
Software abstractions for many-
core software engineering

Paul H J Kelly
Group Leader, Software Performance Optimisation

Department of Computing
Imperial College London

Joint work with :

David Ham, Gerard Gorman, Florian Rathgeber (Imperial ESE/Grantham Inst for Climate Change Res)
Mike Giles, Gihan Mudalige (Mathematical Inst, Oxford)

Adam Betts, Carlo Bertolli, Graham Markall, Tiziano Santoro, George Rokos (Software Perf Opt Group, Imperial)
Spencer Sherwin (Aeronautics, Imperial), Chris Cantwell (Cardio-mathematics group, Mathematics, Imperial)

1

Moving meshes

Mixed meshes

What we are doing….

!   Roadmap: applications drive DSLs, delivering performance portability

Finite-volume
CFD

OP2.1:
extended with
dynamic
meshes

OP2: parallel
loops over
unstructured
meshes

Mesh
adaptation

OP2.2:
extended with
sparse matrices

OP2.3: with
fully-abstract
graphs

Finite-element
assembly

Particle
problems –
molecular
dynamics

Rolls-Royce
HYDRA
turbomachinery
CFD

Fluidity and the
Imperial
College Ocean
Model (ICOM)

FENiCS finite-
element PDE
generator

LAMMPS –
granular flow

OpenMP CUDA/
OpenCL MPI SSE/AVX FPGAs ?

P-adaptivity

OP2.4: mixed
and piecewise
structured
meshes

Fortran & C/C++ OP2 compiler

Pair_gen for LAMMPS

Multicore Form Compiler

The message

!  Three slogans
!  Generative, instead

of transformative
optimisation

!  Get the abstraction
right, to isolate
numerical methods
from mapping to
hardware

!  Build vertically,
learn horizontally

!  Three stories

!  The value of
generative and DSL
techniques

!  Domain-specific
active library
examples

!  General framework:
access-execute
descriptors

3

Easy parallelism – tricky engineering

!  Parallelism breaks
abstractions:
!   Whether code should run in

parallel depends on context
!   How data and computation

should be distributed across
the machine depends on
context

!   “Best-effort”, opportunistic
parallelisation is almost
useless:
!   Robust software must

robustly, predictably, exploit
large-scale parallelism

How can we build
robustly-efficient
multicore
software

While maintaining
the abstractions
that keep code
clean, reusable
and of long-term
value?

It’s a software engineering problem

Active libraries and DSLs
!   Domain-specific languages...
!   Embedded DSLs
!   Active libraries

!   Libraries that come with a
mechanism to deliver library-
specific optimisations

!   Domain-specific “active” library
encapsulates specialist performance
expertise

!   Each new platform requires new
performance tuning effort

!   So domain-specialists will be doing the
performance tuning

!   Our challenge is to support them

Applications

Exotic hardware

Active library

GPU Multicore FPGA Quantum?

Visual effects
Finite element

Linear algebra
Game physics

Finite difference

!   Classical compilers have two halves

Syntax
Points-to

Class-hierarchy
Dependence

Shape
.....

Register allocation
Instruction selection/scheduling

Storage layout
Tiling

Parallelisation
Program Dependence

!   The right domain-specific language or active library can give
us a free ride

Syntax
Points-to

Class-hierarchy
Dependence

Shape
.....

Register allocation
Instruction selection/scheduling

Storage layout
Tiling

Parallelisation
Program Dependence

!   It turns out that analysis is not always the interesting part....

Syntax
Points-to

Class-hierarchy
Dependence

Shape
.....

Register allocation
Instruction selection/scheduling

Storage layout
Tiling

Parallelisation
Program Dependence

ht
tp

://
w

w
w

.n
ik

ki
em

cd
ad

e.
co

m
/s

ub
Fi

le
s/

2D
E

xa
m

pl
es

.h
tm

l
ht

tp
://

w
w

w
.g

in
z.

co
m

/n
ew

_z
ea

la
nd

/s
ki

_n
ew

_z
ea

la
nd

_w
an

ak
a_

ca
dr

on
a

C,C++, C#, Java, Fortran

Code motion
optimisations
Vectorisation and
parallelisation of affine
loops over arrays

Capture dependence
and communication in
programs over richer
data structures

Specify application
requirements, leaving
implementation to select
radically-different solution
approaches

Encapsulating and delivering domain expertise

!  Domain-specific languages & active
libraries
!  Raise the level of abstraction
!  Capture a domain of variability
!  Encapsulate reuse of a body of

code generation expertise/
techniques

!  Enable us to capture design space
!  To match implementation choice to

application context:
!  Target hardware
!  Problem instance

!  This talk illustrates these ideas with
some of our recent/current projects

Target hardware context

Application-domain context

Unifying
representation

OP2 – a decoupled access-execute active library
for unstructured mesh computations

// declare sets, maps, and datasets
op_set nodes = op_decl_set(nnodes);
op_set edges = op_decl_set(nedges);

op_map pedge1 = op_decl_map (edges,
nodes, 1, mapData1);

op_map pedge2 = op_decl_map (edges,
nodes, 1, mapData2);

op_dat p_A = op_decl_dat (edges, 1, A);
op_dat p_r = op_decl_dat (nodes, 1, r);
op_dat p_u = op_decl_dat (nodes, 1, u);
op_dat p_du = op_decl_dat (nodes, 1, du);

// global variables and constants declarations
float alpha[2] = { 1.0f, 1.0f };
op_decl_const (2, alpha);

float u_sum, u_max, beta = 1.0f;

for (int iter = 0; iter < NITER; iter++)
{ op_par_loop_4 (res, edges,

 op_arg_dat (p_A, 0, NULL, OP_READ),
 op_arg_dat (p_u, 0, &pedge2, OP_READ),
 op_arg_dat (p_du, 0, &pedge1, OP_INC),
 op_arg_gbl (&beta, OP_READ)
);
 u_sum = 0.0f; u_max = 0.0f;
 op_par_loop_5 (update, nodes,
 op_arg_dat (p_r, 0, NULL, OP_READ),
 op_arg_dat (p_du, 0, NULL, OP_RW),
 op_arg_dat (p_u, 0, NULL, OP_INC),
 op_arg_gbl (&u_sum, OP_INC),
 op_arg_gbl (&u_max, OP_MAX)
);

} Example – Jacobi solver

OP2- Data model

OP2’s key data structure is a set
A set may contain pointers that map into another set

Eg each edge points to two vertices

A
Pedge1
Pedge2

r
u
Du

A
Pedge1
Pedge2

A
Pedge1
Pedge2

A
Pedge1
Pedge2

A
Pedge1
Pedge2

r
u
Du

r
u
Du

r
u
Du

r
u
Du

r
u
Du

// declare sets, maps, and datasets
op_set nodes = op_decl_set(nnodes);
op_set edges = op_decl_set(nedges);

op_map pedge1 = op_decl_map (edges,
nodes, 1, mapData1);

op_map pedge2 = op_decl_map (edges,
nodes, 1, mapData2);

op_dat p_A = op_decl_dat (edges, 1, A);
op_dat p_r = op_decl_dat (nodes, 1, r);
op_dat p_u = op_decl_dat (nodes, 1, u);
op_dat p_du = op_decl_dat (nodes, 1, du);

// global variables and constants declarations
float alpha[2] = { 1.0f, 1.0f };
op_decl_const (2, alpha);

OP2 – a decoupled access-execute active library
for unstructured mesh computations

Example – Jacobi solver

!   Each parallel loop precisely
characterises the data that will be
accessed by each iteration

!   This allows staging into
scratchpad memory

!   And gives us precise dependence
information

!   In this example, the “res” kernel
visits each edge
!   reads edge data, A
!   Reads beta (a global),
!   Reads u belonging to the vertex

pointed to by “edge2”
!   Increments du belonging to the

vertex pointed to by “edge1”

float u_sum, u_max, beta = 1.0f;

for (int iter = 0; iter < NITER; iter++)
{ op_par_loop_4 (res, edges,

 op_arg_dat (p_A, 0, NULL, OP_READ),
 op_arg_dat (p_u, 0, &pedge2, OP_READ),
 op_arg_dat (p_du, 0, &pedge1, OP_INC),
 op_arg_gbl (&beta, OP_READ)
);
 u_sum = 0.0f; u_max = 0.0f;
 op_par_loop_5 (update, nodes,
 op_arg_dat (p_r, 0, NULL, OP_READ),
 op_arg_dat (p_du, 0, NULL, OP_RW),
 op_arg_dat (p_u, 0, NULL, OP_INC),
 op_arg_gbl (&u_sum, OP_INC),
 op_arg_gbl (&u_max, OP_MAX)
);

}

OP2 – parallel loops

Example – Jacobi solver

!   Each parallel loop precisely
characterises the data that will be
accessed by each iteration

!   This allows staging into
scratchpad memory

!   And gives us precise dependence
information

!   In this example, the “res” kernel
visits each edge
!   reads edge data, A
!   Reads beta (a global),
!   Reads u belonging to the vertex

pointed to by “edge2”
!   Increments du belonging to the

vertex pointed to by “edge1”

float u_sum, u_max, beta = 1.0f;

for (int iter = 0; iter < NITER; iter++)
{ op_par_loop_4 (res, edges,

 op_arg_dat (p_A, 0, NULL, OP_READ),
 op_arg_dat (p_u, 0, &pedge2, OP_READ),
 op_arg_dat (p_du, 0, &pedge1, OP_INC),
 op_arg_gbl (&beta, OP_READ)
);
 u_sum = 0.0f; u_max = 0.0f;
 op_par_loop_5 (update, nodes,
 op_arg_dat (p_r, 0, NULL, OP_READ),
 op_arg_dat (p_du, 0, NULL, OP_RW),
 op_arg_dat (p_u, 0, NULL, OP_INC),
 op_arg_gbl (&u_sum, OP_INC),
 op_arg_gbl (&u_max, OP_MAX)
);

}

inline void res(const float A[1], const float u[1],
 float du[1], const float beta[1])

{
 du[0] += beta[0]*A[0]*u[0];
}

inline void update(const float r[1], float du[1],
 float u[1], float u_sum[1], float u_max[1])

{
 u[0] += du[0] + alpha * r[0];
 du[0] = 0.0f;
 u_sum[0] += u[0]*u[0];
 u_max[0] = MAX(u_max[0],u[0]);
}

!   Two key
optimisations:

!   Partitioning
!   Colouring

!   Here we focus
on GPU and
multicore
implementation

!   We also have
MPI-level
parallelisation

!   Exploring SSE/
AVX

!   And FPGA

!   Two key
optimisations:

!   Partitioning
!   Colouring

Edges

Vertices

Cross-partition
edges

Vertices

Cross-partition
edges

Edges

!   Two key
optimisations:

!   Partitioning
!   Colouring

!   Elements of
the edge set
are coloured
to avoid
races due to
concurrent
updates to
shared
nodes

!   Two key
optimisations:

!   Partitioning
!   Colouring

!   At two levels

Edges

Vertices

Cross-partition
edges

OP2 - performance

!   Example: non-linear 2D inviscid unstructured airfoil
code, double precision (compute-light, data-heavy)

!   Two backends: OpenMP, CUDA (OpenCL coming)
!   For tough, unstructured problems like this GPUs can

win, but you have to work at it
!   X86 also benefits from tiling; we are looking at how to

enhance SSE/AVX exploitation

Combining MPI, OpenMP and CUDA

Titer = Tss + 2(Tac + Trc + Tbrc + Tu) (1)

Tss = wg,ss × ncells (2)

Tac = wg,ac × ncells (3)

Trc = max(wg,rc × ncore,edges, Tcomm,rc) +

wg,rc × (nieh,edges + neeh,edges) (4)

Tbrc = wg,brc × (nbedges + nieh,bedges) (5)

Tu = wg,u × ncells + Treduce (6)

Tcomm,rc = (nieh,cells + ninh,cells)× 8B ×
(esizep q + esizep adt) + 2LNavg,cells +

Lon chip × CNavg,cells (7)

Figure 4: Performance model for CPU cluster

Table 5: Airfoil Model validations and projections

System Nodes Pred. Actual Err

(sec) (sec) (%)

5 (120 cores) 7.39 7.86 -6.08

10 (240 cores) 3.77 4.02 -6.30

HECToR 20 (480 cores) 1.92 2.09 -8.14

40 (960 cores) 0.99 1.12 -11.14

60 (1440 cores) 1.25 1.41 -11.29

80 (1920 cores) 1.14 1.28 -10.83

5(60 cores) 12.38 12.29 0.78

6(72 cores) 10.32 10.44 -1.20

CX1 10(120 cores) 6.22 6.07 2.51

40(480 cores) 1.61 - -

80(960 cores) 0.84 - -

120(1440 cores) 1.08 - -

2 × C2070 8.29 - -

Tesla 4 × C2070 4.30 - -

C2070 12 × C2070 1.87 - -

processor to another. Thus 1/B gives the bandwidth of the
network. L is the latency associated with communicating a
message with a neighbor. To account for the critical path
time during message passing, we use the off-node message
communication times. We double the latency term as there
are two data arrays being exchanged. The esize∗ gives the
size of an element (i.e. number of double precision values per
set element) for each data array. The 8 multiplier accounts
for the size of a double precision floating-point value on the
system. C is the number of cores that share a NIC (12 cores
share a NIC in HECToR [22] and CX1). We assume that
some serialization of MPI messages are caused at the NIC
during message passing [26, 25] and approximate it as the la-
tency for communicating a message within a node (Lon chip)
multiplied by the average number of MPI messages sent si-
multaneously. The values for B, L and Lon chip were found
by benchmarking the end-to-end message transfer time (using
the Intel MPI benchmarks suite [27]) between two nodes (and
two cores) for a range of message sizes. The time for a reduce
operation Treduce was approximately modeled as a tree gather
operation [25].
Table 5 details validations of the above performance model

on HECToR (up to 1920 cores) and CX1 (up to 120 cores).
The model accuracy exceeds 90% for most runs but is more
sensitive to the system communication performance at large
scale. However the model accurately predicts the number
of cores that gives the optimum runtime and the qualitative
trend in scaling on HECToR, allowing us to establish the lim-
its of scalability for Airfoil. Table 5 also notes projected run-
times using the model for CX1 up to 960 cores. Starting
at 1440 cores the model predicts that communication times
dominate the max term in (4) on both HECToR and CX1.
To extend the above homogeneous multi-core CPU cluster

model to that of a GPU cluster model requires us to con-
sider the additional costs involved during MPI operation over

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400 450 500

E
x
e
c
u

t
i
o

n
t
i
m

e
(
S

e
c
o

n
d

s
)

Number of nodes

CX1 Pred.

HECToR Actu.

HECToR Pred.

C2070 cluster Pred.

Figure 5: Airfoil - 26M edge mesh (1000 iterations) :

HECToR - 24 core/node, CX1 - 12 core/node, C2070

cluster - 1 GPU/node

GPUs. Such techniques have been previously used for pre-
dicting GPU cluster performance with high accuracy [28]. For
this paper we develop the GPU cluster model for Airfoil as-
suming a cluster of NVIDIA C2070 GPUs that is intercon-
nected by an InfiniBand network with similar performance to
that of CX1. Computation times for each loop was bench-
marked on a single C2070 GPU for various mesh sizes. This
gives us approximate times for the GPU to execute a given
number of set elements belonging to its local partition. The
communication time for res_calc in (7) was augmented with
PCIe bandwidths and latencies (measured using the NVIDIA
CUDA SDK’s bandwidthTest benchmark, and a custom la-
tency benchmark) to copy halo data to and from the GPU.
Our measurements indicated a host to device PCIe bandwidth
and latency of about 3700 MB/sec and 9µS respectively. The
device to host bandwidth and latency was about 3130 MB/sec
and 11µS. Assuming that each C2070 has exclusive access to
a NIC we remove the serialization costs terms from (7). The
current model does not taken into consideration the possible
performance gains with NVIDIA’s new GPUDirect [24] tech-
nology. Projections from the GPU cluster model are noted in
the final three rows of Table 5.

It is clear from these results that the 1.5 million edge mesh
on the GPU cluster reaches its scalability limits with a few
C2070 GPUs compared to HEXToR and CX1. Thus we bench-
mark and project performance for solving a 26 million edge
mesh with Airfoil. Figure 5 projects the performance of Airfoil
solving this mesh on both CX1 and the hypothetical C2070
GPU cluster. Actual run times from HECToR are also pro-
vided as a reference.

The model predicts, for example, a cluster with 36 C2070
GPUs to give equivalent performance to that of over 1920
HECToR cores (80 nodes) or a Westmere/InfiniBand cluster
with 1440 cores (120 nodes). Thus, we see a C2070 cluster to
give the same performance that is equivalent to performance
given by traditional homogeneous clusters that are more than
three times its size. However this should be considered in the
context of the amount of available memory on a GPU to hold
and execute the required partition size. For example, the 26
million edge mesh could not be solved on a single C2070 GPU
due to lack of resources on the device where at least 12 C2070
GPUs are required for such a workload.

On HECToR and CX1 we see that the increase in redun-
dant computations due to ieh at large-scales degrades per-
formance. The runtime at 160 HECToR nodes and 320 CX1
nodes was particularly affected by a large ieh. However, in-
crease in redundant computation has almost a negligible af-
fect on the C2070 GPUs due to their SIMD operation over
elements. Thus the model predicts a much more smoother
performance curve on the GPU cluster. The C2070 cluster
scales up to 128 nodes after which the performance plateaus.

(Preliminary results under review)

!   non-linear 2D
inviscid airfoil
code

!   26M-edge
unstructured
mesh

!   1000
iterations

!   Analytical
model
validated on
up to 120
Westmere
X5650 cores
and 1920
HECToR
(Cray XE6)
cores

Unmodified C++ OP2 source
code exploits inter-node
parallelism using MPI, and
intra-node parallelism using
OpenMP and CUDA

A higher-level DSL

Specify application
requirements, leaving
implementation to select
radically-different solution
approaches

Psi = state.scalar_fields(“psi”)
v=TestFunction(Psi)
u=TrialFunction(Psi)
f=Function(Psi, “sin(x[0])+cos(x[1])”)
A=dot(grad(v),grad(u))*dx
RHS=v*f*dx
Solve(Psi,A,RHS)

!  Solving:
!  Weak form:
 (Ignoring boundaries)

UFL – Unified Form Language

(FEniCS project, http://fenicsproject.org/):
A domain-specific language for generating finite

element discretisations of variational forms

The FE Method: computation overview

do	 element	 =	 1,N	
	 	 assemble(element)	
end	 do	

i

j k

i i

i

j j

j

k k

k

Ax = b

!  Key data structures: Mesh, dense local assembly
matrices, sparse global system matrix, and RHS vector

Global Assembly – GPU Issues

Parallelising the global assembly leads to performance/
correctness issues:
!  Bisection search: uncoalesced accesses, warp

divergence
!  Contending writes: atomic operations, colouring

!   In some circumstances we can avoid building the
global system matrix altogether

!  Goal: get the UFL compiler to pick the best option

Global matrix
Local matrix
for element 1

Local matrix
for element 2

• Set 1
• Set 2

The Local Matrix Approach

!   Why do we assemble M?

!   In the Local Matrix Approach we recompute this, instead
of storing it:

!   b is explicitly required
!   Assemble it with an SpMV:

where We need to solve

Test Problem Implementation
!  Advection-Diffusion Equation:

!   Solved using a split scheme:
!   Advection: Explicit RK4
!   Diffusion: Implicit theta scheme

!   GPU code: expanded data layouts,
with Addto or LMA

!   CPU baseline code: indirect data
layouts, with Addto [Vos et al., 2010]
(Implemented within Fluidity)

!   Double Precision arithmetic
!   Simulation run for 200 timesteps

!  Simplified CFD test
problem

Test Platforms
! Nvidia 280GTX:

!   240 stream processors: 30 multiprocessors with 8 SMs each
!   1GB RAM (4GB available in Tesla C1060)

!  NVidia 480GTX:
!   480 stream processors: 15 multiprocessors with 32 SMs each
!   1.5GB RAM (3GB available in Tesla C2050, 6GB in Tesla C2060)

!  AMD Radeon 5870:
!   1600 stream processors: 20 multiprocessors with 16 5-wide SIMD units
!   1GB RAM (768MB max usable)

!  Intel Xeon E5620:

!   4 cores
!   12GB RAM

Software:
Ubuntu 10.04
Intel Compiler 10.1 for Fortran (-O3 flag)
NVIDIA CUDA SDK 3.1 for CUDA
ATI Stream SDK 2.2 for OpenCL
Linear Solver:
CPU: PETSc [Balay et al., 2010]
CUDA Conjugate Gradient Solver [Markall

& Kelly, 2009], ported to OpenCL

Fermi Execution times

!   On the 480GTX (“Fermi”) GPU, local assembly is more
than 10% slower than the addto algorithm (whether using
atomics or with colouring to avoid concurrent updates)

!   Advection-Diffusion Equation:

!   Solved using a split scheme:

!   Advection: Explicit RK4
!   Diffusion: Implicit theta

scheme

!   GPU code: expanded data
layouts, with Addto or LMA

!   CPU baseline code: indirect
data layouts, with Addto [Vos
et al., 2010]
(Implemented within Fluidity)

!   Double Precision arithmetic
!   Simulation run for 200

timesteps

Intel 4-core E5620 (Westmere EP)

!   On the quad-core Intel Westmere EP system, the local
matrix approach is slower. Using Intel’s compiler, the
baseline code (using addtos and without data expansion)
is faster still

!   Advection-Diffusion Equation:

!   Solved using a split scheme:

!   Advection: Explicit RK4
!   Diffusion: Implicit theta

scheme

!   GPU code: expanded data
layouts, with Addto or LMA

!   CPU baseline code: indirect
data layouts, with Addto [Vos
et al., 2010]
(Implemented within Fluidity)

!   Double Precision arithmetic
!   Simulation run for 200

timesteps

Throughput compared to CPU Implementation

!   Throughput of best GPU implementations relative to CPU
(quad-core Westmere E5620)

(preliminary results, esp the AMD numbers)

0

2

4

6

8

10

12

14

AMD 5870 Nvidia 480GTX

Ti
m

e
(s

)

Kernels
Overhead

Figure 12. Kernel execution times and driver overheads. Kernel execution
times are similar, but the driver overhead of the AMD card significantly
lowers performance.

setup.

B. Summary of Results
We conclude from the results from all architectures that

the LMA is the fastest algorithm on GPU architectures. This
is due to the increased coalescing and reduced control flow
divergence afforded by this algorithm. On the CPU architec-
tures, the Addto algorithm is the fastest approach, as a result
of the cache, and overall lower memory bandwidth. We also
conclude that the OpenCL implementation is performance-
portable across similar architectures, but not across the gap
between multi-core and many-core architectures.

VI. RELATED WORK

There have been various investigations into the perfor-
mance of various points in the implementation space of finite
element methods. Most of those that we highlight involve
the implementation in GPU architectures:

• In [17], [18], an implementation of a finite element
code for seismic simulation is presented that is written
in CUDA and uses MPI for communication between
nodes. In this implementation, the Addto algorithm is
used, but entire local matrices are coloured rather than
rows of the local matrices, and the performance of
assembly using atomic operations or the LMA is not
investigated.

• An implementation of the finite element method for
hyperelastic material simulation is discussed in [19],
[20], and optimisation of the code by fusing kernels is
examined. We believe that this fusion of the kernels can
also be represented at an abstract high level because
individual terms (such as integrals) correspond to a
kernel that evaluates them. However, this possibility
of high-level representation is not discussed by the
authors.

• The performance of GPU kernels that evaluate local
matrices for various polynomial orders of element is
discussed in [21]. However, the other portions of the
finite element method are not investigated.

• In [22], implementations of the Addto algorithm that
make use of various levels of the memory hierarchy
and different granularities of parallelism on GPUs are
discussed, and it is shown that the optimal implemen-
tation of the Addto varies significantly depending on
the mesh topology. This indicates that the optimal im-
plementation not only depends on the target hardware
and polynomial order of elements, but also the mesh
topology.

• In [7], [9], [8] the choice of optimal assembly strategy
is investigated, with consideration for the Addto algo-
rithm, the LMA, and a tensor-based algorithm. It is
shown that the optimal algorithm depends on factors
including the dimension of the problem, polynomial
order of the approximation, and the equation being
discretised. The tradeoff to find the most efficient
algorithm for solving an equation with a given tolerance
is also discussed. However, these investigations are
limited to CPU implementations.

Although some of these investigations consider similar
dimensions in the implementation space to this one, we note
that these investigations are performed at a low level, with
the goal of discovering how to write efficient finite element
codes, rather than how the high-level specifications relate
to and allow the derivation of optimisations. We also draw
attention to code generation tools that produce optimised
implementations in similar domains:

• The FEniCS Form Compiler [1], [23] generates code
that implements methods described in UFL. The code
generator uses optimisations based on algebraic manip-
ulation of an intermediate (but high-level) representa-
tion in order to minimise the operation count of the
generated code. Presently the code generator targets
CPUs only.

• OPlus2 [24], [25] is a framework for writing parallel
programs that perform computations on unstructured
meshes. It uses source-to-source translation to generate
CUDA implementations of user-specified code. The
abstraction provided by OPlus2 is a lower-level, more
imperative one than that used to derive optimisations
in this work such as the LMA.

VII. CONCLUSIONS

The results presented in this paper demonstrate that the
algorithmic choice in finite element method implementations
makes a big difference in performance. Furthermore, the
best choice varies with the target hardware. This motivates
the automation of code generation, so that we can navigate
the various dimensions of the implementation space freely

!   AMD 5870 and
GTX480 kernel
times very similar;
older AMD drivers
incurred
overheads

Summary of results

!  The Local Matrix Approach is fastest on
GPUs

!  Global assembly with colouring is
fastest on CPUs

!  Expanded data layouts allow coalescing
and higher performance on GPUs

!  Accessing nodal data through
indirection is better on CPU due to
cache, lower memory bandwidth, and
arithmetic throughput

Mapping the design space – h/p
!   The balance

between local- vs
global-assembly
depends on other
factors

!   Eg tetrahedral vs
hexahedral

!   Eg higher-order
elements

!   Local vs Global
assembly is not the
only interesting
option

Relative execution time
on CPU (dual quad Core2)

Helmholtz problem with
Hex elements
With increasing order

E
xe

cu
tio

n
tim

e
no

rm
al

is
ed

 w
rt

lo
ca

l e
le

m
en

t a
pp

ro
ac

h

(Cantwell et al, provisional results under review)

Mapping the design space – h/p
!   Contrast: with

tetrahedral
elements

!   Local is faster
than global only
for much higher-
order

!   Sum factorisation
never wins

Relative execution time
on CPU (dual quad

Core2)

Helmholtz problem with
Tet elements

With increasing order
E

xe
cu

tio
n

tim
e

no
rm

al
is

ed
 w

rt
lo

ca
l a

ss
em

bl
y

(Cantwell et al, provisional results under review)

End-to-end accuracy drives algorithm selection

C.D. Cantwell et al. From h to p efficiently

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6
103

104

105

10-1 10-2 10-3 10-4

h

L2-Error

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6
103

104

105

10-1 10-2 10-3 10-4

h

L2-Error

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6
103

104

105

10-1 10-2 10-3 10-4

h

L2-Error

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

R
un

tim
e

(µ
s)

L2-Error

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

R
un

tim
e

(µ
s)

L2-Error

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

R
un

tim
e

(µ
s)

L2-Error

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

h

P

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

h

P

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

h

P

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

R
un

tim
e

(µ
s)

P

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

R
un

tim
e

(µ
s)

P

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

R
un

tim
e

(µ
s)

P

Figure 5: Contour plots showing the runtime (dotted lines) and L2-error (solid lines and fixed

across all plots) for each (h, P)-combination in solving the Helmholtz problem using tetrahedral

elements. The three evaluation strategies are shown: sum-factorisation (a), elemental matrices (b)

and global matrix (c). A comparison with the optimal strategy chosen for each discretisation is

shown in (d), where the filled circle marks the optimal discretisation to attain a solution with a

10% error tolerance, while the open circle indicates the optimal discretisation for 0.1%.

10

h	

C.D. Cantwell et al. From h to p efficiently

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6
103

104

105

10-1 10-2 10-3 10-4

h

L2-Error

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6
103

104

105

10-1 10-2 10-3 10-4

h

L2-Error

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6
103

104

105

10-1 10-2 10-3 10-4

h

L2-Error

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

R
un

tim
e

(µ
s)

L2-Error

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

R
un

tim
e

(µ
s)

L2-Error

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

R
un

tim
e

(µ
s)

L2-Error

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

h

P

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

h

P

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4

h

P

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4
R

un
tim

e
(µ

s)

P

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4
R

un
tim

e
(µ

s)

P

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

102

103

104

10-1 10-2 10-3 10-4
R

un
tim

e
(µ

s)

P

Figure 5: Contour plots showing the runtime (dotted lines) and L2-error (solid lines and fixed

across all plots) for each (h, P)-combination in solving the Helmholtz problem using tetrahedral

elements. The three evaluation strategies are shown: sum-factorisation (a), elemental matrices (b)

and global matrix (c). A comparison with the optimal strategy chosen for each discretisation is

shown in (d), where the filled circle marks the optimal discretisation to attain a solution with a

10% error tolerance, while the open circle indicates the optimal discretisation for 0.1%.

10

!   Helmholtz
problem using
tetrahedral
elements

!   What is the best
combination of h
and p?

!   Depends on the
solution accuracy
required

!   Which, in turn
determines
whether to
choose local vs
global assembly

Optimum
discretisation
for 10%
accuracy

Optimum
discretisation
for 0.1%
accuracy

Blue dotted lines show runtime of optimal strategy; Red solid lines show L2 error

AEcute: Kernels, iteration spaces, and access descriptors

A roadmap: taking a vertical view General framework

Conclusions and Further Work
!  From these experiments:
!  Algorithm choice makes a big

difference in performance
!  The best choice varies with the

target hardware
!  The best choice also varies with

problem characteristics and
accuracy objectives

!  We need to automate code
generation

!  So we can navigate the design
space freely

!  And pick the best implementation
strategy for each context

Target hardware context

Application-domain context

Unifying
representation

Having your cake and eating it

!   If we get this right:
!   Higher performance than you can

reasonably achieve by hand
!   the DSL delivers reuse of expert

techniques
!   Implements extremely aggressive

optimisations
!   Performance portability

!   Isolate long-term value embodied
in higher levels of the software
from the optimisations needed for
each platform

!   Raised level of abstraction
!   Promoting new levels of

sophistication
!   Enabling flexibility

!   Domain-level correctness

C/C++/Fortran

CUDA
VHDL

DSL
Reusable
generator

Performance

E
as

e
of

 u
se

Acknowledgements

!  Thanks to Lee Howes, Ben Gaster and
Dongping Zhang at AMD

!  Partly funded by
!  NERC Doctoral Training Grant (NE/

G523512/1)
!  EPSRC “MAPDES” project (EP/I00677X/1)
!  EPSRC “PSL” project (EP/I006761/1)
!   Rolls Royce and the TSB through the

SILOET programme

