
Reproduing inter-proesssynhronization for performanepredition using lightweight system alltraingAriel N Burton Paul H J KellyDepartment of Computing, Imperial College, London, UKfanb,phjkg�do.i.a.ukAbstratThis paper provides a brief overview of tehniques and tools beingdeveloped for monitoring and prediting the performane of Unix serveron�gurations for given real-life workloads. We show how our system alltrae mehanism, alled Ultra, aptures a omplete trae of a proess'salls to the operating system with only minimal interferene to the systemunder study. One aptured, the traes an be used to reprodue theaptured workload's behaviour in full.Rerunning suh multi-proess workloads from their traes is ompli-ated beause the inter-dependenies between the ativities of the indi-vidual onstituent proesses must be reprodued orretly if the overallbehaviour of the workload is to be reprodued suessfully. We showhow our approah an be extended to meet this requirement, and allowmulti-proess workloads to be traed and rerun. To illustrate the useful-ness of our tools, we present a ase study in whih our traes are used topredit the impat of �le system ahing on a multi-proess WWW server'sperformane.1 IntrodutionOur aim in this work is to develop a tool for a system performane onsultantto use to haraterize workloads that are omplex and subjet to external in-uenes and stimuli whih annot be ontrolled, managed, or predited easily.The onsultant would install the tool, and would monitor the system as it per-forms its normal duties. The onsultant would use the information apturedby the tool to evaluate the e�etiveness of hanges suh as hardware upgrades,adjustments to the system's on�guration or tuning parameters, or workloadredistribution to improve performane.The evaluation methodology presented in this paper haraterizes a workloadby the trae of its system alls. By rerunning the sequene of system alls in atrae under di�erent onditions, it beomes possible to study the performane ofthe workload under di�erent system on�gurations. We distinguish two modesof rerunning traes: trae replay and reexeution. These are desribed below.

Trae replay In this simple rerun mode, eah all in the trae is reissuedin turn, and user-level inter-system all exeution time is simulated by simplylooping for the appropriate period as reorded in the trae. The atual timetaken to omplete trae replay depends on the system all servie times ahievedby the system under test.Trae reexeution In some appliations, spinning to aount for user-modeexeution leads to inaurate results beause the appliation interats with theoperating system in other, less expliit ways, for example, by ausing TLB missesor page faults, or by ushing operating system data from hardware ahes. Wereprodue this behaviour by reexeuting the original appliation ode.In order to get reproduible results, we make sure that results returnedfrom system alls are reorded in the trae. The reexeuting appliation shouldbehave in a preisely reproduible way sine it is fed preisely the same inputs.The trae needed here is simpler sine user-level exeution times are not re-quired. System all parameters need not be reorded sine they will be suppliedby the reexeuting appliation. Results, however, must usually be reorded toensure that the appliation reeives the same inputs.Although most appliations of interest an, at least in priniple, be reexe-uted eÆiently, some behaviours are problemati and we return to this questionwhen we disuss future developments in Setion 6.1.Multiproess workloads Our earlier work [8, 9℄ foused on single-proessand sequential multi-proess workloads. Here we examine workloads in whihseveral traed proesses may be running onurrently and interating with oneanother. Eah proess logs its system alls to a di�erent �le, so the trae isonly partially ordered. However, we have to arrange synhronisation betweenreexeuting proesses for two reasons:1. where one proess waited for another at trae apture time, we shouldreprodue this dependeny at rerun so that only feasible exeution ordersare exerised.2. to keep the trae �le size and trae apture overheads small, we avoid log-ging data read from �les whenever possible, relying instead on reexeutingthe read. For this to work, we have synhronise to ensure that the orretdata are used.1.1 Contributions of this paperThe fous of this paper is the question of how to trae and rerun (both replayand reexeute) multi-proess appliations:1. We identify the onstraints and problems in replaying or reexeuting on-urrent traes, and demonstrate that timestamping system all entry andexit is not adequate2. We present an o�-line algorithm for �nding synhronisation dependenesbetween traes, using semanti knowledge of the traed operations

3. We desribe how modest hanges to the OS kernel were systematiallyapplied to apture the information neessary to determine preedene be-tween dependent operations4. We present our experiene in developing an eÆient tehnique for repro-duing the partial proess dependene order at rerun timeFinally, we demonstrate the e�etiveness of the performane evaluation toolusing a multi-proess WWW server running with varying amounts of RAM for �leahing, and evaluate the preditive value of the tehnique.2 Related workTrae apture has been used for many years for performane evaluation. Theritial aspet of our work lies in apturing just enough information, in this asesystem alls, to be able to reonstrut the omplete omputation by reexeution.Rather than supplanting lower-level trae apture and analysis, for example byhardware monitoring or modifying miroode, this failitates it by making areproduible reord of the original workload. We therefore fous our literaturereview on trae apture and reexeution.Interepting system alls The ptrae() system all provides a mehanismfor one proess to monitor the system all ativity of another, but inurs largeoverheads [8℄. Jones [11, 12℄ desribes a general tehnique for interposing agentsbetween an appliation and the operating system using a generi mehanism torediret alls to a spei�ed handler. Ashton and Penny [1℄ developed INMON,an \interation network monitor", designed to trae the ativity in the kernelaused by individual user ations. Tools of this nature omplement our work inthat they provide an insight to ativity within the kernel aused by a workload,whereas we report trae apture in order to haraterize the workload.File aess trae studies Ousterhout et al. [13℄, Baker et al. [3℄ and Bozmanet al. [7℄ used traes in �le system performane analysis. Of more interestis DFSTrae, used by Mummert and Satyanarayanan [15℄ in the evaluationof the Coda �le system, sine they also replayed the traes using the timinginformation given by the trae. Instead of modifying the operating systemkernel, Tourigny [17℄ and Blaze [6℄ exploited a remote �le system arhitetureto obtain traes of �le system ativity by monitoring the interations betweenlients and server.By ontrast, we aim in this paper to apture the entire system all trae,and to use it to study the overall system performane by using it to reexeutethe appliation.Logging reexeution for fault-tolerane Logging for reexeution or roll-bak has long been used for reovery from faults, and is ommon in transationproessing systems. Closer to our work are attempts to do this via a standardUnix-like API; an interesting example is the QuikSilver system [16℄. Whenonurrent proesses are involved, tehniques from hekpointing in distributedsystems (e.g., see Johnson and Zwaenepoel [10℄) will also be relevant.

Replay for debugging The problem of reexeution of parallel Unix pro-esses is similar to that of replaying parallel programs (e.g., see LeBlan andMellor-Crummey [14℄) for debugging purposes. Note, though, that we need tobe able to reprodue the original exeution time as aurately as possible.Finally, Bitar [5℄ gives a useful review of the validity issues in trae-drivensimulation of onurrent systems.3 ULTraFor our approah to be viable and attrative, the tool must inur minimum riskand interferene to the system under examination, provide enough informationfor the performane tuning mehanisms to be exerised properly, and lead toresults having adequate preditive aurayTrae apture Ultra (User Level Traing) interepts system alls and writestrae information to a trae �le. Its performane depends on two key fators:1. an eÆient mehanism for interepting the workload's system alls,2. a bu�ering sheme to redue the number of write operations required toreord the trae.It is the seond fator whih ompliates rerunning multi-proess beause eahproess has its own trae �le, and therefore the trae is only partially ordered.To be easy to use, we need a simple mehanism for ontrolling traing.Having onsidered various alternatives, we hose to substitute the dynamially-linked standard shared library providing Unix system alls. In the Ultra ver-sion the system all stubs are extended with modi�ations for trae apture andreexeution.3.1 Trae reexeutionIn order to reprodue both the workload's expliit and impliit interations withthe operating system, the original appliation's ode is reexeuted. In order forthis to work, the appliation's environment must be rereated from the traes.System alls are reissued but the values returned to the appliation are takenfrom the trae. Some system alls, however, will return di�erent values beause,for example, the all returns a kernel-reated handle for some resoure (e.g.,fork()). In general, there is no way of ensuring that when the all is reissued,the kernel selets the same value. Calls of this type are handled by keeping atranslation table mapping trae apture values to trae reexeution values.Handling synhronization A more important problem is that any inter-proess synhronization at trae apture time must be honoured. This synhro-nization an be either expliit, or impliit:Expliit this ours when, at trae apture time, one proess waited for an-other.

Impliit this ours when one proess read data (e.g., �le data or metadata)whih were modi�ed by another proess. The proesses may not havesynhronized expliitly, and the e�et we are trying to reprodue is theoutome of a rae.The key issue is that for reexeution to sueed, we must ensure that thesesynhronizations are reprodued and the proesses enter eah ritial regionin the same order so that the overall behaviour of the workload is preserved.This an overonstrain the order of events during reexeution, sine as far asan appliation is onerned it does not always matter in whih order the eventsour, for example, when writing reords to a log �le.Identifying inter-dependenies We post-proess the traes to identify anydependenies between the proesses in the workload. In general, the order ofations performed by two proesses must be reprodued if they both refer tothe same objet, and one of them modi�es the objet. To do this we modi�edthe operating system kernel to timestamp eah operation on the underlyingresoures. This instrumentation must be positioned arefully in the kernel fortwo reasons:1. if the timestamps were reorded at user-level the proess ould be de-sheduled between this point and when the operation is initiated. In theintervening period another proess ould aess the resoure.2. the order in whih the operations on a resoure are started is not neessar-ily the same as that in whih they terminate. This is beause operationsmay overlap in the kernel, and the order in whih the requests are pro-essed may depend on other fators, e.g., the urrent position of a diskarm. The instrumentation to aquire the timestamps must be positionedat the point(s) were the operation is ommitted.The modi�ations are very straightforward, few in number, and an be appliedsystematially (see Setion 4).Resoure granularity We ontrol the degree we allow the global ordering ofevents during rerun to diverge from that at trae apture time by varying thegranularity of what we onsider an objet. For example, if we are interested inreproduing the global order of events, we would onsider the entire operatingsystem kernel as a single resoure. It is more useful, however, to relax theordering during rerun as muh as possible so as to allow the workload to exeuteas naturally as possible on the new on�guration. Providing the order of eventson eah resoure is preserved, the global ordering of the events during rerun anbe relaxed.For our purposes it is suÆient to onsider just the �les (inodes) as theresoures in the system. We annotated the trae reords for eah operationwith its timestamp. Figure 3.1 shows an example in whih a single resoureis used by �ve proesses. The �gure shows the user �le desriptor tables and�le table entries that would be onstruted by a onventional Unix kernel [2℄.Proesses P1 and P2 are desended from a ommon anestor that opened the �lefor reading, and eah aesses the �le using an inherited �le desriptor. Similarly

for proesses P4 and P5. Proess P3 opened the �le independently for writing.Events on other resoures are not shown sine these an proeed independently.In this example there are a number of di�erent handles, or �le desriptors,assoiated with the �le. Operations using the same �le desriptor must be se-quened orretly even in the ase of reads beause the �le pointer is advanedas a side e�et. Reads using distint �le desriptors should be allowed to exeutein any order, providing their ordering relative to the writes is preserved. How-ever, sine the traes reord only the sequene of operations on the underlying�le, the events must be rerun in the order shown. We term this oarse rerun.
P
1

P
2

P
3

user file
descriptor table file table entry

Rd

Rd

Read event Write event

P
4

P
5

Wr

Figure 1: Coarse vs �ne dependene analysis. The left-hand graph shows theoarsely ordered dependenies for a single resoure, the right-hand graph showsthe same sequene of events ordered using the �ne dependene analysis.We an relax the onstraints imposed by oarse ordering by post-proessingthe traes. In this proedure the traes are fed through an analyzer whih simu-lates the e�ets of the �le system related operations on the kernel's tables. Thisallows us to identify reads whih use ommon �le desriptors, and to arrange forthese operations to be sequened orretly. Reads using other �le desriptors areallowed to proeed independently. Figure 3.1 shows on the right hand side thesame set of operations, but with the revised dependenies after post-proessingthe traes. It an be seen that under this ordering the workload is allowedgreater freedom to exeute naturally in that reads by proesses P1 and P2 areallowed to proeed independently of the reads by proesses P4 and P5. Note,however, that the pair of proesses P1 and P2 (and also P4 and P5) must oordi-nate their reads beause they share the same �le pointer. What we have done isto use semanti knowledge of the Unix kernel to identify whih reads are trulyindependent. Potentially, we ould re�ne the post-proessor to identify readsand writes whih refer to distint regions of the �le. This would allow us torelax the relative ordering of these operations. We term this �ne rerun.

3.2 Trae replayIn this form of trae rerun, we simply reissue the system alls made by the orig-inal workload, and we simulate user-level exeution time by spinning on a loopfor the appropriate period. We use the same tehniques as trae reexeutionto handle inter-proess synhronization. Trae replay exerises the operatingsystem as before, but as the user-level appliation ode is not exeuted we an-not reprodue behaviour whih depends on proesses' memory aess patterns.Thus, trae replay is potentially less aurate than trae reexeution beausewe annot reprodue paging, ahing, TLB, et. e�ets. The extent to whihthis is signi�ant depends on the harateristis of the workload.Measuring time - aounting for pre-emption For trae replay to beaurate we must ensure that the system alls are reissued at the orret rate.This happens naturally for trae reexeution, but for trae replay we need au-rate, high resolution measurements of the proesses' user-level inter-system allexeution times. This valuable information is not provided in standard Uniximplementations (user time is measured by sampling every few milliseonds).We aount for user time in the presene of other proesses by modifyingthe kernel to update a timer in its proess table entry on eah ontext swithto, or from, user mode. To keep the overhead to a minimum, the ost of readingthe lok should be low. We desribe how this is ahieved in our implemen-tation in setion 4. This provides aounting for user-mode exeution time atlok-yle resolution. The ounter ould be aessed via a system all, but weimprove performane by avoiding this. Instead, immediately prior to return-ing from a system all the kernel writes the times to the ultra area, a small,pre-determined area of the proess's user level address spae reserved for thispurpose. When the system all returns, these times an be read from the regionby Ultra, and reorded in the trae. It should be noted that if the appliation isnot being traed, then the times are simply ignored. The loation of this regionis arefully hosen (for example, at the base of the stak) so that its presene istransparent to both traed and untraed appliations.4 Implementing ULTraUltra is urrently implemented as two omponents: a substitute for the lib(version 5.3.12) shared library running under Linux version 2.0.35, and a smallnumber of kernel modi�ations. In addition we have developed a suite of toolsfor analyzing our traes.Kernel modi�ations The Linux system all mehanism was modi�ed toinlude the time measurement extensions desribed in Setion 3.2. To measuretime with high resolution and low overheads, we exploit the Pentium proes-sor's 64 bit Time Stamp ounter. This is inremented on every lok yle,and an be read in a single instrution (rdts). This allows us to obtain �ne-grained times very eÆiently. We use this feature to determine the number oflok yles a proess spends exeuting at user level.We also instrumented the kernel to generate timestamps for the resouresused by the workload. We identi�ed the ritial regions within the kernel where

it was important that we reord the order in whih events ourred to be thosethat involved operations on inodes. About 60 points were identi�ed and in-strumentation was inserted to generate and assign a timestamp eah time theseoperations were performed. We ould have used a simple ounter, but insteadwe used the value reported by rdts.The user-level exeution times and resoure aquisition timestamps wereommuniated to the user-level omponent of Ultra through the reservedultra area desribed earlier. In all, the modi�ations were modest, amountingto about 300 lines of C and Pentium assembler.The library This omponent is responsible for marshalling and writing thetrae reords. In a na��ve implementation, the trae reords would be writtenout as soon immediately. Doing so would double the number of real systemalls made by the workload, leading to poor performane. Consequently bu�er-ing is used to redue this overhead. Surprisingly, bu�ering is Ultra's mainsoure of omplexity. The areas most a�eted are proess reation ((v)fork())and program invoation (exeve()) where the bu�er must be handled arefullyto protet it from orruption. Trae apture, reexeution, and replay are alla�eted, but there is insuÆient spae to explain the details here.4.1 Implementing trae rerunAn important onsequene of our deision to use bu�ering to improve perfor-mane is that eah proess in the workload has its own trae, and thereforethe traes are only partially ordered. We post-proess the traes to identify thedependenies between the proesses. The traes are modi�ed so that reords forsystem alls whih use shared resoures are augmented with the identity of theoperations on whih they depend. The rerunning proesses synhronize theiraesses to the resoures using a table in shared memory. Entries are posted inthe table when a proess ompletes an operation. A proess about to attemptan operation examines the table to determine whether the events on whih itdepends have ompleted. If so, then it initiates the operation, otherwise it waits(by yielding the Cpu) until the events in question have been posted.5 Using ULTra to predit performaneChoie of benhmark Ultra is designed for workload haraterisation in sit-uations where the appliation is interating with its environment in ompliatedways whih make it diÆult to redo performane experiments with preisely re-produible results. However, for the purposes of this paper, we need to be ableto ompare the exeution time of a partiular workload with the exeution timeusing replay or reexeution of an Ultra trae. Thus we need to be able toreprodue the atual workload as well.We hose the apahe web server as the benhmark in order to overome thisproblem; it has the advantage that we an rerun it with a repeated sequene ofHttp \Get" requests, and get exatly the same behaviour (a simple illustra-tive example of a situation where this would not work would be where apaheis on�gured to operate as a WWW proxy ahe; it is diÆult to get preiselyreproduible results beause ahed data expires as time elapses).

Two workloads We on�gured apahe (version 1.2b6) to manage a opy ofthe 11,110 managed by the WWW server of the Advaned Languages and Arhi-tetures (ALA) setion of the Department of Computing at Imperial College.This amounted to approximately 175MB. The apahe server was on�gured torun in multi-proess mode, with �ve proesses to handle the Http requestsfrom the lients. In order to ondut repeatable experiemnts, a set of simplelients running on the same Cpu were used to issue a sequene of 5,000 requestsderived from the aess logs of the ALA server. Deriving the requests in thisway ensured that the patterns of aess to the douments were realisti.In order to illustrate a riher range of behaviours, a further workload forapahe was used. This workload was designed to have higher demands on mem-ory (see `Con�guration modi�ation' below). In this variant, the server was on-�gured to manage about 4,900 douments, amounting to approximately 32MB.A list of queries was onstruted so that eah doument was aessed one.Di�erent random permutations of this list was used by eah of the lients. Asbefore, apahe was on�gured as �ve proesses.Con�guration modi�ation apahe is highly �le intensive, and there ispotential for ahing sine ertain URLs are requested repeatedly during theexperiment. apahe relies on the underlying �le system to ahe repeatedly-used �les, and this depends on having enough memory. As an illustration of thepotential value of the approah, we show here that the Ultra trae an be usedto predit the performane of the workload on on�gurations with a range ofRAM sizes. We booted Linux with various amounts of RAM, and ompared theexeution time of the atual workload with the time taken to replay the Ultratrae, and to reexeute it. The same rerun trae was used for eah memory size,aptured from a run with the minimum 8MB on�guration. Coarse orderingwas used when rerunning the traes.5.1 ResultsThe experiments reported here were performed on an unloaded IBM-ompatiblePC with a 166 MHz Intel Pentium Cpu, 32MB of EDO RAM, and a 512KBpipeline burst-mode seondary ahe, running Linux version 2.0.25 (or variantsthereof). All appliation �le input and output was to a loal disk, with UltratraÆ direted to a seond, loal disk. Elapsed times were measured usinga statially linked instane of version 1.7 of the Gnu standard Unix timingutility, /usr/bin/time. apahe was built using the default on�guration andmake options, though a small modi�ation was made to the soure to ensurethat termination ould be handled onveniently.Figure 2 shows the atual and predited time ahieved by apahe for thetwo workloads. It an be seen that both trae reexeution and trae replayare suessfully prediting the e�et varying the availability of RAM has onapahe's performane. The auray of the arti�ial workload is onsiderablybetter than that for the ALA workload. The reason for this di�erene lies inhow the two workloads are a�eted by the �le ahe. It an be seen that theworking set of the ALA workload an be aommodated in memory for RAMsizes greater than or equal to 20MB. This is being identi�ed orretly by Ultra.Under Linux, �le system operations that an be satisi�ed from the ahe do notblok, and usually return diretly to the alling appliation. This a�ets the

0

100

200

300

400

500

5 10 15 20 25 30 35

T
im

e
(s

ec
s)

RAM size (MB)

Untraced execution time
Time predicted by reexecution

Time predicted by rdtsc

0

500

1000

1500

2000

5 10 15 20 25 30 35

T
im

e
(s

ec
s)

RAM size (MB)

Untraced execution time
Time predicted by reexecution

Time predicted by rdtsc

(a) ALA workload (b) Arti�ial workloadFigure 2: apahe performane with varying RAM|predited and atualALA workload beause proesses whih have yielded are subjet to followinge�ets aused by the yield mehanism used to order the events during rerun:1. When a proess yields, its dynami priority is leared. The Linux shed-uler does not realulate the proess's priority until the time-slies of allrunnable proeeses in the systen have expired [4℄. One onsequene of thisis that a proess may be fored to wait until long after the event for whihit is waiting has ourred. This, in turn, an a�et the other proessesin the workload, whih may depend on events to be performed by thisproess.2. In this sheme, there an be only one operation pending on a resoure atany one time sine an event is not started until the previous ones haveompleted fully. This exludes the possibility of overlapping operations inthe kernel.In partiular, realulation of the proesses' priorities, and hene their oppor-tunity to run, is delayed. In ontrast, the arti�ial workload has a very muhlarger working set, and therefore �le system operations blok more frequently.This allows the yielded proesses to exeute more frequently, thereby reduingthe e�ets of delays introdued by the rerun mehanism. Additionally, sinethere is less loality in the arti�ial workload the loss of opportunity to overlapoperations in the kernel is less signi�ant. apahe is partiularly a�eted bythese e�ets beause the proesses synhronize frequently using a lok �le tooordinate their use of a shared network soket from whih the Http requestsare read.6 ConlusionsWe have presented the design of Ultra an eÆient, portable tehnique for ap-turing traes of system all ativity of multi-proess Unix workloads. Ultra'seÆieny is ahieved by running at user level as part of the standard librarieslinked to appliations, and also by bu�ering the output of trae information.We desribe how we an determine the inter-proess dependenies by post-proessing the traes, and instrumenting a small number of kernel ritial re-gions.

An important area where Ultra may be applied usefully is in the perfor-mane evaluation, tuning and omparison of operating systems and �le systems.We present a ase study illustrating this, and demonstrate that Ultra an beused to apture the workload without substantial interferene, and an be usedto give fairly aurate preditions of the e�et of on�guration hanges on ap-pliation throughput.6.1 Further workPaging ativity Trae replay is potentially inaurate ompared with re-exeution beause it does not apture paging behaviour. We are working onintroduing additional instrumentation to trak a proess's memory aess be-haviour. Preliminary results are very promising.Asynhronous signals Workload-determined signals, suh as timer inter-rupts, are problemati sine there is potential for inonsistent results when thetrae is replayed on a faster or slower system. Implementation-determined sig-nals, suh as synhronisation between proesses, are easily traed. For reexeu-tion, it is vital for the signal to be delivered at preisely the same instrutionexeution point as during trae apture. Pre-emptively sheduled threads anbe handled by a similar mehanism.Given that it is diÆult or impossible to reate a reexeutable trae forabsolutely any appliation, our aim is to be able to detet whether an appliationbehaves in a way whih invalidates the trae.Referenes[1℄ P. Ashton. The Amoeba interation network monitor|initial results. Teh-nial Report TR-COSC 09/95, Deptartment of Computer Siene, Univ.of Canterbury, New Zealand, Ot 1995.[2℄ M. J. Bah. The Design of the UNIX Operating System. Prentie-Hall,1986.[3℄ M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirri�, and J. K.Ousterhout. Measurements of a distributed �le system. In Pro. 13th ACMSymposium on Operating System Priniples, pages 198{212, Ot 1991.[4℄ M. Bek, H. B�ohme, M. Dziadzka, U. Kunitz, R. Magnus, and D. Ver-worner. LINUX Kernel Internals. Addison-Wesley, seond edition edition,1998. Translated from the German.[5℄ P. Bitar and A. M. Despain. Multiproessor ahe synhronisation; issues,innovations, evolution. Computer Arhiteture News, 14(2), June 1986.13th Annual International Symposium on Computer Arhitetures.[6℄ M. Blaze. NFS traing by passive network monitoring. In USENIX WinterConferene, pages 333{334, 1992.[7℄ G. Bozman, H. Ghannad, and E. Weinberger. A trae-driven study of CMS�le referenes. IBM Journal of Researh and Development, 35(5/6):815{828, Sept/Nov 1991.

[8℄ A. N. Burton and P. H. J. Kelly. Workload haraterization usinglightweight system all traing and reexeution. In IEEE InternationalPerformane, Computing and Communiations Conferene, pages 260{266.IEEE, February 1998.[9℄ A. N. Burton and P. H. J. Kelly. Traing and reexeuting operating systemalls for reproduible performane experiments. Journal of Computers andEletrial Engineering|Speial Issue on Performane Evaluation of HighPerformane Computing and Computers, 1999. To appear.[10℄ D. Johnson and W. Zwaenepoel. Reovery in distributed systems usingoptimisti message logging and hekpointing. J. of Algorithms, (11), 1990.[11℄ M. B. Jones. Transparently Interposing User Code at the System Interfae.PhD thesis, Shool of Computer Siene, Carnegie Mellon University, Sept1992.[12℄ M. B. Jones. Interposition agents: Transparently interposing user ode atthe system interfae. Pro. 14th ACM Symposium on Operating SystemPriniples, 27(5):80{93, De 1993.[13℄ J. K.Ousterhout, H. D. Costa, D. Harrison, J. A. Knuze, M. Kupfer, andJ. G. Thompson. A trae-driven analysis of the UNIX 4.2BSD �le system.In Pro. 10th ACM Symposium on Operating System Priniples, pages 15{24, De 1985.[14℄ T. J. LeBlan and J. M. Mellor-Crummey. Debugging parallel programswith instant replay. IEEE Trans. on Computers, C-36(4):471{482, Apr.1987.[15℄ L. Mummert and M. Satyanarayanan. Long term distributed �le referenetraing: Implementation and experiene. Software|Pratie and Experi-ene, 26(8):705{736, June 1996.[16℄ F. Shmuk and J. Wyllie. Experiene with transations in QuikSilver. InPro. 13th ACM Symposium on Operating System Priniples, pages 239{53,Ot. 1991.[17℄ S. R. Tourigny. Charaterising the workload of a distributed �leserver. Master's thesis, Deptartment Computational Siene, Uni. ofSaskathewan, Canada, Sept 1988.

