
Searh strategies for Java bottlenek loation bydynami instrumentationDouglas J Brear, Thibaut Weise, Tim Wi�en, Kwok Cheung Yeung,Sarah A M Bennett and Paul H J KellyDepartment of Computing, Imperial College London SW7 2AZs.bennett,p.kelly�imperial.a.ukAbstrat. We have developed a prototype tool that supports instru-mentation of distributed Java appliations by on-the-y deployment ofinterposition ode at user-seletable program points. This paper exploresthe idea, originated in the Paradyn Performane Consultant, of system-atially searhing for performane bottleneks by progressive re�nement.We present the allgraph searh algorithm in detail, and disuss a num-ber of shortomings with the approah, some of whih an be addressedby improving the searh strategy. We support our onlusions with twoappliation examples. This is a report of work in progress, aimed atstimulating further investigation of this interesting approah.1 IntrodutionThe idea of dynamially pathing instrumentation ode into a program while it isrunning immediately leads to the idea of deploying instrumentation in responseto earlier measurements. For diagnosing performane problems, the objetivein doing this is to diret the programmer towards opportunities for improvingperformane. The idea was pioneered in the Paradyn Performane Consultant [9℄,whih uses a allgraph-based bottlenek searh strategy [4℄.This paper presents our progress in exploring this approah in the Java on-text. We address the following issues:{ Implementing dynami instrumentation within a Java Virtual Ma-hine. Several options are available; our implementation used our VeneerVirtual JVM, whih o�ers the prospet of automatially optimising the bot-tlenek ode one it has been identi�ed.{ The allgraph searh strategy. We give a detailed exposition of the all-graph searh strategy, whih lari�es some of the diÆulties of the approah.{ Searh strategy enhanements. To address some of these diÆulties,\deep start" enhanements to the allgraph strategy have been proposed [12℄.Random all-stak sampling has been shown to be e�etive but for Java itis diÆult to implement; we study a all ount alternative.We demonstrate the usefulness of our prototype tools, Judi (Java utility fordynami instrumentation) and JBolt (Java bottlenek loator toolkit) usingtwo non-trivial appliations.2 BakgroundThe Performane Consultant (PC), in Paradyn [9℄, strutures the searh forperformane \bottleneks" in terms of experiments; eah experiment tests a



hypothesis. A hypothesis is an assertion that the appliation spends a substantialamount of time behaving in some pathologial way whih might be addressed bythe performane engineer. Eah experiment is targeted on a \fous". For eahexperiment, the PC uses dynami instrumentation to ollet data to evaluatewhether the experiment's hypothesis holds true for this fous.If an experiment results in support for the hypothesis at the spei�ed fous,a further experiment an be formulated to identify the problem more preisely.The experiment an be re�ned in two ways - by re�ning the hypothesis (forexample by distinguishing di�erent kinds of synhronisation problem), or byre�ning the fous. A natural fous re�nement is to test whether the problem iswithin a funtion, or within one of its allees. Other fous re�nements might beto distinguish partiular threads or transation types.An alternative to using dynami instrumentation might be to instrumentthe binary to generate data on all possible hypotheses at all foi. The PC aimsto get essentially the same result, with muh lower overhead. The approahrelies on sampling, and works on long-running appliations provided behaviouris statistially fairly stable (we return to this issue shortly). The PC monitors theinterferene aused by the instrumentation it inserts, and throttles the numberof ongoing experiments in order to keep the interferene within spei�ed limits.Re�ning the fous by traing the appliation's allgraph on�nes the searh toode whih is atually exeuted (explored in [4℄).For �nding CPU bottleneks, this approah is not learly better than onven-tional approahes, suh as sampling the program ounter at random intervals.The real potential for the idea lies in bottleneks whih are harder to haraterise| where instrumenting for all hypotheses would lead to exessive interferene.DynInst [3℄ is an example of a portable library for dynami instrumentation,derived from the dynami instrumentation tehnology [6℄ developed as part ofParadyn. In DynInst, a \point" is a loation in a program where instrumenta-tion an be inserted. A \snippet" is an abstrat syntax tree representing someexeutable ode whih is to be inserted into a program at a point. Snippets aninlude onditionals, funtions alls, and loops. Snippets are translated to binaryinstrutions then opied into an array in the appliation's address spae. Theappliation then has to be modi�ed to branh into the snippet ode, using odethey term a \trampoline".Dynami instrumentation for Java annot be implemented this way, with-out exposing low-level implementation details of the JVM (for example, pro�le-direted re-optimisation). There are several alternative approahes:{ Re-de�ne the lass using the Java Debug Interfae (JDI) all VirtualMahine.redefineClasses(), introdued in Sun's JDK 1.4. This approahis used in ProbeMeister [10℄. The overhead to do this is reported to be around20 milliseonds for a small example, but inreases with large lasses sinemethods annot be rede�ned individually, and JIT optimisation must be re-done. To redue the overheads, Dmitriev [5℄ advoates re�ning the JDI witha all to rede�ne methods individually.{ Run the JVM in debugging mode, and set breakpoints to insert instru-mentation. This is the approah taken by Popovii et al [11℄. Historially,



JVMs have run substantially slower than normal in debugging mode, whetherbreakpoints are present or not; modern JVMs appear to make this approahmore ompetitive.{ Run the Java appliation in a virtual JVM. This is the approahused in our Judi tool [16℄. We use the native JVM to exeute appliationbyteode as muh as possible, but have to interept exeution in order toretain ontrol. The sheme su�ers some overhead (see Setion 5) on exeutionof all the appliation's ode (apart from system libraries), but runs with JIToptimisation.2.1 The Veneer Virtual Java Virtual Mahine (vJVM)When extending the Java platform, it is often desirable to implement new fea-tures diretly into the Java Virtual Mahine. However, suh modi�ations aretied to a spei� JVM, and the omplexity and size of many JVM implementa-tions an make this a diÆult and time-onsuming task. One way to overomethe portability problem might be to write a JVM in Java, that runs on top of anunderlying JVM. This has been done before in projets suh as JavaInJava [14℄.However, suh implementations have a tendeny to be extremely slow, sine theyattempt to emulate all aspets of a JVM.Our approah, similar to the Dynamo/Rio projets [1, 2℄, is to build a JavaVirtual Mahine using Java that uses the underlying JVM to diretly exeute asmuh of the program ode as possible, only seizing ontrol of the system whenwe wish the behaviour to deviate from that of the underlying JVM [17℄. It allowsus to run most of the appliation ode diretly (i.e. jumps to the orrespondingbyteode), but the vJVM maintains ontrol over exeution by interepting on-trol ow. Veneer is muh more powerful than is needed for dynami instrumenta-tion alone { our long-term goal is to use it to diagnose performane improvementopportunities automatially, then optimise dynamially.The ontrol ow is interepted by \fragmenting" eah method. There are anumber of di�erent fragmentation poliies: by basi blok, at method level (usedby the JBolt extension to JUDI, see Setion 3), and at RMI invoations (usedfor our work on RMI optimisation [17℄). The method body is split into bloks,and the method entry is replaed by an \exeutor loop" that walks the ontrolow graph, invoking eah blok in turn. A method's ontrol ow graph an beupdated \on-the-y" (i.e. as the appliation is running), allowing us to use thisas a framework for dynami instrumentation.The fragmentation proess (whih is based on the SOOT framework [15℄)inludes use/def and liveness analyses. Eah fragment arries this as dependenemetadata, whih an be used in a run-time optimiser.2.2 Java Utility for Dynami Instrumentation (JUDI)JUDI is a prototype dynami instrumentation tool for Java [16℄. It has a lientgraphial user interfae (GUI) whih onnets to a set of remote vJVM's run-ning fragmented ode. The GUI allows the user to browse the remote systems'methods, and to upload \instruments" to the remote systems, where they arepathed into the running ode. The instruments are simple Java objets that an



be ompiled and loaded on-the-y. The tool onsists of two omponents, whihan run on separate hosts to avoid interferene:{ JUDI-StartApp is responsible for starting the appliation and registering itwith the RMI registry.{ JUDI-GUI allows the user to insert instruments dynamially into the appli-ation.The instrumentation strategy used for the CPU Time bottlenek searh (seeSetion 3) is designed to produe an inlusive timing of instrumented methods.Instruments are plaed at the method entry point and at every return statementin the method. The instruments at the return statements are twinned with thesingle instrument at the entry, and when exeuted obtain the elapsed time onthe HPTimer1 of the entry point instrument.JUDI's unit of instrumentation deployment is an \Instrumentation StrategyComponent" (ISC). This onsists of:{ A set of Instruments - sublasses of a generi Instrument plan blok. Instru-ments typially start, stop and log timers, or generate a log entry reordingontrol ow, or data values.{ An Instrumentation strategy. This is usually just whether the instrumentis to be exeuted \before", \after", or \around" its target blok, and whetherit applies to the whole method, or every basi blok in the method.{ Instrumentation targets: the set of program objets (methods, lasses)to whih the instrumentation strategy should be applied. If not the entireprogram, this is seleted expliitly through the GUI.{ Instrumentation data lass: instruments generate data, usually either alog or some kind of histogram.{ Instrumentation analyser: this is a GUI omponent for viewing the re-sults from the experiment.3 The basi bottlenek searh algorithmAutomati bottlenek searh is implemented as a JUDI ISC alled JBolt, theJava bottlenek loator toolkit. Fig. 4 shows, in outline form, the automatibottlenek searh algorithm (desribed informally in [4℄). The algorithm startswith an appliation ready to run:{ It installs instrumentation at the root of the all graph (line 10), then allowsexeution to proeed.{ When an appliation thread exeutes a timer instrument, the appliationthread bloks and the ative instrument objet is passed to the searh algo-rithm (line 19).{ The algorithm maintains a pro�le database whih reords instrumentationdata aumulated so far. At line 24 the algorithm determines whether thenew measurement allows us to lassify this andidate program point as abottlenek.1 The timer lass used to obtain inlusive time measurements, HPTimer, was devel-oped by Kwok Yeung [17℄. It o�ers nanoseond resolution.



{ When a bottlenek method is identi�ed (line 25), we add it to the outputset (line 30), then the instrumentation is re�ned to determine whih, if any,of the method's allees is responsible (line 33).{ We may instead onlude that we have enough data to deide this methodis not a bottlenek (line 36). The instrument is therefore removed.{ Finally, we may deide to leave the instrument in plae to aumulate furtherpro�le data.The output onsists of a list of bottlenek methods, prioritised by severity andspei�ity. This is onveniently presented to the user by olouring the nodes ofthe all graph, as shown in Fig. 2.The algorithm in Fig. 4 is inomplete in two important ways:{ The algorithm fails to �nd some bottleneks { where a bottlenek method isalled from many di�erent points, but none of its allers is itself a bottlenek(e.g. see Fig. 1). We return to this issue in Setion 4.{ The algorithm assumes that we know eah method's allees.3.1 Finding the allee setThe algorithm maintains two key data strutures:{ Fous: This is the set of methods whih have been identi�ed as bottleneks,and whose allees are being instrumented to determine whether a re�nedbottlenek hypothesis holds { i.e. whether the problem lies in one of theallees. Fous methods are not instrumented.{ Frontier: This is the set of methods urrently being instrumented. A methodis in the frontier if its aller is in the fous (we ignore reursion for simpliityof presentation).The problem is that this de�nition is retrospetive: by the time we �nd outthat a method is a bottlenek, it is too late to instrument its allees. This is afundamental problem, but there are several measures whih help:1. We ould analyse eah method to �nd all sites where the target methodis statially known. This tehnique is used in Paradyn, but does not handleJava's prevalent virtual methods well. Callee methods identi�ed this wayan, in priniple, be added to the frontier as soon as the aller reahes thebottlenek threshold. A method an be inluded in the allee set but notatually alled, at the ost of some redundant instrumentation.2. We ould instrument eah bottlenek method, with ode to reord its alleesand add them to the frontier. This is how Paradyn deals with virtual andindiret method alls. This does lead to some interferene: the allee loggingoverheads are inluded in the aller method measurement.3. We add a simple instrument to all methods, whih heks whether the alleris in the fous. If so, the allee is added to the frontier. Our urrent prototypeuses this tehnique, but we plan to investigate alternatives.4. Some bottlenek methods are exeuted only one in a run of the appliation.To instrument their allees, we have to re-run the appliation. The needfor this is alleviated to some extent by augmenting the allgraph searh asdesribed in Setion 4.



5. We ould instrument the appliation to onstrut its all graph, then re-runthe appliation and use this all graph to guide bottlenek searh. The �rstrun would be slowed down due to heavy instrumentation, but the seondrun would su�er minimum interferene. This sheme relies on the all graphbeing very similar on both runs. This is an attrative alternative strategyfor our prototype.3.2 Bottlenek identi�ation riterionThe objetive is to �nd and prioritise bottleneks. The riterion for inludingan andidate bottlenek would ideally be the proportion of the appliation'stotal run-time attributable to that andidate. However, to diret the bottleneksearh, we need to lassify andidates before the program has �nished. For theexperiments reported here we used a simple threshold of 10% of the exeutiontime so far. We found that this strategy lead to some problems:{ Objet onstrutors often evaluate as bottleneks when the appliation isstarting up. When a onstrutor is alled from the `main' method of theappliation, it is instrumented sine the `main' method is initially in thesearh fous. Later on, when seen in the ontext of the entire program run,it will probably represent only a small fration of the total CPU time.{ Small methods that are alled very frequently often do not initially appearto be bottleneks. When instrumented and a time obtained, the method'srelatively short exeution time does not make it appear to be a bottlenek.However later on in the program, one that method has been alled manytimes, the ombination of high frequeny alls and short but un-negligibleexeution time may mean it is a bottlenek.In either ase, the root ause of the initial misinterpretation of the metri an beattributed to a lak of ontext; the method an really only be properly evaluatedas a bottlenek in the ontext of the whole program. For this reason, JBolt peri-odially re-evaluates (urrently at the end of eah run through the appliation)all instrument data, in order to get a balaned view for eah method.4 Searhing upwards through the all graphFig. 1 shows how the allgraph-based bottlenek searh algorithm fails to �ndsome bottleneks. The allees of a method are inluded in the searh only if thealler's exeution time indiates a bottlenek is present. If a method is alled byseveral non-bottlenek methods, it ould still aount for a large proportion ofthe run-time.The idea proposed by Roth and Miller [12℄ is to augment the searh usingadditional information, and use this to target the searh on \deep starters". Rothand Miller hoose deep starters, using all stak sampling, from informationwhih their implementation already ollets. In our vJVM implementation, itis possible to apture stak samples but rather expensive. Instead we use asimple instrument to ount method exeutions (the same instrument builds theall graph in order to provide allee information). In our implementation, deepstarters are methods whose exeution frequeny exeeds our hosen threshold(10%).



Caller1 Caller2 Caller3

Bottleneck

Callgraph search
terminates at this
level; no methods
are bottlenecks.Fig. 1. Bottlenek hidden from the allgraph searhWe use a deep-starter to target the allgraph searh, by �nding all the pathsthrough the all graph that onnet a fous node to the deep starter. All methodson these paths an be added to the frontier, and thus be instrumented. Whenexeuted, these instruments generate method timings (olleted at line 19 inFig. 4). If a method exeeds the bottlenek threshold, it is added to the frontier.The timing instrument is an \around advie" [7℄: the timer is started onentry, and logged on exit. However, the deep-starter sheme above adds methodsfrom the all paths to the instrumentation frontier before those methods havereturned. If we use only \around" instruments, we will not get any measurementsuntil these methods are re-entered. Methods whih are alled just one willhave to wait until the appliation is restarted. To improve this situation weexperimented with \late instruments" { if a method is already on the all stak,we add an \after" instrument. This is used to measure the time between addingthe instrument and method exit. The atual method exeution time is sure tobe more, but if this lower bound exeeds the threshold we an add the methodto the fous immediately. We found that late instruments speed up the searhsubstantially, at the expense of less reliable quantitative results (see Setion 5.3).5 Experimental evaluationThis setion presents two examples of using JBolt to detet performane bottle-neks, and validates the results against Sun's hprof pro�ler. RouteFinder is a rail-way route planning tool based on Dijkstra's shortest path algorithm. It is single-threaded and onsists 3823 lines of ode (55 lasses, 74 methods). SpeJVM98208 db (data management) is taken from the SpeJVM98 benhmark suite [13℄.The program performs a variety of database operations on a memory-residentdatabase of name, address and phone number reords. It is also single-threaded,and onsists of 8541 lines of ode (24 lasses, 40 methods).We used the Sun Java 2 platform, standard edition version 1.4 02, runningon SuSE Linux 7.2. Most of the experiments were arried out on on a systemwith a single 1400MHz AMD Athlon proessor, with separate 64KB L1 data& instrution ahes, uni�ed 256KB L2 ahe, and 512MB memory. Hprof [8℄samples at a onstant rate, so the results are more aurate on a slower system.To ompare measured method timings we used a slower mahine, with a 450 MHzPentium III proessor, with separate L1 data & instrution ahes of 16Kbytes,L2 uni�ed ahe 512Kbytes, and 256Mbytes memory.Table 1 shows the impat of JBolt and hprof on the two appliations' exeu-tion time. For 209 db, the slowdown is fairly small, and JBolt does better than



Table 1. Benhmark OverheadsRouteFinder SpeJVM98 209 dbTime(ses) Slowdown fator Time(ses) Slowdown fatorUnfragmented Appliation 3.73 1.00 22.02 1.00Fragmented Appliation 28.13 7.54 24.30 1.10Pro�led with JBolt 105.14 28.19 26.96 1.22Pro�led with hprof 71.74 19.23 51.30 2.33hprof. However, for RouteFinder, the slowdown is very severe with both pro�lers,with JBolt somewhat worse. We believe the reason is that RouteFinder's bot-tlenek method is exeuted many times (7 million), while 209 db spends mostof its time in a method whih is alled a small number of times. In both pro�l-ers, method entry is the main soure of overhead, but hprof inurs performaneoverheads on primitive Java lasses, whih Veneer runs at full speed.5.1 Route�nder resultsFig. 2 shows the view displayed at the end of JBolt's searh for bottleneks inRouteFinder. There is only one searh strand in the appliation, branhing atAlgorithm.�ndNextNode, and joining again at Edge.isMe. Both hprof and JBoltagree on the bottlenek. As a result, the method Edge.isMe was modi�ed. Run-ning the new version of the program (with a larger rail network) gave a time of12.07 seonds, as opposed to 25.13 seonds before optimisation (eah averagedover �ve runs), i.e. a speedup of just over two.Fig. 3 illustrates the eÆieny of the hybrid searh (top-down + deep-startstrategies) in omparison with the allgraph (just top-down) searh. The hybridsearh loates all the bottleneks in approximately 55% of the time taken by theallgraph searh on its own.5.2 SpeJVM98 209 db resultsAgain, hprof and JBolt agree on the main bottlenek for this appliation; themethod DataBase.shell sort. JBolt overheads are low beauseDataBase.shell sortis alled a small number of times.For the DataBase.read db method, JBolt only attributes 4.43% of total CPUtime on average to this method, ompared to hprof's 9.8%. Although JBolt andhprof agree on where the bottleneks are in both appliations, their attributionof time to methods varies substantially. In general, ompared to hprof, JBoltunderestimates time spent in short-running methods, and over-estimates timespent in longer-running methods.5.3 DisussionOur experiments show that JBolt is able to identify the same CPU bottleneks asa onventional pro�ler. However, appliations an run very slowly under JBolt.This is largely the overhead of fragmentation. We are implementing a number ofimprovements to Veneer's basi mehanisms. Another strategy whih ould helpwould be to swith between unfragmented and fragmented method variants asinstrumentation is added and removed.



Fig. 2. RouteFinder - bottleneks identi�ed by JBolt. The path down the right-handside (displayed in red on the JUDI GUI) identi�es the method Edge:isMe as the mainbottlenek in this appliation.

0

20

40

60

80

100

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

%
 o

f B
ot

tle
N

ec
ks

 L
oc

at
ed

Search Time (ms)

RouteFinder BottleNeck Search

Hybrid
CallGraph

0

20

40

60

80

100

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

%
 o

f B
ot

tle
N

ec
ks

 L
oc

at
ed

Search Time (ms)

RouteFinder BottleNeck Search

Hybrid
CallGraph

Fig. 3. RouteFinder - the hybrid searh �nds all bottleneks in approximately 55% ofthe time taken by the allgraph-only searh.



JBolt pro�les the fragmented version of the appliation, not the real appli-ation. Comparing the method timings given by JBolt and hprof suggests thatthere are di�erenes, so it is unlear how muh of the variation in method timingsand bottlenek ranking are due to di�erenes in the performane harateristisof fragmented ode, and how muh is due to inauraies in the data samplingand analysis. Fragmentation appears to distort results for short lived methods.Short-running appliations like the benhmarks hosen here have to be re-exeuted several times (up to four), for JBolt to �nish its searh for bottleneks.The main reason for this is to aount for methods whih are alled only oneper run.The allgraph strategy has the desireable property that instrumentation over-heads are never inluded in measurements. However, the upward searh shemesintrodue \late instruments" whih are added while measurements higher in theallgraph are in plae. We heuristially alleviated this problem by allowing onlyone late instrument to be in plae at a time; we maintain a late instrumentqueue, and always selet the deepest late instrument in the all graph. Relax-ing this onstraint leads to serious measurement errors, but enormously fasteronvergene: most appliations saw all the bottleneks identi�ed within the �rstrun. A more sophistiated instrument plaement strategy should help here.6 Conlusions and Further WorkWe have reported on our exploration of searh strategies for using dynami in-strumentation to loate and haraterise performane bottleneks. This workforms part of our longer-term objetive to explore automati pro�le-driven op-timisation, and it is onstruted on top of the Veneer framework whih we builtfor this purpose.Our results are not entirely positive. The main purpose of dynami instru-mentation is to avoid the performane impat of stati approahes. We expetto redue the performane impat of Veneer dramatially with further develop-ment. There are also serious onerns about the statistial signi�ane of JBolt'sresults. This seems inherent in the approah: sampling is driven by earlier mea-surements, so is not very random. For very long-running appliations, or appli-ations with a known repetitive struture, this an, perhaps, be overome.Perhaps the most promising prospet lies in searhing for more subtle per-formane bottleneks. Miller et al [9℄ observe that the searh for a bottlenekan involve re�nement in three dimensions; they all this the W3 model:{ When: Is the performane problem on�ned to a partiular phase of theomputation? A partiular time of day?{ Where: at what lass, method, module, server, omponent or line of odedoes the problem our? The allgraph (for example as shown in Fig. 2)shows a natural example. Others are possible: whih threads? Whih users?Whih transation types?{ Why: What is the reason for the performane problem?In eah dimension (when, where, why), the hierarhy provides a way to struturethe searh, leading to a suessively more re�ned haraterisation of the problem.



This should allow us to target expensive instrumentation on just the parts ofthe ode and the phases of the omputation where subtle performane problemsare likely to our.AknowledgementsThis work was funded by the U.K. Engineering and Physial Sienes ResearhCounil through a PhD studentship and the DESORMI projet (GR/R15566).Referenes1. Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: a transparentdynami optimization system. ACM SIGPLAN Noties, 35(5):1{12, 2000.2. Derek Bruening, Evelyn Duesterwald, and Saman Amarasinghe. Design and im-plementation of a dynami optimization framework for windows. In 4th ACMWorkshop on Feedbak-Direted and Dynami Optimization (FDDO-4), De 2001.3. Bryan Buk and Je�rey K. Hollingsworth. An API for runtime ode pathing. TheInternational Journal of High Performane Computing Appliations, 14(4):317{329, Winter 2000.4. H. Cain, B. Wylie, and B. P. Miller. A allgraph based searh strategy for au-tomated performane diagnosis. In Arndt Bode et al., editors, Euro-Par 2000 -Munih, volume 1900 of Leture Notes in Computer Siene, pages 108{122, 2000.5. M. Dmitriev. Appliation of the HotSwap tehnology to advaned pro�ling. In FirstInternational Workshop on Unantiipated Software Evolution (USE2002), Malaga,Spain, June 2002. http://www.joint.org/use2002/sub/dmitriev-hotswapprof.pdf.6. Je�rey K. Hollingsworth, Barton P. Miller, and Jon Cargille. Dy-nami program instrumentation for salable performane tools. In Sal-able High-Performane Computing Conferene, Knoxville, Tennessee, May 1994.ftp://ftp.s.wis.edu/paradyn/tehnial papers/ dyninst.ps.Z.7. Gregor Kizales, Erik Hilsdale, Jim Hugunin, et al. An overview of AspetJ. LetureNotes in Computer Siene, 2072:327{355, 2001.8. Sheng Liang and Deepa Viswanathan. Comprehensive pro�ling support in the JavaVirtual Mahine. In Proeedings of the 5th USENIX Conferene on Objet-OrientedTehnologies and Systems (COOTS-99), pages 229{240, May 1999.9. Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, et al. The Paradynparallel performane measurement tool. IEEE Computer, 28(11):37{46, 1995.10. Paul Pazandak and David Wells. ProbeMeister: Distributed runtimesoftware instrumentation. In USE2002, Malaga, Spain, June 2002.http://www.joint.org/use2002/sub/pazandak-ProbeMeister.pdf.11. A. Popovii, T. Gross, and G. Alonso. Dynami weaving for aspet orientedprogramming. In AOSD 2002, April 22-26, Enshede, The Netherlands, 2002.http://ikplab11.inf.ethz.h:9000/prose/webthings/ aosd02.ps.12. Philip C. Roth and Barton P. Miller. Deep Start: A hybrid strategy for automatedperformane problem searhes. In Burkhard Monien and Rainer Feldmann, editors,Euro-Par 2002 - Paderborn, Germany, volume 2400 of Leture Notes in ComputerSiene, pages 86{96. Springer-Verlag, August 2002.13. Standard Performane Evaluation Corporation (SPEC) JVM98 Suite, 1998. Avail-able from http://www.spe.org.14. Antero Taivalsaari. Implementing a Java Virtual Mahine in the Java pro-gramming language. Tehnial Report TR-98-64, Sun Mirosystems, 1998.http://researh.sun.om/tehrep/1998/abstrat-64.html.



15. Raja Vall�ee-Rai, Etienne Gagnon, Laurie J. Hendren, et al. Optimizing Java byte-ode using the Soot framework: Is it feasible? In David A. Watt, editor, CompilerConstrution (CC2000), Berlin, Germany, volume 1781 of Leture Notes in Com-puter Siene, pages 18{34. Springer{Verlag, 2000.16. Kwok Yeung, Paul H J Kelly, and Sarah Bennett. Dynami instrumentation forJava using a virtual JVM. In Getov et al., editors, Performane Analysis and GridComputing. Kluwer, 2003.17. Kwok Cheung Yeung and Paul H. J. Kelly. Optimising Java RMI programs byommuniation restruturing. In D. Shmidt and M. Endler, editors, Middleware2003 - Rio de Janeiro, Brazil, Leture Notes in Computer Siene, June 2003.1 // Initially no bottleneks, no frontier, & fous is just appliation's Main method2 Set<MethodId> bottlenekSet, fous; fous.add(mainId);3 Set<Instrument> frontier;45 // Frontier tells us whih methods have been instrumented and maintains a list6 // of eah method's instrument objets. Initialise frontier to ontain just7 // the methods alled by Main, and add instrumentation to this initial frontier89 Set<MethodId> mainCallees = mainId.alleeSet();10 frontier.add(TimerInstrumentFatory(mainCallees));1112 // Now run appliation. As it runs it will enounter instruments we put in plae.13 app.start();1415 while (!app.finished()) {16 // wait for appliation to exeute an instrument; resulting allbak17 // enqueues instrument objet that has been ativated1819 Instrument m = app.getNextAtivatedInstrument();2021 // Consult profile database to determine whether we have enough22 // information to onlude that this method is a bottlenek2324 swith (profileDatabase.isBottlenek(m)) {25 ase YES:26 // This method turns out to be a bottlenek. Add this method to list of27 // known bottleneks, remove it from searh frontier, remove its instrument-28 // ation, & instead add its allees to the searh frontier and instrument them2930 bottlenekSet.add(m.methodId, m.measurement);31 frontier.remove(m);32 fous.add(m.methodId);33 frontier.add(TimerInstrumentFatory(m.methodId.alleeSet()));34 break;3536 ase NO:37 // This method turns out not to be a bottlenek. Remove it from38 // searh frontier, remove its instrumentation.3940 frontier.remove(m);41 break;4243 ase MAYBE:44 break; // leave instrumentation as it is for a while45 }46 // Update profile database for future referene47 profileDatabase.update(m.methodId, m.measurement);4849 // Remove parent method from fous if none of its allees remain in the frontier50 if (frontier.isIn(methodId.parent().alleeSet())) fous.remove(parent);51 }Fig. 4. Pseudoode outline of the allgraph-based bottlenek searh algorithm.


