
Optimising Shared Redution Variables in MPIProgramsA.J. Field, P.H.J. Kelly and T.L. HansenDepartment of Computing, Imperial College180 Queen's Gate, London SW7 2BZ, U.K.fajf,phjk,tlhg�do.i.a.ukAbstrat. CFL (Communiation Fusion Library) is an experimentalC++ library whih supports shared redution variables in MPI pro-grams. It uses overloading to distinguish private variables from repli-ated, shared variables, and automatially introdues MPI ommunia-tion to keep repliated data onsistent. This paper onerns a simplebut surprisingly e�etive tehnique whih improves performane sub-stantially: CFL operators are exeuted lazily in order to expose oppor-tunities for run-time, ontext-dependent, optimisation suh as messageaggregation and operator fusion. We evaluate the idea using both toybenhmarks and a `prodution' ode for simulating plankton populationdynamis in the upper oean. The results demonstrate the software en-gineering bene�ts that arue from the use of the library and show thatperformane lose to that of manually optimised ode an be ahievedautomatially in many ases.1 IntrodutionIn this paper we desribe an experimental abstrat data type for representingshared variables in SPMD-style MPI programs. The operators of the abstratdata type have a simple and intuitive semantis and hide any required ommu-niation. Although there are some interesting issues in the design of the library,the main ontribution of this paper is to show how lazy evaluation an exposerun-time optimisations that may be diÆult, or even impossible, to spot usingonventional ompile-time analysis. The paper makes the following ontribu-tions:{ We present a simple and remarkably useful prototype lass library whihsimpli�es ertain kinds of SPMD MPI programs{ We disuss some of the design issues in suh a library, in partiular theinterpretation of the assoiated operators{ We show how lazy evaluation of the ommuniation needed to keep repliatedvariables onsistent an lead to substantial performane advantages{ We evaluate the work using both toy examples and a large-sale appliationThis paper extends our brief earlier paper [2℄ in providing better motivationand further experimental results, as well as a more thorough desription of thetehnique.

double s1, s2 ;void sum(double& data) {double s = 0.0 ;for (j=jmin; j<=jmax; j++) {s += data[j℄ ;}MPI_Allredue(&s,&s1,1,MPI_SUM,..) ;}void sumsq(double& data) {double s = 0.0 ;for (j=jmin; j<=jmax; j++) {s += data[j℄ * data[j℄ ;}MPI_Allredue(&s,&s2,1,MPI_SUM,..) ;}for(i=0; i<N; i++) {sum(a[i℄) ;sumsq(a[i℄) ;var[i℄ = (s2 - s1*s1/N)/(N-1) ;}

CFL_Double s1(0), s2(0) ;/* Note: Initial values assumedonsistent aross pros. */void sum(double& data) {s1 = 0.0 ;for (j=jmin; j<=jmax; j++) {s1 += data[j℄ ;}}void sumsq(double& data) {s2 = 0.0 ;for (j=jmin; j<=jmax; j++) {s2 += data[j℄ * data[j℄ ;}}for(i=0; i<N; i++) {sum(a[i℄) ;sumsq(a[i℄) ;var[i℄ = (s2 - s1*s1/N)/(N-1) ;}Fig. 1. Variane alulation using MPI (left) and CFL (right).2 The IdeaFigure 1 illustrates the basi idea. This is a toy C++ appliation whih omputesthe sample variane ofN bathes ofM data items, stored in anN�M array. Thedata is repliated over P proessors and eah proessor omputes its ontributionto the sum and sum-of-squares of eah bath of data using appropriately de�nedmethods. An MPI redution operation sums these ontributions. The main loop�lls the variane array (var).This program su�ers two drawbaks. Firstly, the ode is onvoluted by theneed to ode the ommuniation expliitly|an artefat of all MPI programs.Seondly, it misses an optimisation opportunity: the two redution operationsan be fused (i.e. resolved using a single ommuniation to sum the ontributionsto s1 and s2 at the same time) sine the evaluation of sumsq does not depend onthat of sum. If the two redution operations are brought out of the methods sumand sumsq and ombined into a single redution over a two-element vetor in theouter loop a performane bene�t of around 43% is ahieved using four 300MHzUltraSpar proessors of a Fujitsu AP3000 with N=M=3000. Further results forthis benhmark are reported in Setion 5.

Spotting this type of optimisation at ompile time requires analysing arossmethod boundaries. While perfetly feasible in this ase, in general these op-erations may our deep in the all graph, and may be onditionally exeuted,making stati optimisation diÆult. The alternative we explore in this paper is toattempt the optimisation at run-time, requiring no speialist ompiler support.We have developed a prototype library alled CFL (Communiation FusionLibrary) designed to support shared redution variables. The library an be freelymixed with standard MPI operations in a SPMD appliation. C++ operatoroverloading is used to simplify the API by using existing operators (e.g. +, *,+= et.). Where an operation would normally require ommuniation e.g. whena shared redution variable is updated with the value of a variable loal to eahproessor, the ommuniation is handled automatially.Figure 1 shows how the CFL library an be used to model the shared quanti-ties s1 and s2 in the previous example. This eliminates all the expliit ommuni-ation, in the spirit of shared-memory programming. However, the main bene�tomes from CFL's lazy evaluation: just prior to the assignment to var[i℄ noommuniation has yet taken plae. The assignment fores both delayed om-muniations and resolves them using a single redution operation, akin to themanual optimisation outlined above. There are some overheads assoiated withthe maintenane of these shared variables, so we would not expet to ahievethe performane of the manually optimised ode. Nonetheless, this very sim-ple example, with sope for just two fusions per iteration, yields a performaneimprovement of around 37% when ompared to the original ode on the sameplatform. Again more detailed results are presented in Setion 5.In the remainder of this paper we present some relevant bakground to thework (Setion 3), disuss the semantis of shared variables in the ontext ofMPI programs (Setion 4) and present some performane benhmarks for bothontrived test programs and a prodution oeanography simulation (Setion 5).The onlusions are presented in Setion 6.3 Related workThe idea of delaying exeution in order to expose optimisation opportunitieshas appeared before. POOMA [4℄ uses expression templates in C++ to supportexpliit onstrution and then evaluation of expressions involving arrays andommuniation. A delayed-evaluation self-optimising (DESO) numerial libraryfor a distributed memory parallel omputer is desribed in [7℄. By delaying theevaluation of operations, the library is able to apture the data-ow graph ofthe omputation. Knowing how eah value is to be used, the library is able toalulate an optimised exeution plan by propagating data plaement onstraintsbakwards through the DAG. This means that the library is able to alulatea very eÆient initial distribution for the data aross the proessors, and henefewer redistributions of the data will be neessary.A related idea, whih is exploited in BSP [3℄ and KeLP [10℄, is to organ-ise ommuniation in a global olletive operation. This allows multiple small

messages to be aggregated, and also provides the opportunity to shedule om-muniation to use avoid network and bu�er ontention.A shared-memory programming model an be supported on distributed-memory hardware using a page-based onsisteny protool; sophistiated im-plementations suh as TreadMarks [5℄ support some run-time adaptation, forexample for pages with multiple writers. However, Treadmarks o�ers no speialsupport for redutions.4 Shared variables in SPMD programsIn a data-parallel SPMD program, a large data struture is distributed arosseah proessor, and MPI is used to opy data to where it is needed. In ontrast,we fous in this paper on the program's global state variables. In a distributed-memory implementation, eah proessor holds its own opy of eah shared vari-able. When the variable is updated, ommuniation is needed to ensure thateah proessor's opy is up to date.In the ontext of this paper we fous exlusively on salar double-preisionoating-point variables. The semantis of arithmeti operations on private vari-ables are very well-understood, but are not so straightforward for shared vari-ables as an operation on a shared double will be exeuted on several proessors.The interesting ase onerns the assignment of the result of an arithmetiexpression to a variable. In what follows, x,y and z will refer to (global) sharedvariables (i.e. of type CFL_Double) and a, b to loal variables private to eahproessor. Eah proessor maintains a loal opy of eah shared variable and thelibrary must ensure that after eah operation these opies are onsistent.If the target variable of an assigment is loal, as in a = x - b then the as-signment an be performed onurrently on eah proessor without (additional)ommuniation. However, if the result is stored in a shared variable then thebehaviour depends on the operator arguments. If both operator arguments areshared, as in x = y * z then again the assignment an be e�eted loally. How-ever, if one of the arguments is loal and the other shared, as in x += a or x =y + a, then our interpretation is that eah proessor ontributes its own updateto x, implying a global redution operation, with the rule that x -= a is inter-preted as x += (-a). Beause CFL is lazy, one or more of the shared variableson the right-hand side of an assignment may already ontain a pending ommu-niation, either from an earlier assignment or an intermediate expression on thesame right-hand side, as in x = y + a - z. Any new required ommuniationis simply added to those urrently pending.Similar rules apply to the other operators -, *, / et. and ombined oper-ations like += have the same meaning as their expanded equivalents, e.g. x +=a and x = x + a.Assignment and redution Note that the way the assignment v=e is implementednow depends on the nature of v and e. It is tempting to think that any potentialonfusion an be overome by using a di�erent operator symbol when a global

redution is intended, for instane x ++= a instead of x += a. However the as-signment x = x + a should have the same meaning so we would also need speialversions of + (and the other operators) to over all ombinations of argumenttypes. We thus hoose to stik to the familiar symbols using the overloading, butpropose the use of naming onventions to distinguish shared from loal variableswhere any onfusion may arise.An attempt to assign a loal variable to a shared variable either diretly (e.g.x = a) or as a result of a alulation involving only loal variables (e.g. x = a- b) is disallowed.4.1 Delaying ommuniationThe parallel interpretation of some operator uses suh as x += a means that atany point a shared variable may need to synhronise with the other proessors.Beause eah proessor sees the variable in the same state every proessor willknow that the variable needs synhronisation. Moreover, as operations are exe-uted in the same order on all the proessors (the SPMD model), shared variableswill aquire the need for synhronisation in the same order on every proessor.This means that, in order to delay ommuniation, we need only maintain a listof all the variables that need to be synhronised, and in what way. When om-muniation is fored (see below) these synhronisations are piggybaked onto asingle message with an assoiated redution operator. An alternative would beto initiate a non-bloking ommuniation instead; although this might be ap-propriate for some hardware, little or no omputation/ommuniation overlap ispossible in most urrent MPI implementations.An assignment of a shared variable to a loal variable onstitutes a fore point.At this point a ommuniations manager marshalls all CFL variable updates intoa single array and performs a single global redution operation over that array.On ompletion, the resulting values are used to update all CFL_Doubles whihwere previously pending ommuniation.In priniple, the synhronisation of a shared variable may be delayed untilits global value is required (fore point), but in pratie the synhronisationmay be fored earlier than this, e.g. when another shared variable synhronisa-tion is fored before it. Foring any delayed synhronisation will fore all suhsynhronisations.Limitations In the prototype implementation of CFL only `additive' operators(+, -, +=, -=) are handled lazily at present. This is suÆient for experimentalevaluation of the basi idea. The other operators (and the opy onstrutor)are all supported but they fore all pending ommuniation. Implementing theremaining operators lazily requires a little more work to pak the data for om-muniation and to onstrut the assoiated omposite redution operation, butis otherwise straightforward. This is left as future work.

N AP3000 (P=4) Exeution time(s)Original Hand optimised CFL500 0.341 0.157 (53.9%) 0.192 (43.6%)1000 0.748 0.347 (53.5%) 0.433 (42.0%)1500 1.159 0.574 (50.5%) 0.724 (37.5%)3000 2.544 1.463 (42.5%) 2.119 (16.7%)Table 1. AP3000 exeution times (in seonds) for Figure 1 for various problem sizes,with perentage speedup relative to the original, unoptimised ode.5 EvaluationOur performane results are from dediated runs on three platforms: a FujitsuAP3000 (80 nodes, eah a 300MHz Spar Ultra II proessor with 128 RAM, withFujitsu's 200MB/s AP-Net network), a Quadris/COMPAQ luster (16 nodes,eah a Compaq DS20 dual 667MHz Alpha with 1GB RAM), and a luster ofdual 400MHz Celeron PCs with 128MB RAM on 100Mb/s swithed Ethernet.In eah ase there was one MPI proess per node.5.1 Toy BenhmarkTable 1 shows the exeution times for the toy benhmark of Figure 1 for fourproblem sizes for the AP3000 platform using 4 proessors. Here the data matrixis assumed to be square, so the problem size de�nes both M and N . The �guresin parentheses show the redution in exeution time, relative to the original un-optimised ode. The results show that a signi�ant performane improvementan be ahieved by fusing the ommuniations, even though only two suh om-muniations an be fused at any time. The results also show, as one would expet,diminishing returns for the CFL library, relative to the hand-optimised ode, asthe problem size inreases. This is beause larger problems inur a smaller om-muniation overhead, so the overhead of maintaining the shared variable statetakes greater e�et.We would intuitively expet the performane of the CFL library to improve,relative to the hand-optimised ode, for platforms with slower ommuniationnetworks (measured by a ombination of start-up ost and bandwidth) and vieversa. This is borne out by Table 2 whih shows the performane of the samebenhmark on our three referene platforms, using 4 proessors in eah ase andwith a problem size of 3000. Relative to the hand-optimised ode, the CFL libraryperforms extremely well on the PC luster. However, on the COMPAQ platform,whih has a very fast ommuniation network, the overheads of supporting lazyevaluation outweigh the bene�ts of ommuniation fusion.The example of Figure 1 enables exatly two redutions to be fused on eahiteration of the loop. In some appliations (see below, for example) it may bepossible to do better. The variane example was therefore generalised arti�ially

Variance calculation on PC/ethernet cluster

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

Number of fusible reductions

E
xe

cu
tio

n t
im

e (
se

co
nd

s)

Unoptimised

CFL

Variance calculation on AP3000

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10

Number of fusible reductions

E
xe

cu
tio

n t
im

e (
se

co
nd

s)

Unoptimised

CFL

Variance calculation on COMPAQ cluster

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10

Number of fusible reductions

E
xe

cu
tio

n t
im

e (
se

co
nd

s)

Unoptimised

CFL

Fig. 2. Variane alulation (3000�3000 array) on 4 proessors: performane of originalMPI ode versus CFL library.

Platform Exeution time(s) (N=3000)Original Hand optimised CFLAP3000 2.544 1.463 (42.5%) 2.119 (16.7%)Cluster 7.154 3.670 (48.7%) 3.968 (44.5%)COMPAQ 0.263 0.161 (38.9%) 0.418 (-58.8%)Table 2. Exeution times for Figure 1 for various platforms.by introduing an extra loop that alled the sum funtion (only) a given num-ber of times, n, on eah iteration of the outer (i) loop. The results were storedin an array and later summed (again arbitrary, but this has the e�et of for-ing ommuniation in the CFL ase). The objetive was to measure the ostof performing repeated (expliit) MPI redution operations relative to the ostof fusing them within CFL. The results for 4 proessors on eah platform withN = 3000 are shown in Figure 2. Note that the slope of the two urves (originalMPI vs. CFL) in eah ase expose these relative osts and we an see why CFLwins out on both the AP3000 and PC luster. Conversely, on the COMPAQ plat-form no amount of fusion opportunity an buy bak the performane overheadsinherent in the urrent CFL implementation.5.2 Oeanography SimulationWe now present the results obtained when the CFL library was used to modelshared variables in a large-sale simulation of plankton population dynamis inthe upper oean using the Lagrangian Ensemble method [9℄. Some disussion ofthe ode struture is in order.The simulation is based on a one-dimensional water olumn whih is strati�edinto 500 layers eah 1m deep. The plankton are grouped into partiles eah ofwhih represents a sub-population of idential individuals. The partiles moveby a ombination of turbulene and sinking/swimming and interat with theirloal environment aording to rules derived from laboratory observation.The simulation is built by omposing modules eah of whih models an as-pet of the physis, biology or hemistry. The exat on�guration may vary fromone simulation to the next. To give a avour for the struture of a typial ode,the dominant (omputationally speaking) omponent of a partiular instanealled \ZB" models phytoplankton by the sequential omposition of four mod-ules: Move(), Energy(), Nutrients() and Evolve() (motion, photosynthesis,nutrient uptake and birth/death). A similar struture exists for zooplankton.The model essentially involves alling these (and the many other) modules inthe spei�ed order one per time-step.In parallelising the model a vertial partitioning strategy is used to dividethe plankton partiles among the available proessors. The proessors ooperatethrough environment variables whih represent the hemial, physial and bio-logial attributes of eah layer. The parallelisation strategy requires that eahproessor sees the same global environment at all times.

Pros Exeution time(s)Unoptimised Hand-optimised Using CFL1 3721 3721 (0%) 3738 (-0.5%)2 1805 1779 (1.5%) 1790 (0.8%)4 934 869 (7.5%) 866 (7.9%)8 491 433 (13.4%) 418 (17.5%)16 317 244 (29.9%) 257 (23.3%)32 292 191 (52.9%) 182 (60.4%)Table 3. Exeution times for the plankton ode (320,000 partiles). In brakets weshow the speedup relative to the unoptimised implementation.The various modules have been developed independently of the others, al-though they must �t into a ommon framework of global variables, managementstrutures et. Within these modules there are frequent updates to the sharedvariables of the framework and it is ommon for these to be assigned in one mod-ule and used in a later one. This relatively large distane between the produerand onsumer provides good sope for message aggregation. However, manualoptimisation will work only for that partiular sequene of modules: adding a newmodule or hanging the order of existing modules hanges the data dependeny.This is where the CFL library is partiularly bene�ial: it will automatiallyfuse the maximum possible number of redution operations (i.e. those that arisebetween fore points).We began with the original (parallel) version of ZB and then hand-optimisedit by manually working out the data dependenies between the global sharedquantities and identifying fore points. The fusion was atually ahieved bybuilding a lazy version of MPI_All_Redue [1℄. This simpli�ed the implemen-tation signi�antly but introdued some overheads, very similar in fat to thosein CFL. The MPI ode was then rewritten using the CFL library, simply bymarking the shared environment variables as CFL_doubles. The original odeuses exlusively MPI redution operations so the immediate e�et of using CFLis to remove all expliit ommuniation from the program. The e�et of themessage aggregation (both manual and using CFL) is to redue the number ofsynhronisations from 27 to just 3 in eah time step. In one of these no less than11 redution operations were suessfully fused between fore points.AP3000 timing results for the exeution of the ZB model before and afterCFL was inorporated are shown in Table 3 for a problem size of 320,000 par-tiles. Both hand-optimised and CFL versions of the model have very similarperformane but this is not surprising given the way the hand-optimisation wasdone.Remarks In order to use the CFL library in this ase study, we had to turn o�one feature of the model. During nutrient uptake the required redution oper-ation is atually bounded in the sense that the -= operator would not normally

allow the (shared) nutrient variable to beome negative; instead the uptake wouldbe redued so as to exatly deplete the nutrient. It is perfetly possible to buildsuh bounded redutions into CFL but they are not urrently supported.6 ConlusionsThis paper presents a simple idea, whih works remarkably well in many ases.We have built a small experimental library on top of MPI whih enables sharedsalar variables in parallel SPMD-style programs to be represented as an abstratdata type. By implementing the library in C++ and using C++'s operator over-loading, the familiar arithmeti operator symbols, suh as +, -, *= et. an beused on shared variables. Some operators have a parallel reading when the targetof an assignment is another shared variable. Beause the operations are abstrat,dynami run-time optimisations an be built into their implementation. We haveshown how delayed evaluation an be used to piggybak ommuniations on topof earlier, as yet unevaluated, parallel operations. This means that the om-muniation assoiated with a global redution, for example, may atually takeplae as a side-e�et of another redution operation in a di�erent part of theode. This avoids reliane on sophistiated ompile-time analyses and an exploitopportunities whih arise from dynami data dependenies. Using a ontrivedtest program and a realisti ase study we have demonstrated very pleasingperformane improvements on some platforms. Unsurprisingly, the greatest per-formane bene�ts are seen on platforms with slower ommuniation networks.In essene, what we have done is to implement an appliation-spei� aheoherene protool, in the spirit of, among others, [11℄. This hides onsistenyissues, and the assoiated ommuniation, from the programmer, with obviousbene�ts in software engineering terms.Could we ahieve the redution fusion optimisation by exeuting standardMPI funtions lazily? Not without ompiler support, sine the results of the MPIoperation are delivered to normal private data so we don't know when to foreommuniation.The library is urrently very muh a prototype. Nonetheless, the urrentimplementation is robust and has proven to be of surprising utility, both inperformane and ease of use. We are now seeking to extend the library (forexample to handle arrays as well as salars) and to fous on internal optimisationsto redue management overheads.Referenes1. S. H. M. Al-Battran: Simulation of Plankton Eology Using the Fujitsu AP3000,MS thesis, Imperial College, September 19982. A J Field, T L Hansen and P H J Kelly: Run-time fusion of MPI alls in a parallelC++ library. Poster paper at LCPC2000, The 13th International Workshop onLanguages and Compilers for High-Performane Computing, Yorktown Heights,August 2000.

3. J.M.D. Hill, D.B. Skilliorn: Lessons learned from implementing BSP. Journal ofFuture Generation Computer Systems, Vol 13, No 4{5, pp. 327-335, Marh 1998.4. Steve Karmesin, James Crotinger, Julian Cummings, Sott Haney, William J.Humphrey, John Reynders, Stephen Smith, Timothy Williams: Array Design andExpression Evaluation in POOMA II. ISCOPE'98 pp.231-238. Springer LNCS 1505(1998).5. P. Keleher, A. L. Cox, S. Dwarkadas, W. Zwaenepoel: TreadMarks: DistributedShared Memory on Standard Workstations and Operating Systems. In Proeedingsof the 1994 Winter Usenix Conferene, pp. 115-131, January 19946. K. Gharahorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, J. Hennesey:Memory Consisteny and Event Ordering in Salable Shared-Memory Multiproes-sors. In Proeedings of the 17th Annual International Symposium on ComputerArhiteture, pp. 15-26, May 19907. O. Bekmann, P. H. J. Kelly: EÆient Interproedural Data Plaement Optimisa-tion in a Parallel Library, LCR '988. O.B. Bekmann and P.H.J. Kelly, A Linear Algebra Formulation for OptimisingRepliation in Data Parallel Programs. In LCPC'99, Springer Verlag (2000).9. J. Woods and W. Barkmann, Simulation Plankton Eosystems using the La-grangian Ensemble Method, Philosophial Transations of the Royal Soiety, B343,pp. 27-31.10. S.J. Fink, S.B. Baden and S.R. Kohn, EÆient Run-time Support for IrregularBlak-Strutured Appliations, Journal of Parallel and Distributed Programming,Vol 50, No. 1, pp 61{82, 1998.11. Andrew J. Bennett and Paul H. J. Kelly, EÆient shared-memory support forparallel graph redution. Future Generation Computer Systems, V.12 No.6 pp.481{503 (1997).

