A short story of Diagnosis from passivity to on-line diagnosis of distributed systems

Xavier Le Guillou

DREAM project IRISA – UR1 Rennes, France

2008/06/17

IRISA - UR1

Definition

diagnosis [,dai.əg'nəʊ.sıs] (diagnosis diagnoses)

Diagnosis is the discovery and naming of what is wrong with someone who is ill or with something that is not working properly.

(source Robert&Collins)

Definition

diagnosis [,dai.əg'nəʊ.sıs] (diagnosis diagnoses)

Diagnosis is the discovery and naming of what is wrong with someone who is ill or with something that is not working properly.

(source Robert&Collins)

Motivations

Diagnosis aims at:

- exhibiting faulty behaviours of a system
- identifying the underlying fault

Motivations

Diagnosis aims at:

- exhibiting faulty behaviours of a system
- identifying the underlying fault

Diagnosis is motivated by three-step logic:

Motivations

Diagnosis aims at:

- exhibiting faulty behaviours of a system
- identifying the underlying fault

Diagnosis is motivated by three-step logic:

1. every system is subject to faults

Motivations

Diagnosis aims at:

- exhibiting faulty behaviours of a system
- identifying the underlying fault

Diagnosis is motivated by three-step logic:

- 1. every system is subject to faults
- 2. faults are costly

IRISA - UR1

Motivations

Diagnosis aims at:

- exhibiting faulty behaviours of a system
- identifying the underlying fault

Diagnosis is motivated by three-step logic:

- 1. every system is subject to faults
- 2. faults are costly
- 3. someone must pay

Diagnosis' theory of evolution

Autonomous systems

IRISA – UR1

Diagnosis' theory of evolution

Autonomous systems

WNS policy (wait and see)

Diagnosis' theory of evolution

Autonomous systems

WNS policy (wait and see) Off-line diagnosis

Diagnosis' theory of evolution

Autonomous systems

Off-line diagnosis

Role of forensics: no matter how long after a fault, determine what fault happened.

- sufficient for certain problems
 - predictive diagnosis
 - flaw discovery
 - determination of frequent faults
- inadequate for many dynamic systems...

IRISA - UR1

Off-line diagnosis

Role of forensics: no matter how long after a fault, determine what fault happened.

- sufficient for certain problems
 - predictive diagnosis
 - flaw discovery
 - determination of frequent faults
- inadequate for many dynamic systems...
- \Rightarrow need for on-line diagnosis

On-line diagnosis

Role of monitor: permanently provide an explanation to an incomplete flow of ordered observations.

- need for a model of the system
- need for efficient algorithms

We consider the "diagnoser" approach.

The model

In this approach, an automaton represents the trajectories of the system

The model

In this approach, an automaton represents the trajectories of the system

From this automaton we extract a deterministic "diagnoser"

At run-time

- ► A flow of observable events is generated by the system
- The diagnoser is fed by this flow
- A (partial) diagnosis is always available

Diagnosis' theory of evolution (r2)

IRISA – UR1

A first step: decentralized systems

The system:

- a set of components
- a single flow of observations
- The diagnosis method:
 - merging automata thanks to a shared alphabet
 - building the diagnoser
 - recognizing on-line

How to merge automata...

How to merge automata...

◆□ → ◆□ → ◆三 → ◆三 → ● ◆ ● ◆ ●

How to merge automata...

How to merge automata...

Limits of this methods

- Global knowledge of the system
- Single flow of events
- Complexity of the global automaton (e^{|c|})

On-line diagnosis of distributed systems

The very idea:

- apply a monitoring algorithm locally
- merge local diagnoses on a global diagnoser

The very crucial thing:

find a valid merging operation

Our method

At design time:

- 1. list all the possible behaviours of a component
- 2. "label" the status of variables exchanged between components for each path
- 3. decide whether this path can trigger a global diagnosis process

About status of variables

Considering different behaviours (diagnoses):

- normal case
 - both param and return are correct
- local error
 - both param and return are erroneous
- external error
 - param is correct but return is erroneous

Local diagnoses can only merge if their variables have the same status:

IRISA - UR1

Local diagnoses can only merge if their variables have the same status:

IRISA - UR1

Local diagnoses can only merge if their variables have the same status:

IRISA - UR1

Local diagnoses can only merge if their variables have the same status:

IRISA - UR1

Where is the interest?

Concurrence between local behaviours: refinement

Where is the interest?

Concurrence between local behaviours: refinement

Conclusion

A decentralized approach to monitor distributed systems:

- respect of privacy (no intrusion)
- no need for global model

Prospects:

- include a model of interactions
- learn model from logs