
Design and Implementation of anObject-Orientated 64-bit SingleAddressSpaceMicrokernelKevin Murray, Tim Wilkinson, Peter Osmon { SARC, City UniversityAshley Saulsbury { Swedish Institute of Computer ScienceTom Stiemerling, Paul Kelly { Imperial CollegeAbstractIn the mid eighties, the System Architecture Research Centre at City Universitydeveloped a message-passing, UNIX compliant micro kernel (Meshix) for our ownscalable distributed memory architecture (Topsy). Over the last two years we havebeen engaged in a research programme aimed at learning from this experience, anddeveloping a new operating system based on these lessons. The result is the Angelmicrokernel. This paper sets out the lessons we have learnt from Meshix, how this hasinuenced the design of Angel and outlines our current design of Angel and its C++implementation. We will also describe our future plans and hopes for Angel, and thelessons that we have learnt from the design and implementation process.1 IntroductionAlmost all modern operating systems are being designed using microkernels [1, 2]. The microkernelarchitecture can be said to encompass good software engineering practice: small code \units" that areinsulated from each other together with a minimal amount of critical code (the microkernel). Theyalso introduce an \open system architecture" due to the ease with which additional services can beprovided and used.Virtually without exception, however, microkernel architectures use message passing as the basisof communication, implementing the client-server paradigm upon this using remote procedure calltechniques (RPC). Message passing o�ers an apparently ideal structuring mechanism | it isolates one\unit" from another, requires only a minimal microkernel (message passing and process control), andallows extra services to be provided simply by registering the service which then receives and processesthe messages.Meshix is typical of such microkernel based, message passing operating systems and was developedseveral years ago [3]. Over the last few years we have been looking at its structure and performance ina very critical manner to decide how to improve upon it | in essence we are trying to evaluate whetheror not the message passing microkernel is as good as it seems. This has shown there are a number ofissues that have not yet been addressed by most current message passing microkernel architectures, orwhich have only been addressed with limited success or requiring complex restructuring of the system.It is to tackle these issues that Angel has been designed.This paper will outline the issues behind the the design of Angel, in addition to the actual designand implementation of Angel. Although Angel moves away from a message passing structure, we willshow how its most important use | RPC | can be very e�ciently implemented in Angel using LRPCtechniques, and how it maintains the essential isolation of the systems into protected \units". We willalso mention some of the other work that we are applying to Angel, principally in the areas of faulttolerance and scalable I/O systems.

2 Shortcomings of MeshixThe original goal of Meshix and the Topsy architecture was to produce a scalable, parallel multipro-cessor1. To help achieve this goal a dedicated point to point network with custom, virtual cut-throughrouting chips were developed which supported a raw bandwidth of 10 Mbytes/sec. To a reasonableextent the scalability goal has been achieved. Unfortunately its communications performance is onlyabout 100 K/sec, as seen by a user process, and there is limited support for parallel programming. Thereason is largely to do with two factors: the nature of microkernels, and the adoption of UNIX. Theadoption of System Vr3 UNIX as the primary interface toMeshix means there is no support for parallelprograms, forces the use of UNIX heavyweight processes and limits the IPC mechanisms.2.1 MicrokernelIn a microkernel architecture, there is an inherent performance loss caused by information exchangebetween services and clients. Typically a client collects the information it needs in its own privateaddress space, independently of the server. When it wishes to exchange information with a server(probably to obtain some service), it �rst creates a message containing this information and thenrequests the microkernel to convey this to the server. Usually this involves several context switchesand some data copying, remapping or cross-machine transferral, all of which are known to be costlyactions.The Chorus group [4] (among others), has done much work to overcome this. The methods usedinclude replacing context-dependent addresses with unique addresses, so speeding up message deliverywhilst reducing security, combining mutually trusted servers into a single address space (and henceprotection domain), so reducing context switches, and by placing all of the IPC management into themicrokernel. In addition they use the lightweight RPC optimisation developed for the DEC Fireysystem [5] to improve the speed of RPCs. All of these modi�cations have required non-trivial alterationsto the operating system's structure and increased the complexity of the system. It is our belief thatcommunication (or more generally co-operation), despite the above optimisations, is still slower thandesirable and more complex an operation than need be.We performed a set of detailed measurements of the speed of the Meshix communication system [6,7] to help identify the causes of communications costs, to better understand these costs, to �nd waysto reduce or eliminate them and to help develop a simpler mechanism. This study concluded thatmany, though not all, of the costs are an inherent fact of using message passing in multiple protectiondomains and the numerous context switches and data copying or remapping that this caused. Duringthis study, it also became apparent that much, often unmeasured, time was spent in preparing the datafor transfer.As a comparison, we modelled the behaviour of a very simple distributed shared memory (DSM [8])scheme with an amount of hardware assistance comparable with the current Meshix message passingsystem. The conclusion was that this would easily outperform the current message passing system,used in Meshix. This lead us to believe that the shared memory paradigm should be at the base offuture parallel operating systems, replacing the message passing that is currently in use. This is inagreement with several other researchers and manufacturers [9, 10, 11].2.2 UNIXThe UNIX process model provides every process with the illusion of a complete computer for itself. Butwhenever the process tries to access anything other than the processor or the data currently residing inmemory, it may su�er a context switch as another process is given the chance to run. A context switchinvolves the exchange of a large amount of information beyond the processor's context including thememory map and extensive operating system information. This is called a heavyweight process model.1. It should be noted that this is a somewhat di�erent goal from some other systems which seek to produce adistributed computing systems.

SinceMeshix provides a UNIX programming model, the process model it implements is that of UNIX:distinct heavyweight processes. The heavyweight process model is costly [12] due to its extensiveamounts of state, and this reduces the bene�ts of writing programs in parallel, although this maybe overcome to some extent using threads packages. Unfortunately, these threads are not real �rstclass objects in the operating system and certain system operations for one thread a�ect others (eg.blocking). Even then it is still nearly impossible to share these threads between processes, unlike suchsystems as Psyche [13], to achieve the required exibility (such as cost e�ective load balancing). Fore�cient parallel programming a lightweight, exible and extensible process model is needed. This isone where changing from one thread to another is exceptionally cheap, where the actions of one threaddo not necessarily a�ect another and where exchanging processes should also be cheap.2.3 Support for Parallel ProgramsMeshix provides no synchronisation primitives other than those implicit in message passing. Any othersare built using messages. This means that if co-operating processes need to use synchronisation otherthan messaging, it is slow and limited by the characteristics of the messaging system. In a scalableparallel machine, real parallel programs will require e�cient and varied synchronisation mechanisms(e.g. barrier synchronisation) and better support for them must be provided.Additionally, much work has been done on load balancing in many systems and support for this isimportant to parallel programs since it is necessary for them to distribute their work over the machinee�ciently. With a general purpose computer, the load on various parts of the system can change, andto maintain the e�ciency of the applications running on such a system, it is necessary to re-allocatework between available processors. This is at the heart of load balancing, and naturally in a scalableparallel system it is important that, at the very least, there is support to allow this to be done.3 The Angel Design and Single Address Space ArchitecturesFrom our experience with Meshix, and as a result of our studies both of Meshix and other systems, itwas decided that Angel should have the following characteristics:I It should not support message passing, but use shared memory to support a single address space.This decision was taken to tackle two problems: the lack of speed of the message passing model,as outlined above, and to improve the context switch time by removing the need to ush variouscaches, which has been noted as the most costly part of the context switch operation.I It should provide a protection mechanism which is not part of the process. This decision was takento allow a far greater exibility in protection scheme, and allow more than one process to operatewithin the same domain to increase speed when necessary. It is also a logical step following theabove point in which we had divested address translation from the process.I It should allow processes to be informed of the actions of the operating system on their behalf. Thisdecision is aimed at allowing threads within a process to become �rst class citizens of the operatingsystem and to allow the process to partake in scheduling decisions that may a�ect it.I It should use a minimal microkernel. None of our studies of Meshix showed a aw in the microkerneldesign; in fact many of our experiences with Meshix have shown how vital the microkernel designis. The problems identi�ed have been tackled by the above alterations to the architecture, so Angelremains a microkernel. However, as the implementation section will show, there is even less in theAngel kernel than in many other microkernels.The following sections will outline the main characteristics of the Angel design.3.1 SASAMost importantly, Angel is a Single Address Space Architecture (SASA), like such systems as Mul-tics [14], Psyche [15], and Opal [16]. A SASA is one in which there is only one address space shared by

the entire system (all the processes, servers and the kernel). This is in contrast to the UNIX approachwhereby every process has its own unique address space. This has several bene�ts: it improves andsimpli�es data sharing, helps cache performance, and blurs the distinction between shared memoryand distributed memory machines. The SASA is maintained between multiple processors using sharedmemory techniques. The SASA has become feasible with the appearance of large address space pro-cessors [17], enabling many processes to consume addresses from the same range without exhaustingthe supply.This address space is managed as persistent objects (contiguous groups of pages). Not only does thisremove the need for an explicit \�le system" interface (with a di�erent namespace and explicit systemcalls) but greatly simpli�es the storage of complex structures, databases, etc.3.2 Protection IssuesIn Unix one process is protected from another by the use of separate address spaces. In a SASA allprocesses share the same address space, so separating protection from address translation, and hence anew scheme is needed to provide protection. This has also caused some researchers to propose alterationsto the traditional memory and protection hardware with the addition of new hardware support [18].The protection scheme must de�ne two areas within which it works: the unit of protection, and themethod used to specify and meet access requirements.
f()

f()
f()

ACD

Biscuit

AND

OR

OR

ACD

AND

requires
Write

requires

Delete
requires

AND

Object C, delete

Object A, read and write

Object B, read and write

Object C, read and write
Object

Biscuit

Biscuit

ACD

Object C, read

Object A, read and write

Object B, read

Read

Object A, deleteFigure 1: The structure of ACDs and biscuitsIn Angel, protection is provided on objects which consist of one or more pages. Objects cannot overlap,nor may they be contained within other objects. A critical server in Angel is the object manager whichis responsible for allocating addresses to objects and for validating access to objects. For every object,the object manager associated with it one or more Access Control Descriptors (ACD) which describethe other objects that must be accessible before this object may be accessed.An example of this structure is shown in �gure 1 in which one object has three ACDs associated with

it; one of them has part of its permissions tree show. In this example, to gain write access to the object,the process must already have read and write access to objects A, B and C.When an object is created, or when a new ACD is associated with an object, the object managergives out a biscuit from which it can reliably identify the valid corresponding ACD. Conceptuallythere is only one biscuit per ACD despite processes being free to duplicate this as frequently as theylike. When a process wishes to access an object, it presents this biscuit to the object manager. Thebiscuit is then used to determine if the process possesses the necessary objects to resolve the requestedobject. Consequently, the system does not have the concept of user identi�ers. However, it is trivial toimplement such a system by creating an object whose sole purpose is to act as a \user id" for accesschecking.3.3 Support for Parallel ProgramsAngel supports �rst class threads and uses upcalls for inter-process and kernel-process signalling (seesection 4.2). Their purpose is to allow process to be informed external events in which they havedeclared an interest, eg. the release of locks, the arrival of new work, a page fault or a pending timeslice. By passing such information onto the process, the process is able to make its own decisions onwhat to run and to take remedial action (e.g. release a lock) when decisions are imposed upon it.The DSM supported by Angel allows the construction of locks such as spin locks with reasonablee�ciency. When combined with the upcall mechanism, it is simple for a thread to \sleep" and be\woken" at some later date. This provides asynchronous systems, not possible with shared memoryalone.The SASA that lies at the heart of Angel makes implementing load balancing trivial. As all processesand threads on all processors exist within a single address space that also contains all the necessarykernel information, moving a process or thread from one physical processor to another simply involvesloading the processor context for the thread into the new processor. The DSM that implements theSASA will then move any necessary data as it is accessed. The design of Angel as it stands will notautomatically load balance work for a process, but this can easily be provided through library routines.3.4 The Angel Model
Objects

Threads

Process A Process B

1

2 3
4

5 6 7

8

9

Domains

Figure 2: The Angel Process Model

Figure 2 shows how the above points are combined into the process model that Angel supports. Withinany process there may be one or more threads. Threads may run in their own domain, as is the casewith thread 1 in the diagram. This allows several threads in the same process to be protected fromeach other. Alternatively several threads may share a protection domain, potentially between di�erentprocesses, as is the case with threads 2 to 4. Where threads do not wish to share a protection domainfor security or trust reasons, they may have some mutually shared objects, as is the case with theremaining threads.3.5 Fault toleranceIt is possible to build a scalable, e�cient fault tolerance scheme in a SASA based operating system. Thisrelies on the uni�cation of resources to simplify the implementation, and the augmentation of the DSMsystem in order to capture the data interactions necessary to make distributed checkpoints. Unlikeother schemes [19, 20] where excessive DSM activity can result in large number of checkpoints beingmade, we allow general data sharing without checkpoints, instead utilising the DSM state informationto determine which data depends on which. This allows distributed checkpoints to be made whichwill only e�ect processes which are interacting, and also allows the DSM mechanism to be reused forcheckpointing data to other machines' memories. Experiments indicate this costs only an additional10% on an applications execution time. A full description can be found in [21].4 The Angel implementation
Basic

Services
POSIX

Services
ANGEL

LRPC

Environment

Linda

POSIX
Other

Network
Disk

Microkernel
ANGEL

Environments

Runtime

Runtime

Native
EnvironmentFigure 3: Angel structureFigure 3 depicts the general structure of the Angel operating system. This structure has few di�erences

from more conventional, message passing microkernel designs. However, the use of a single addressspace and shared memory for communications has signi�cantly simpli�ed the microkernel. Currently,the implementation consists of 2,500 lines of C++ code and 1,000 lines of include �les. This constitutesthe virtual memory, the distributed shared memory and the device management systems but not thedevice drivers themselves.At time of writing, we have completed initial work on the microkernel and client/server communicationsystem. The microkernel provides two major services:1. Persistent virtual memory, and2. Virtual processor management.The client/server communications are implemented using \lightweight" RPCs.4.1 Persistent virtual memory
mmuDevice

vmFault

tlbCache

coreMap

User environment

Devices

Access

Validation

Memory access

Page fault

Fault dispatch

Read page

Read page
from disk

Read page

from network

Page locate

Microkernel

network disk

dataManager

ddl

Figure 4: Object orientated VM system

The virtual memory (VM) system is the heart of Angel since it supports the persistent single addressspace. The single address space nature of the VM enables some simpli�cations of the structure to bemade but the persistence introduces other complications.Figure 4 demonstates the events in the VM system initiated by a page fault. Page faults are generatedby the mmuDevice, a processor dependent object responsible for collecting all necessary informationregarding the fault, and passed into the main, processor independent code, vmFault. This determineswhether the fault is legitimate (user attempts to access supervisor data are caught here) and requeststhe relevant page from the tlbCache. The tlbCache �rst determines whether the access was to anobject accessible by the virtual processor (using the ddl which describes this relationship). If it wasnot, a fault condition is returned. If it was, the accessed address is used to form a pageID, an uniqueidenti�er for data in time and space. These pageIDs are used to support data aliasing2 necessary forthe copy-on-write mechanism. The pageID is then used by the coreMap to locate the relevant data.The local coreMap memory is �rst searched for data corresponding to this ID. If found, the page isreturned for installation by the mmuDevice. If not found, the coreMap allocates an empty core pageand request the dataManager to �nd the data and install it. The dataManager does this by consultingboth the network (which provides the DSM system) and the disk.Several point in this VM system are worth specialmention. First, the ddl is held in the user environment,so allowing it to be treated as any other object, sharable via the DSM and swappable onto disk. Thisprevents consumption of valuable kernel resources and allows the user to easily determine attributesof their envionment without the microkernel's assistance3. Second, the devices (network and disk) areaccessed through an LRPC interface (see section 4.3). This allows them to be installed externally fromthe microkernel if desired although the LRPC mechanism will automatically optimise this interfacewhen this is not the case. Currently, these devices are contained within the kernel but we are planningto make them loadable kernel-level device drivers in order to improve modularity and exibility withoutcompromising performance. Third, at various stages, the VM system may reach a point where it cannotcontinue immediately. This may be the result of a fatal error (eg. an access is made to an object notavailable to the user) or a temporary error (eg. the requested data must be fetched from disk). In thesecases, the error is reported back to the virtual processor by use of an upcall. This enables the virtualprocessor to reschedule another thread.4.2 Virtual processor managementThe microkernel attempts to impose little process structure on the application or programmer. UnlikePOSIX therefore, it does not implicitly provide such services as �le descriptors, \death of child" signalsor other heavyweight features. Consequently the process structure, termed a virtual processor (VP),leaves much of the general management work to the application. This presents no additional problemsince it can be encapsulated in libraries.A virtual processor operates around two general data structures; its domain descriptor list (ddl) and itsupcall list. The ddl holds information about all object the virtual processor has access to. As alreadymentioned, this object is used by the virtual memory system to determine the validity of memoryaccesses. However, it also holds information for processor management; such as which objects may besignalled using upcalls, and which object was initally executed.The upcall list is the virtual processors' interrupt mechanism and is used by both kernel and other VPsfor preempting each other when important events occurs. These events include:I Alarms,I Invalid memory accesses,I Temporarily invalid memory accesses, andI Lock releases.2. This is where two or more virtual addresses reference the same physical data.3. Natually, the user is prevented from direcly modifying the ddl.

The �rst three of these events are microkernel generated; the forth is generated by user level codeassociated with the release of mutual exclusion locks or conditional variables.Upcalls are a �xed sized structure, convey little information, and will not be delivered if the recipienthas insu�cient resources to receive them. Each one identi�es its sender, its type and two further typespeci�c pieces of information (eg. Invalid memory accesses report the failed address and reason for thefailure; lock releases report the address of the locking structure.). The VP can precisely control thee�ect each upcall has when it delivered, determiningwhether a handler is invoked immediately, whetherthe upcall is queued for later attention, or whether the upcall is ignored completely. By default, allupcalls are ignored unless the VP speci�es otherwise. This generally means that upcalls are simplydiscarded without e�ect although \invalid memory accesses" will terminate the VP.4.2.1 Threaded virtual processesAngel does not explicitly support threaded processes, leaving this to user level code. However, throughthe use of kernel and user level upcalls, it still provides facility for a \�rst class citizen" thread model.For example, in the kernel, whenever a situation occurs where it should block, the VP is upcalledto allow another threads to be scheduled. Similarly, user level locks can use this facility in parallelprograms or client/server relationships (we use this heavily in the LRPC mechanism). At the userlevel, a POSIX thread model [22] is provided. The operation of POSIX threads is well documented,but it is worth nothing how this model interfaces to Angel's upcall system in order to provide \�rstclass citizens".All locks are implemented in shared objects. For mutual exclusion locks, if a lock is not obtained, thefailed thread inserts itself into the lock's pending queue. The thread scheduler is then called to dispatchanother, the VP blocking if there are no others ready to run. When the lock is released, the releasingthread examines the head of the pending queue and releases the top thread. If this thread is withinthe same protection domain, the operation can be accomplished locally. If not, a lock release upcall isdispatched to the appropriate VP. On receiving this, the thread is released locally. The mechanism usedfor conditional variables is similar to this except that the thread release is delayed until the associatedlock is released. By placing locks in shared memory, the operations of obtaining and releasing locks isgreatly simpli�ed and the need to consider whether a thread is local or remote is hidden.4.3 Client/Server CommunicationsLike many commercial and research operating systems, Angel uses the notion of clients and servers inorder to improve the functional modularity of the system. However, unlike many of its predecessors,message passing is not used to implement RPC communication, instead this is done through sharedmemory regions. This approach enables a more \lighweight" RPC mechanism to be implemented(based on work by Bershad et al [5]).Angel's LRPC mechanism operates by the sharing of C++ objects in sections of shared memory.These objects are passed between client and server by manipulation of shared lists and the release ofthe associated locks. However, optimisations in this mechanism are possible if both client and serveroperate in the same protection domain. In such cases a direct subroutine call can be made from clientto server so avoiding the need for locking altogether. This optimisation can be determined when theLRPC channel is established rather than at compile time so providing greater exibility.4.3.1 LRPC exampleFigure 5 illustates a simple client/server interaction using a shared memory object for communication.This object constitues a private channel between parties, available in their protection domains only(although one-to-many channels are no more di�cult to arrange).

Shared Objects

Client LRPC
Control

Server LRPC
Control

Object References

Common LRPC Object

Client domain

Server domain

Figure 5: Lightweight RPC object shared between a client and serverIn conventional RPC, a client makes a request of the server by packaging data to be transfered andthen informing the server of its intentions. The server then unpackages the request, performs the work,and replies to the client using a similar RPC mechanism. LRPC in Angel bene�ts over such a system intwo ways; �rst, the use of shared memory reduces the need to package data, in some cases removing italtogether; and second, implict encapsulation of the client/server relationship in C++ classes simpli�esand hides access to the interface.For example, the server in �gure 5 maintains the private database holding users' information. Aclient wishing to search this database (such as /bin/ls -l) must make requests via an LRPC channel.However, rather than constructing and copying requests to the server, a passwdEntry object can beallocated which is already shared with the server using the C++ placement operators (eg. overloadingof operator new()). This object can then be used as normal within the client, the interaction with theserver happening transparently and without extra copying by either party.4.4 Current statusThe majority of development work has been done by operating the microkernel as an emulation underSunOS UNIX. However, in order to validate the system and determine whether our e�orts to keepthe dependent and independent code seperate have been successful, we recently ported the kernel to aTadpole M88K system. This work took a week to complete despite the need to write a new two-levelMMU system and although some restructuring has resulted, no major problems were encountered.However, neither of these systems are appropriate to Angel's needs due to the restricted address space.Currently we are investigating a port to either an SGI Indigo or DEC Alpha PC either of which is more

appropriate.5 Lessons and FurtherWorkThe most \politically di�cult" decision to make regarding Angel was to forego UNIX compatibility. Itis acknowledged that if an SASA style operating system is to accepted, then it must provide supportfor UNIX and its existing software base. As a �rst step we have investigated modifying compilers togenerate code that gave the appearance of UNIX memory semantics. This resulted in a performancepenalty of only a few percent [23]. We are now investigating a full UNIX service under Angel. Itappears that a reasonable degree of compatibility can be provided at low cost, without altering theSASA to provide a region of memory addresses with UNIX characteristics.The fault tolerance mechanism described above has been designed, implemented and analysed on asimulator, rather than in the current Angel implementation. One, relatively simple, task is thereforeto implement this scheme in the current microkernel. Once this has been done we hope to study theperformance of the system and see if it can be further improved.The main area of future work lies in dealing with the projected large I/O requirements that a parallelcomputer will generate. Many current parallel computers are badly I/O limited, and overcoming thisbottleneck is extremely important in opening up new markets for parallel machines. There are severalschemes we are currently investigated to perform this, the most hopeful is to make use of the algorithmsfrom the fault tolerance scheme which generates a distributed log stream of data for storage on disk.6 ConclusionsThis research was conceived as an exercise in learning from Meshix (and other message passing micro-kernels); the result is the Angel operating system, which is still a micro-kernel, but is based around aSASA supported by DSM, and not around message passing. The current implementation is small, andhas been easy to write, which leads us to believe that we have constructed a good design, and that aSASA is the way to build systems. There are other bene�ts from this approach which are important toscalability, for example in the areas of fault tolerance, data sharing and load balancing. Although wehave not developed the system with UNIX support it mind, it appears that we can provide a simpleversion of this at very low overheads. All these points lead us to believe that SASAs are an importantway of constructing operating systems, especially for scalable, parallel machines.7 Authors InformationDr Kevin Murray's thesis work at the University of York concerned the development of Wisdom, anoperating system designed to support a high-level programming environment on a DMMP conforming toa subset of the ANSA transparency model. In addition, he contributed to the development of Wisdom's�lesystem. He then worked at Imperial College, in collaboration with the Systems ArchitectureResearch Centre, on the Angel operating system concentrating on its scheduling and inter-processcommunications aspects, before being appointed lecturer at City University, where he has remainedheavily involved in the Angel work.Tim Wilkinson has worked extensively on the Topsy project including work on the Meshix OS andMeshnet communications chips. His PhD work, now nearly completed, centres around the designof a reliable 64-bit distributed operating system using data dependent checkpoints. He is currentlyemployed on the Angel operating system project.Prof. Peter Osmon is head of the Systems Architecture Research Centre at City University. He wasPrincipal Investigator on the Alvey-funded Cobweb project. He conceived and directed the TopsyUnix multicomputer project. He has a current IED grant with Phoenix VLSI and Texas Instrumentsconcerned with the design of an interface device to support shared-memory over a serial interconnect(ICTVS, reference number GR/F99618), and he is Principal Investigator of the SERC funded projectdeveloping the Angel kernel (GR/G28277).

Dr. Tom Stiemerling has worked on implementing DVSM on Topsy, and the speci�cation and imple-mentation of the Angel kernel, and is supported by SERC research grant GR/G 28277. His doctoralwork carried out at Edinburgh University involved the performance analysis by simulation of a sharedmemory multiprocessor architecture.Dr. Paul Kelly is a lecturer in the Department of Computing at Imperial College. He was a researcheron the Alvey-funded Cobweb project. His doctoral work led in part to IED projects on functionalprogramming of transputer networks, and exploitation of more general parallel hardware using func-tional languages and program transformation. More recently he has collaborated in the developmentof Paragon, an object-oriented graph-rewriting language, and is also an investigator on the relatedSERC-funded project developing the Angel kernel at Imperial (GR/G23562).Bibliography[1] Open Software Foundation, \The OSF/1 operating system," in Spring 1991 EurOpen Conference,pp. 33{41, 1991.[2] M. Rozier, \Overview of the CHORUS DistributedOperating Systems," Tech. Rep. CS-TR-90-25,Chorus Systemes, 1990.[3] P. Winterbottom and P. Osmon, \Topsy: An Extensible Unix Multicomputer," in UK IT90Conference, Southampton University, 1990.[4] A. Bricker, \A new look at micro-kernel-based UNIX operating systems: Lessons in performanceand compatability," in EurOpen Spring'91 Conference, Tromsoe, Norway, May 1991.[5] B. Bershad, T. Anderson, E. Lazowska, and H. Levy, \Lightweight remote procedure call," ACMOperating Systems Review, vol. 23, pp. 102{113, December 1989.[6] P. Osmon, T. Stiemerling, A. Whitcroft, Wilkinson.T., and N. Williams, \Evaluating Meshix { aUnix compatible micro-kernel Operating System," in OpenForum'92, November 1992.[7] A. Whitcroft and P. Osmon, \The CBIC: Architectural Support for Message Passing or SharedMemory?," in U.K. Performance Engineering Workshop, September 1992.[8] K. Li, Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD thesis, Yale University,Department of Computer Science, 1986.[9] U. Ramachandran, G. Shah, S. Ravikumar, and J. Muthukumarasamy, \Scalability study ofthe KSR-1," Tech. Rep. GIT-CC93/03, College of Computing, Georgia Institute of Computing,Atlanta, Georgia, 1993.[10] E. Hagersten, A. Landin, and S. Haridi, \DDM { A Cache-only Memory Architecture," Tech. Rep.Research Report R91:19, SICS, Sweden, November 1991.[11] M. Hill, J. Larus, S. Reinhardt, and D.Wood, \Cooperative sharedmemory: software and hardwarefor scalable multiprocessors," in ASPLOS V, pp. 262{273, September 1992.[12] J. C. Mogul and A. Borg, \The E�ect of Context Switches on Cache Performance," in ASPLOS,International Conf. on Architectural Support for Programming Languages and Operating Systems,(Santa Clara, CA (USA)), pp. 75{85, April 1991.[13] B. Marsh, M. Scott, T. LeBlanc, and E. Markatos, \First-Class User-Level Threads," Tech. Rep.,Computer Science Department, University of Rochester, NY, 1991.[14] E. Organick, The Multics system: an examination of its structure. M.I.T. Press, 1972.[15] M. Scott, T. LeBlanc, B. Marsh, T. Becker, C. Dubnicki, E. Markatos, and N. Smithline, \Im-plementation Issues for the Psyche Operating System," Tech. Rep., University or Rochester,Department of Computer Science, 1988.

[16] J. Chase, H. Levy, M. Baker-Harvey, and E. Lazowska, \How to Use a 64-Bit Virtual AddressSpace," Tech. Rep. 92-03-02, Department of Computer Science and Engineering, University ofWashington, March 1992.[17] Dobberpuhl et al., \A 200Mhz 64-bit Dual Issue CMOS Microprocessor," in International Solid-State Circuits Conference, February 1992.[18] E. Koldinger, J. Chase, and S. Eggers, \Architectural support for single address space operatingsystems," in ASPLOS V, pp. 175{186, September 1992.[19] K.-L. Wu and W. Fuchs, \Recoverable distributed shared virtual memory," IEEE Transactions onComputing, vol. 39, pp. 460{469, April 1990.[20] B. Fleisch, \Reliable distributed shared memory," in IEEEWorkshop on Experimental DistributedSystems, pp. 102{105, 1990.[21] T. Wilkinson, \Implementing Fault Tolerance in a 64-bit Distributed Operating System," Tech.Rep., City University, 1993.[22] POSIX 1003.4a, \Threads Extension." IEEE Draft.[23] T. Wilkinson et al., \Compiling for a 64-Bit Single Address Space Architecture," Tech. Rep.TCU/SARC/1993/1, SARC, City University Computer Science Department, March 1993.

