1024

Size

%

AMD
PIII
SunFire
Alpha
P4
BaseLineMatrix multiply, ijk

0

20

40

60

80

100

120

140

160

180

32 64 128 256 512 1024 2048

Size

%

AMD
PIII
SunFire
Alpha
P4
BaseLine

0

500

1000

1500

2000

2500

32 64 128 256 512 1024 2048

Size

%

AMD
PIII
SunFire
Alpha
P4
BaseLineMatrix multiply, ikjFig. 7. Various ommon dense kernels, ontinued: As in Fig. 6, the left-hand graphsshow performane of the Morton layout version relative to the performane (at eahproblem size) with all arrays in row-major layout. The right-hand graphs show perfor-mane of the Morton layout version relative to the (usually muh lower) performanewith all arrays in olumn-major. Note the sales of eah graph are di�erent. (inludedfor refereeing only; see Setion 5)

