Content Management for Declarative Web Site Design

Richard Cooper and Michael Davidson
Computing Science

University of Glasgow

DIWeb 1 8/6/2004

Talk Overview

« Motivation for uniform declarative approach to
web site design

« A declarative component model
« The data source aspect
« An abstract model for data sources

« A hybrid data source implementation model

DIWeb 2 8/6/2004

Motivation

« Web site design is usually achieved by
— unstructured low level implementation

— or the use of interface design tools creating
unmaintainable implementations

— or the use of Content Management Systems with
complex structures

« \We propose
— a simple, systematic and comprehensive declarative
model for specifying the site
— familiar authoring tools

— late decisions on the implementation technology, such
as database or server side middleware

— automatic creation of the implementation

DIWeb 3 8/6/2004

Write
Client Side

Scripts _
Javascript

Design site

structure

Layout

SMIL?
Pages

CSS
Add

Style

DIWeb

Design

Interaction
XHTML

Forms
+

Middleware

BUld

Content
Management

Web Site Construction

Write Static
Pages

XHTML

Write
Dynamic
Pages

Middleware
Product

SQL
Build

Data Source

8/6/2004

Problems with this

« NoO Iintegration

« Poor maintainabllity

« Re-use hard to do

« Lots of languages which change

« Design and implementation tightly bound

« However, separate development of components

IS good

DIWeb 5 8/6/2004

Declarative Web Site Design

« The declarative approach promises the ability to
describe a site at high level and to generate the
details

— Strudel separates the management of data from
structure

— Tiramisu separates design from implementation

— Holland and Kumar — Component-based web Page
Composition
 hierarchy of presentation components
« Sseparate layout manager and renderers

DIWeb 6 8/6/2004

An Integrated Approach

e Use one structure to describe all constituent
parts
— since all are software components

« Generate the implementation

— ensuring that the components contain sufficient
Information

— this permits late decisions on technology

« Use an O-O approach
— to aid maintainability and re-use

DIWeb 7 8/6/2004

Components

« A component is very simply described as an
object having a number of parameters
— abstract components have uninstantiated parameters

— concrete components have values for all mandatory
parameters

— documentation parameters for all components —
author, date of creation, description, etc.

— representation in XML

« Generation proceeds from concrete components

DIWeb 8 8/6/2004

Component Maintenance

« Component creation is by inheritance using two
methods
— Instantiating parameters
— adding new parameters

« Example
— The title of a page can be fixed
« making a more concrete component

— The most general page component can be extended
with parameters for an image, a heading and a series
of text blocks

« making a more detailed but still abstract component

DIWeb 9 8/6/2004

Abstract and Concrete Components

Component
Component Component Component
Component
Component || Component
Component
Abstract component

DIWeb

10

Z} BBC - BBCi Homepage - The hom

Flle Edt Wew Favorites Rgg

=10/

| &

|f'ﬁ e R

L
AATD |
1A v Gaarch Favriras

8/6/2004

Using the Model

« Each part of the site is designed from abstract
components and each stage of the specialisation
may be stored

e This Is achieved using tools
— permitting the separate specification of each aspect
— using familiar techniques

« But the product of the tools iIs maintainable

— being held in an integrated manner
— and being declarative and documented

DIWeb 11 8/6/2004

Examples

« A web page using a specific style sheet
« A table with particular columns

« A block including a specific place for an image, a
heading and a piece of text

e I.e. any reusable structure, e.q.

« A data source with a fixed set of views but no
particular data nor implementation

DIWeb 12 8/6/2004

A Component Hierarchy

e At the top iIs Component

— This has the parameters such as name, parent,
description, author, version, date and implementation

— Implementation is probably needed an optional catch-
all for placing code which is hard to generate

« Below this are abstract components for the main
categories of site constituent

— web site — web page
— layout (and region) - style sheets (and styles)
— visible — data source (and views)

— Script

DIWeb 13 8/6/2004

The Main Page Constituents |

« Web Site
— has title, style sheet, front page & a set of web pages

« Web Page

— has a title, a style sheet, a set of meta-data and a
sequence of visible components

— dynamic pages also have a data source and a set of
place holders for content

o Layout
— c.f. SMIL — a set of regions

— a Region is a portion of the visible page into which a
visible component is placed

DIWeb 14 8/6/2004

The Main Page Constituents Il

o Style
— a set of name, value pairs, i.e. comes from CSS
— but can be used for anything (better called Map)

e Visible

— any XHTML fragment appropriate for the body of a
page (XHTML DTD used for the hierarchy under this)

o Script

— abstract description of a script hopefully permitting
frequent operations to be described (not worked out)

DIWeb 15 8/6/2004

Data Sources

« A Data Source component describes the
location of site content

« |t is parameterised by a set of connection
parameters and a set of views

— each can be separately specified

« AView is a query and includes:
— the returned metadata
— whether it is single or multi-valued
— whether it Is a query or update
— and the query string and an error message

DIWeb 16 8/6/2004

Example

$db = mysqgl_connect(*NN", “DD", “PPPP") or die ("Could not connect");
$nameQuery = "SELECT Name FROM Advisor WHERE ID = '$Advisor";
$nameResult = mysqgl_query($nameQuery,$db) or die (“Name query error");
$nameRow = mysql_fetch_array($nameResult);

echo “<h3>Advisees of $nhameRow['Name’]</h3>";

$query = "SELECT Name, Matric FROM Student
WHERE Advisor = '$Advisor' ORDER BY Year, Name";

$result = mysqgl_query($query, $db) or die (“Student query error");
echo "<table>";

) =
echo "<tr> <th>Name</th> <th>Matric</th> </tr>"; e ‘l‘;,ﬂ
. | Bach - e \ﬂ ;ELI ‘.|| =
while ($row = mysqgl fetch array($result . s =
{ ($ SO - y($)) Address F@H:lPapers'l,wj ﬁ’ &0 |Links 2
echo "<tr><td>$row["Name"]</td> Advisees of Richard Cooper -
<td>$row['Matric"]</td></tr>";
} | Name |Matri|:
Jane Doe 0123456
echo "</table>": John Doe (0234567 |
i
LI;jE:E |_ |_ |_ |%J Local inkranet 5

DIWeb 17 8/6/2004

Implementation Detail Analysis Data Source

—

$db = mysqgl_connect(“ UN", “DN", “PASS") or die ("Could not connect");
$nameQuery = “ SELECT Name FROM Advisor WHERE ID = '$Advisor' ";
$nameResult = mysqgl_query($nameQuery,$db) or die (“Name query err
$nameRow = mysql_fetch_array($nameResult);

_ Views
echo “<h3>Advisees of $nameRow['Name’]</h3>";

$studentQuery = "SELECT Name, Matric FROM Student
WHERE Advisor = '$Advisor' ORDER BY Year, Name";

$result = mysql_query($studentQuery, $db) or die (“Student query error\
echo "<table>";
echo "<tr> <th>Name</th> <th>Matric</th> </tr>", T~ Visible

while ($row = mysql_fetch_array($result)) Fragments
{
echo "<tr><td>%$row["Name"]</td>
<td>$row["Matric"]</td></tr>";

}

echo "</table>";

DIWeb 18 8/6/2004

Data Source Component

« The abstract Data Source Component has the
parameters:
— Name — maps to DN on the previous slide
— Owner — maps to UN on the previous slide
— Password — maps to PASS on the previous slide
— Views — a set of view components
— Kind — relations, XML, ??7??

« There are abstract sub-types for each data
source kind and each data management product

DIWeb 19 8/6/2004

View Components

« A view component represents the results of a
guery which can be run on the data source

e Parameters

— data source — get the red stuff from the green stuff

— query — the string which is run against the data source
— ColNames — the names of columns returned

— ColTypes — the types of columns returned

— QueryParams — the values of any parameters in the
query
— Card — does the query return one or many records

— READorWRITE — querying or updating?

DIWeb 20 8/6/2004

Typical Visible Components

« Visible components include abstract types for
each major XHTML component type in <body>

— blocks and inlines are the major abstract components

« In the example, we use:

— SingleQueryResult — a subtype of Inline with the
parameters View and QueryParameters
e get the green stuff from the blue stuff

— DynamicTable — a subtype of table with the
parameters View and QueryParameters

DIWeb 21 8/6/2004

The Need for an Abstract Data Model

« The example shows SQL access to an RDB

« However, the data source may be in another
format

— XML, OODB, Spreadsheet, etc.

o We therefore require a data representation
which is not bound to any specific
Implementation structure
— so that the queries can be expressed
— and the content management
— we use an entity based data model

DIWeb 22 8/6/2004

The Abstract Data Model

o Data sources are described in terms of an
abstract data model

— aschema is a set of entity types

— each entity type has a set of properties
« either base type or entity type
« single or multi-valued
« unigue, non-null or key
 inverses can be specified

« The abstract model is implemented in terms of

— relations or XML or both
« an algorithm determines which to use

— also Is extensible — e.g. addition of a Gender type

DIWeb 8/6/2004

Entity Property Domain Imp | pk Null | Ung | [nverse

Book |ISBN String(20) | R 1

Book Title String (30) | R 1

Book PubDate Date R 1

Book Author Author R M Author.Works
Book PublishdBy | Publisher R 1 Publisher.Publishes
Author 1D | nteger R 1

Author Name String (20) | R 1

Author BirthDate Date R 1

Author DeathDate Date R 1

Author Gender Gender R i

Author Photograph | Image F 1

Author Works Book R M Book.Author
Publisher | ID Integer X 1

Publisher | Name String (20) | X 1

Publisher | Address String (50) | X 1

Publisher | Publishes Book X M Book.Publisher

DIWeb

24

8/6/2004

Mappings to Implementation Structures

o Relations

— Standard ER techniques map an abstract schema to a
set of create table statements

« XML
— Kleiner & Lipack show how such a model maps to DTDs

e Hybrid model
— RDB can identify XML objects using tag + ID

— XML can identify RDB objects using table name and
Pkey

— The important issue is not to lose typing and to ensure
that the generation software has enough to go on

DIWeb 25 8/6/2004

Example

« Given Book and Publisher entity types related by an inverse
relationship, you can implement by:

create table Book(ISBN Varchar2(20) Primary Key,
Title Varchar2(30) Non Null,
PublishedBy Number2 references Publisher.ID)

create table Publisher(ID: Number2 Primary Key,
Name Varchar2(20) Non Null,
Address Varchar2(50))

or

<I[ELEMENT Book EMPTY>
<IATTLIST Book ISBN ID #REQUIRED>
<IATTLIST Book Title CDATA #REQUIRED>
<IATTLIST Book PublishedBy IDREF #IMPLIED>
<IELEMENT Publisher EMPTY>
<IATTLIST Publisher ID ID #REQUIRED>
<IATTLIST Publisher Name CDATA #REQUIRED>
<IATTLIST Publisher Address CDATA #IMPLIED>
<IATTLIST Publisher Publishes IDREFS #IMPLIED>

DIWeb 26

8/6/2004

and

Hybrid Representation Conventional

If Book is in XML while Publisher is in an RDB, do the
following:

<IATTLIST Book RDB$PublishedBy CDAT

create table Publisher(ID: Nywmber2 Primary Key,
Name Varchar2(2(¥'Non Null,
Address Varc (50)
XML$Publishes Varchar2(100))

Sample data:

Pkey
attribute in BOOK element: /

RDB$PublishedBy = “Publisher:23”

data value in XML$Publishes table / IDs
“Book:1224, 3456, 5678”

DIWeb 27 8/6/2004

Automatic Implementation Selection

« We have also implemented in the schema editor

and algorithm for automatically choosing which
mix of RDBs and XML Is most suitable

e Intuitions

— Given few elements containing large blocks of
unstructured text we want XML.

— Given many elements with small data types we want
a relational table

— If we have complex constraints we want a relational
table

DIWeb 28 8/6/2004

The Alogorithm

« For each entity type we add up the following

welights:

SQL Property

XML property

Each non text property in

(N = number of types)

type 5 | Eachlong text element in type 20
Each short text element in 1 Each reference to another type (1- 1

type M)

Each simple constraint 1 All - EEmEL WpEs Eie = 2N

Has check constraints

50

DIWeb

29

8/6/2004

Software Support

« Schema Editor (Michael Davidson)

— manages the creation and maintenance of data
source schemata

« Browser (ChengCheng Zhou)

— permits the browsing of data howvere it is
Implemented

« Query Language (Si Ying Meng)
— permits the expression of queries over the data

DIWeb 30

8/6/2004

The Schema Editor

i The Data Definition Editer

File__ Edit Type Output Help

BRI e e

] Library Hame Tyoe PE I Ml | U pigue: | Cardinality | [Dafault | Lenath
T [y Author Title: |[Strina i (O 0 [Mew |
T4 Publisher Author |Authar | = | DM ®MN |
Ty [Book Publisher [[Publisher =k =R O ®1-M O MN
Ty Article Publication D ate _Datei':]_j_ 1| |] M [
Ty Periodical ISEN [Integer | [MA [MA BLES [N
Add Detals Here | Inteaer = |[] [[[N .

Type Constraints:

Output Type:
i XML

) SAL

® Auto
[<ML)

- Wicrosoft Visua.. | ACAWINNT\System3. “_iiéﬁ The Data Definition... | ¢

: Hﬁ_‘ﬁhwpmjw’r —Mi&;&aﬁol%?

DIWeb 31 8/6/2004

o

RESEARCHITEM

2

Researchitem 2

DIWeb

32

8/6/2004

Query Support

« The query language we have chosen is similar to

OQL and has the basic form:
SELECT path,, path,, ..., path,
FROM EntityTypeName,, EntityTypeName,, ..., EntityTypeName,,
WHERElogical expression involving paths and constants

e This maps simply to:
— SQL
— XPATH

DIWeb 33 8/6/2004

Example

SELECT Works.Title, Works.PublishedBy.Name
FROM Author
WHERE Name = ‘Jane Austen’,

becomes:

SELECT bookl.Title, publisherl.Name
FROM Author authorl, Writes writes1, Book book1, Publisher
publisherl
WHERE authorl.Name = ‘Jane Austen’ and
and writel.Book = Book1.ISBN
and Book1.PublishedBy=publisherl.ID;

or
Book][child::author="Jane Austen”]::Title,
Book[child::author="Jane Austen”]::Publisher::Name

DIWeb 34

8/6/2004

Much To Do
« Integrating other implementation models
« Integrating the three data management tools
« Switching to XML Schema
« The Generation software

« Tantalising thought

— If the declarative model is published as part of the site
with the views clearly available, does this fixed the
hidden web problem

DIWeb 35 8/6/2004

