
GILK: A dynami instrumentation tool for theLinux KernelDavid J. Peare, Paul H.J. Kelly, Tony Field and Uli HarderImperial College of Siene, Tehnology and MediineExhibition Road, London, UKAbstrat. This paper desribes a dynami instrumentation tool for theLinux Kernel whih allows a stok Linux kernel to be modi�ed while in ex-eution, with instruments implemented as kernel modules. The Intel x86arhiteture poses a partiular problem, due to variable length instru-tions, whih this paper addresses for the �rst time. Finally we present ashort ase study illustrating its use in understanding i/o behaviour in thekernel. The soure ode is freely available for download.1 IntrodutionIn this paper we desribe an instrumentation tool alled GILK that has beendeveloped spei�ally for the Linux Kernel. It permits sensitive instrumentationode to be added to an unmodi�ed kernel in exeution with low instrumentationoverhead. This is ahieved through an implementation of runtime ode spliing,whih allows arbitrary ode to be inserted in the kernel without a�eting itsbehaviour. Currently the tool works only for kernels running on the Intel x86arhiteture, although in priniple there is no reason why it ould not work onothers. Through a graphial interfae, the user may hoose how and where toinstrument, when to begin and end individual instruments and what to do withthe information produed. We make the following ontributions:{ An implementation of runtime ode spliing for the Intel x86 arhiteture isoutlined.{ A new tehnique for ode spliing, alled loal boune alloation, is desribed.2 Related WorkMuh of the foundation for this projet has been laid by Tamhes, et al. [1{3℄ with the KernInst dynami instrumentation tool. This works on the Solariskernel and UltraSpar arhiteture and its tehniques are appliable to a �xedlength instrution set and multi-threaded kernel.Binary rewriters suh as QP/QPT [4℄, EEL [5℄, BIT [6℄ and ATOM [7℄ intro-due instrumentation ode by modifying the exeutable statially.

movl 60(%esp,1),%ecx testb $0x10, %ch jz 24

pusha

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

jmp patch jz 24

push $iid call instrument

addl $4,%esp popapopf movl 60(%esp,1),%ecx

testb $0x10, %ch jmp next

pushf

Fig. 1: Illustrating the proess of plaing aode splie. In the new sequene two bytesare now redundant, as they are no longerin the ow of ontrol. The two overwritteninstrutions are reloated to the path.

This is, arguably, a safer approahthan runtime modi�ation, but ismore umbersome. It is our beliefthat GILK provides a more pratialsolution, as its dynami approah ismore suited to the exploratory na-ture of performane monitoring anddebugging.3 GILK OverviewThe GILK tool onsists of two om-ponents: a devie driver (alled ILK)and a lient. The lient does the bulkof the work, with the devie driverproviding aess to kernel spae.The lient begins with a sanningphase to establish the set of valid in-strumentation points. The user thenspei�es what instrumentation should take plae, whih amounts to seletinginstruments, hoosing points and speifying start and �nish times. The toolsupports staggered launhing and termination of instruments, whih providesgreater exibility.There are two instrument points assoiated with eah basi blok of a kernelfuntion: the pre- and post-hook. A pre-hook instrument gets exeuted beforethe �rst instrution of the blok, while a post-hook instrument is exeuted afterthe last non-branhing statement.Eah of the instruments is assigned a unique identi�er (iid) whih is logged,along with any additional data, to a bu�er in the kernel, whih the lient peri-odially ushes. Eventually, they are written to disk. The lient keeps a reordof the ative instruments so that the kernel an be safely restored to its originalform.3.1 Code SpliingThe idea behind ode spliing is to write a branh instrution or splie at theinstrument point. Clearly, this will overwrite instrutions at that point and,therefore, those a�eted are �rst reloated into a ode path. The splie targetsthis ode path, whih must also save and restore the mahine state and all theinstrument funtion. This is illustrated in Figure 1.Under the Intel x86 arhiteture, the splie used is 5 bytes long. However, aninstrution may be a single byte in length, making it possible for the splie tooverwrite more than one instrution. If an overwritten instrution (other thanthe �rst) is the target of a branh, ontrol ould be passed into the middle ofthe splie!

It is for this reason that GILK must generate the Control Flow Graph foreah kernel symbol. With this knowledge the above problem an be redued tosaying that it is unsafe to straddle the splie aross a basi blok boundary.There is a seond problem with variable length arhitetures that is similarto the �rst. This time, onsider what happens if a thread is suspended at anoverwritten instrution. Again, when the thread awakens, ontrol ould be passedinto the middle of the splie. At this point, the methodology of the Linux Kernelomes to the resue. There are three main points:{ A proess exeuting in kernel spae must run to ompletion unless it volun-tarily relinquishes ontrol.{ Proesses running in kernel spae may be interrupted by hardware interrupts.{ An interrupt handler annot be interrupted by a proess running in kernelspae.These three points, taken together, allow us to overome this seond problem.Firstly, the ability to blok interrupts means the devie driver an write thesplie without fear of interruption. Seondly, although a proess may relinquishontrol it an only do so through indiretly alling the shedule() funtion. Thismeans that, so long as we don't instrument this funtion, the sleeping threadproblem an be ignored. Further disussions on these topis an be found in [8℄.3.2 Loal BouningIt is sometimes the ase that a basi blok is less than �ve bytes in length. Thismeans we annot always plae a splie without straddling a blok boundary.However, the Intel x86 arhiteture also supports a two byte branh instrutionwith limited range. In general, this is not enough to reah the ode path diretly.Therefore, GILK attempts to plae a normal splie within this range. This istermed bouning. The problem, then, is where to position these bounes. Lukily,it is often the ase that spae is made available by splies for other instruments.To understand this better, onsider again Figure 1. If the seond overwritteninstrution was three or more bytes longer then there would be (at least) �veredundant bytes available for use as a boune. If no other instruments are a-tive, or there are simply not enough redundant bytes, then GILK will reloateinstrutions solely for the purpose of �nding spae.This strategy is termed loal boune alloation beause GILK only attemptsto alloate bounes within the funtion being instrumented.3.3 Instrument FuntionsThe instruments themselves are implemented as kernel modules, as this simpli�essome of the dynami linking issues. Eah instrument module initially registersitself with the ILK devie driver, providing a pointer to the instrument funtion.The instrument funtion aepts, as parameters, at least the unique instrumentidenti�er and possibly other arguments depending upon whih ode path tem-plate was used. An example funtion is:

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2e+09 4e+09 6e+09 8e+09 1e+10 1.2e+10

ca
ll

co
un

t f
or

 in
te

rr
up

tib
le

_s
le

ep
_o

n

time in cycles

cat vol_dump
sed -e "s/\(.\)\/\(.\)/\2#\1/"

grep -a " "

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2e+09 4e+09 6e+09 8e+09 1e+10 1.2e+10 1.4e+10 1.6e+10

ca
ll

co
un

t f
or

 in
te

rr
up

tib
le

_s
le

ep
_o

n

time in cycles

sed -e "s/\(.\)\/\(.\)/\2#\1/"
grep -a

sort

Fig. 2:void simple_instr(unsigned int iid) {ilk_log_integer_sample(jiffies,iid);}This funtion simply logs the value of the global variable \jiÆes" when it is alled.Being a kernel module, it has aess to all the strutures of the kernel whih it anreport on. Also, as a `C' funtion it ould easily be more sophistiated.4 Experimental Results4.1 Pipe BlokingThis experiment provides a simple ase study to show GILK being used to understandkernel and proess behaviour. The idea behind it was this: suppose we have a seriesof UNIX ommands onatenated with the \pipe" operator and we wish to determinewhih of the ommands is the bottlenek. One way of using GILK to determine this isby instrumenting the kernel symbol pipe_write. Part of the ode for this symbol is:while ((PIPE_FREE(*inode) < free) || PIPE_LOCK(*inode)) {...interruptible_sleep_on(&PIPE_WAIT(*inode));The funtion interruptible_sleep_on() puts the proess to sleep, pending a wakeup all from the pipe reader. So, the above an be simpli�ed to saying that the proessis put to sleep when there isn't enough spae in the bu�er or the pipe is loked by areader. Therefore, it is reasonable to assume that a proess in a pipeline will make alot of alls to interruptible_sleep_on() if it is produing data faster that it an beonsumed.To measure this, GILK was used to plae a pre-hook instrument on the basi blokwhih makes the all to interruptible_sleep_on(). The instrument reorded theProess ID and a timestamp. A large �le, alled \vol dump" was reated with randomdata and the following pipeline used:% at vol_dump | sed -e "s/\(.\)\/\(.\)/\2#\1/" | grep -a " " | sort

-16

-14

-12

-10

-8

-6

-4

-2

0

2

0 1 2 3 4 5 6 7

lo
g1

0(
pd

f)

log10(binsize in microseconds)

gilk
tcpdump

Line with slope -2.6

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-1.5 -1 -0.5 0 0.5 1 1.5 2

lo
g1

0(
P

ow
er

)

log10(Frequency in Hz)

tcpdump
gilk

Line with slope -1.6

Fig. 3: These plots show a omparison of the histograms (left) and power spetra basedon data from GILK and tpdump.The results an be seen in the left graph of Figure 2. They indiate that the \at"proess is making a large number of alls to interruptible_sleep_on() whilst theothers are making relatively little. This means that \at" is produing data faster thanit an be onsumed and this is ausing it to blok. The suspiion is, therefore, that\sed" is the bottlenek for this pipeline.If this was the ase then we would expet proesses after it to be bloking ontheir read operations. To on�rm this a seond experiment was performed in whihthe pipe read operation was monitored for alls to interruptible_sleep_on(). Theresults from this are shown in right graph of Figure 2 and they show that all proessesin the pipeline after \sed" are bloking whilst waiting for data to be produed. Hene,the onlusion that \sed" is the bottlenek seems reasonable.4.2 Network TraÆ AnalysisThe experiments outlined in this setion form part of ongoing researh into self-similarity of network traÆ at Imperial College. This partiular experiment used GILKto investigate the properties of arti�ial network traÆ. For this a simple multi-threaded JAVA server was onstruted that transferred data aross the network toa number of lients.The experiment requires inter-arrival times for pakets to be measured. The utilitytpdump was initially used for this, but it oasionally reported inter-arrival times ofzero. Clearly, this is a mistake and it was unlear whether the generated power spetrawas being a�eted.Thus, GILK was deployed to on�rm that inter-arrival times of zero were not realand asertain if they were a�eting the original data. It was used to instrument fun-tions within the Linux TCP/IP stak as well as the Ethernet driver. The measurementstaken on�rmed that interarrival times were always positive and it was onluded thatthere was negligible di�erene between the power spetra generated with tpdump.Figure 3 illustrates the omparison.The signi�ane of the power spetra and self-similarity are beyond the sope ofthis paper and the reader is referred to [9, 10℄ for more information.

5 ConlusionGILK provides a useful instrumentation tool and provides an example implementationof runtime ode spliing for a variable length arhiteture, whih has not been donebefore. Experimental evidene shows that it as an aurate and reasonably low overheadway of performing instrumentation.There remains, however, some sope for improvement. Partiularly, the samplelogging proess appears expensive. Live register analysis ould also be used to makemahine state saving less expensive. Also, the need to implement instruments as kernelmodules adds to the overhead by requiring an extra funtion all. This ould be pre-vented by employing a more sophistiated dynami loader. The ustom disassemblerould be reworked to allow easy updating for new instrution set extensions and, �-nally, the lient interfae ould be extended to provide more instrumentation strategiesand easier navigation through the kernel.The soure ode for the tool has been plaed under the GNU General Publi Lienseand is available for download, along with an extended version of this paper [11℄.6 AknowledgementsUli Harder is supported by an EPSRC grant (QUAINT). David Peare is supportedby an EPSRC grant.Referenes1. Ariel Tamhes and Barton P. Miller. Fine-grained dynami instrumentation ofommodity operating system kernels. In Operating Systems Design and Imple-mentation, pages 117{130, 1999.2. Ariel Tamhes and Barton P. Miller. Using dynami kernel instrumentation forkernel and appliation tuning. The International Journal of High PerformaneComputing Appliations, 13(3):263{276, Fall 1999.3. Ariel Tamhes. Fine-Grained Dynami Instrumentation of Commodity OperatingSystem Kernels. PhD thesis, University of Wisonsin, 2001.4. James R. Larus and Thomas Ball. Rewriting exeutable �les to measure programbehavior. Software - Pratie and Experiene, 24(2):197{218, February 1994.5. James R. Larus and Eri Shnarr. EEL: mahine-independent exeutable editing.ACM SIGPLAN Noties, 30(6):291{300, June 1995.6. Han Bok Lee and Benjamin G. Zorn. BIT: A tool for instrumenting Java byteodes.In Proeedings of the USENIX Symposium on Internet Tehnologies and Systems(ITS-97), pages 73{82, Berkeley, Deember 8{11 1997. USENIX Assoiation.7. Amitabh Srivastava and Alan Eustae. Atom: A system for building ustomizedprogram analysis tools. ACM SIGPLAN Noties, 29(6):196{205, June 1994.8. Mihael Bek et al. Linux kernel internals. Addison-Wesley, Reading, MA, USA,seond edition, 1998.9. C. Tang P.Bak and K. Wiesenfeld. Self organised ritiality: an explanation of 1/fnoise. Physial Review Letters, 59:381, 1987.10. H. J. Jensen. Self-organised ritiality, CUP, 1998.11. Gilk: A dynami instrumentation tool for the linux kernel, http://www.do.i.a.uk/~djp1/gilk.html.

