
Principles of peer-to-peer data integration

Maurizio Lenzerini

Dipartimento di Informatica e Sistemistica “Antonio Ruberti”

Universit à di Roma “La Sapienza”

Invited talk at DIWeb 2004

Riga, Latvia – June 2004

Three data integration architectures

• Mediator-based data integration

The traditional architecture for centralized, virtual data integration

• Data exchange

Materialization of data from a source database to a target database

• Peer-to-peer data integration

Decentralized, dynamic data-centric coordination between autonomous

organization

Maurizio Lenzerini P2P Data integration 1

Mediator-based data integration

• Mapping between sources and global schema
• Queries over the global schema

Global schema

Sources

Query Answer(Q)

Maurizio Lenzerini P2P Data integration 2

Data exchange

• Mapping between sources and target schema
• Materialization according to the target schema

Target

Source

Materialize

Maurizio Lenzerini P2P Data integration 3

Peer-to-peer data integration

• Several peers
• Local mappings and P2P mappings
• Each query over one

peer
P1

Local mapping

P2

P5

P3

P4

Peer schema

Local source P2P mapping

Peer

Answer(Q)

Maurizio Lenzerini P2P Data integration 4

Outline

• Peer-based Distributed Information Systems

• Mediator-based data integration

• Data exchange

• P2P data integration

• Conclusions

Maurizio Lenzerini P2P Data integration 5

Data integration

Source 1 Source 2

Global schema

Mapping

Query

R1 C1 D1
T1R1 C1 D1
T1

c1 d1 t1c1 d1 t1

c2 d2 t2c2 d2 t2

Source schema Source schema

Maurizio Lenzerini P2P Data integration 6

Formal framework for data integration

A data integration system I is a triple 〈G,S,M〉, where

• G is the global schema

The global schema is a logical theory over an alphabetAG
• S is the source schema

The source schema is constituted simply by an alphabetAS disjoint fromAG
• M is the mapping between S and G

Different approaches to the specification of mapping

Maurizio Lenzerini P2P Data integration 7

Semantics of a data integration system

Which are the databases that satisfy I , i.e., which are the logical models of I?

The databases that satisfy I are logical interpretations forAG (called global

databases). We refer only to databases over a fixed infinite domain Γ of constants.

Let C be a source database over Γ (also called source model), fixing the extension

of the predicates ofAS (thus modeling the data present in the sources).

The set of models of (i.e., databases forAG that satisfy) I relative to C is:

semC(I) = { B | B is a G-model (i.e., a global database that is legal wrt G)
and is anM-model wrt C (i.e., satisfiesM wrt C) }

What it means to satisfyM wrt C depends on the nature of the mappingM.

Maurizio Lenzerini P2P Data integration 8

Semantics of queries to I
A query q of arity n is a formula with n free variables.

IfD is a database, then qD denotes the extension of q inD (i.e., the set of n-tuples

that are valuations in Γ for the free variables of q that make q true inD).

If q is a query of arity n posed to a data integration system I (i.e., a formula overAG
with n free variables), then the set of certain answers to q wrt I and C is

ans(q, I, C) = {(c1, . . . , cn) ∈ qB | ∀B ∈ semC(I)}.

Note: query answering is logical implication.

Note: complexity will be mainly measured wrt the size of the source database C, and

will refer to the problem of deciding whether ~c ∈ ans(q, I, C), for a given ~c.

Maurizio Lenzerini P2P Data integration 9

Databases with incomplete information, or Knowledge Bases

• Traditional database: one model of a first-order theory

Query answering means evaluating a formula in the model

• Database with incomplete information, or Knowledge Base: set of models

(specified, for example, as a restricted first-order theory)

Query answering means computing the tuples that satisfy the query in all the

models in the set

There is a strong connection between query answering in data integration and query

answering in databases with incomplete information under constraints (or, query

answering in knowledge bases).

Maurizio Lenzerini P2P Data integration 10

The mapping

How is the mappingM between S and G specified?

• Are the sources defined in terms of the global schema?

Approach called source-centric, or local-as-view, or LAV

• Is the global schema defined in terms of the sources?

Approach called global-schema-centric, or global-as-view, or GAV

• A mixed approach?

Approach called GLAV

Maurizio Lenzerini P2P Data integration 11

Example of GLAV

Global schema: Work(Person, Project), Area(Project, F ield)

Source 1: HasJob(Person, F ield)

Source 2: Teach(Professor, Course), In(Course, F ield)

Source 3: Get(Researcher,Grant), For(Grant, Project)

GLAV mapping:

{ (r, f) |HasJob(r, f) } ; { (r, f) |Work(r, p) ∧ Area(p, f) }
{ (r, f) | Teach(r, c) ∧ In(c, f) } ; { (r, f) |Work(r, p) ∧ Area(p, f) }
{ (r, p) |Get(r, g) ∧ For(g, p) } ; { (r, p) |Work(r, p) }

Maurizio Lenzerini P2P Data integration 12

Query answering in different approaches

The problem of query answering comes in different forms, depending on several

parameters:

• Global schema

– without constraints (i.e., empty theory)

– with constraints

• Mapping

– GAV

– LAV

– GLAV

• Queries

– user queries

– queries in the mapping

Maurizio Lenzerini P2P Data integration 13

Two observations

• Unless otherwise specified, we consider conjunctive queries (or, unions thereof)

as both user queries and queries in the mapping. A conjunctive query has the

form

{ (~x) | ∃~y p1(~x, ~y) ∧ · · · ∧ pm(~x, ~y) }

• Given a source database C, we call retrieved global database, denotedM(C),

the global database obtained by “applying” the queries in the mapping, and

“transferring” to the elements of G the corresponding retrieved tuples.

Maurizio Lenzerini P2P Data integration 14

Incompleteness and inconsistency

Query answering heavily depends upon whether incompleteness/inconsistency

shows up.

Constraints in G Type of mapping Incompleteness Inconsistency

no GAV yes/no no

no GLAV yes no

yes GAV yes yes

yes GLAV yes yes

Maurizio Lenzerini P2P Data integration 15

Incompleteness and inconsistency

Constraints in G Type of mapping Incompleteness Inconsistency

no GAV yes/no no

no GLAV yes no

yes GAV yes yes

yes GLAV yes yes

Maurizio Lenzerini P2P Data integration 16

INT[noconstr, GAV]: example

Consider I = 〈G,S,M〉, with

Global schema G:

student(code, name, city)

university(code, name)

enrolled(Scode,Ucode)

Source schema S : relations s1(X,Y,W,Z), s2(X, Y), s3(X,Y)

Mapping M:

student(X, Y, Z) ; { (X, Y, Z) | s1(X, Y, Z, W) }
university(X, Y) ; { (X, Y) | s2(X,Y) }
enrolled(X,W) ; { (X, W) | s3(X, W) }

Maurizio Lenzerini P2P Data integration 17

INT[noconstr, GAV]: example

student

oslobill15

florenceanne12

citynamecode

oslobill15

florenceanne12

citynamecode

university

uclaBN

bocconiAF

namecode

uclaBN

bocconiAF

namecode

enrolled

AF12

BN16

UcodeScode

AF12

BN16

UcodeScode

sC1
12 anne florence 21

15 bill oslo 24
sC2

AF bocconi

BN ucla
sC3

12 AF

16 BN

Example of source database C and corresponding retrieved global databaseM(C)
Maurizio Lenzerini P2P Data integration 18

INT[noconstr, GAV]: minimal model

GAV mapping assertions g ; φS have the logical form:

∀~x φS(~x)→ g(~x)

where φS is a conjunctive query, and g is an element of G.

In general, given a source database C there are several databases that are legal wrt

G that satisfiesM wrt C.

However, it is easy to see thatM(C) is the intersection of all such databases, and

therefore, is the only “minimal” model of I .

Maurizio Lenzerini P2P Data integration 19

INT[noconstr, GAV]

Sources

Mapping

Global schema

One retrieved global
database M(C)

Source model

One minimal
model of I

=

Maurizio Lenzerini P2P Data integration 20

INT[noconstr, GAV]: query answering

• If q is a conjunctive query, then~t ∈ ans(q, I, C) if and only if~t ∈ qM(C)

• If q is query over G, then the unfolding of q wrtM, unfM(q), is the query over S
obtained from q by substituting every symbol g in q with the query φS thatM
associates to g

• It can be shown that evaluating a query q overM(C) is equivalent to evaluating

unfM(q) over C. It follows that, if q is a conjunctive query, then~t ∈ ans(q, I, C)
if and only if~t ∈unfM(q)C

Unfolding is therefore a perfect rewriting

• (Data) complexity of query answering is polynomial (|M(C)| is polynomial wrt

|C|)

Maurizio Lenzerini P2P Data integration 21

INT[noconstr, GAV]: example

student

oslobill15

florenceanne12

citynamecode

oslobill15

florenceanne12

citynamecode

university

uclaBN

bocconiAF

namecode

uclaBN

bocconiAF

namecode

{ x | student(15,x,y) }

unfolding

sC1
12 anne florence 21

15 bill oslo 24
sC2

AF bocconi

BN ucla
{ x | s1(15, x, y, z) }

Maurizio Lenzerini P2P Data integration 22

INT[noconstr, GAV]: another view

Let B1 and B2 be two global databases with values in Γ∪ Var.

• A homomorphism h : B1 → B2 is a mapping from (Γ ∪ Var(B1)) to (Γ ∪
Var(B2)) such that

1. h(c) = c, for every c ∈ Γ

2. for every fact Ri(t) of B1, we have that Ri(h(t)) is a fact in B2 (where, if

t = (a1, . . . , an), then h(t) = (h(a1), . . . , h(an))

• B1 is homomorphically equivalent to B2 if there is a homomorphism

h : B1 → B2 and a homomorphism h′ : B2 → B1

Let I = 〈G,S,M〉 be a data integration system. If C is a source database, then a

universal solution for I relative to C is a model J of I relative to C such that for every

model J ′ of I relative to C, there exists a homomorphism h : J → J ′ (see

[Fagin&al. ICDT’03]).

Maurizio Lenzerini P2P Data integration 23

INT[noconstr, GAV]: another view

• Homomorphism preserves satisfaction of conjunctive queries: if there exists a

homomorphism h : J → J ′, and q is a conjunctive query, then~t ∈ qJ implies

~t ∈ qJ ′

• Let I = 〈G,S,M〉 be a GAV data integration system without constraints in the

global schema. If C is a source database, thenM(C) is the minimal universal

solution for I relative to C
• We derive again the following results

– if q is a conjunctive query, then~t ∈ ans(q, I, C) if and only if~t ∈ qM(C)

– complexity of query answering is polynomial

Maurizio Lenzerini P2P Data integration 24

INT[noconstr, LAV]: basic technique

Consider conjunctive queries and conjunctive views.

r1(T) ; { (T) | movie(T, Y, D) ∧ european(D) }
r2(T, V) ; { (T, V) | movie(T, Y, D) ∧ review(T, V) }

∀T r1(T) → ∃Y ∃D movie(T, Y, D) ∧ european(D)

∀T ∀V r2(T, V) → ∃Y ∃D movie(T, Y, D) ∧ review(T, V)

movie(T, f1(T), f2(T)) ← r1(T)

european(f2(T)) ← r1(T)

movie(T, f4(T, V), f5(T, V)) ← r2(T, V)

review(T, V)) ← r2(T, V)

Answering a query means evaluating a goal wrt to this nonrecursive logic program

(PTIME data complexity), i.e., this logic program is a perfect rewriting.

Maurizio Lenzerini P2P Data integration 25

Outline

• Peer-based Distributed Information Systems

• Mediator-based data integration

• Data exchange

• P2P data integration

• Conclusions

Maurizio Lenzerini P2P Data integration 26

Data exchange

Target

Source

Materialize

Maurizio Lenzerini P2P Data integration 27

Formal framework for data exchange

From [Fagin&al. ICDT’03], a data exchange setting E = (S, T, Σst, Σt) consists of

• a source schema S
• a target schema T
• a set Σst of source-to-target dependencies, each one of the form (tuple

generating dependency, tgd)

∀~x (φS(~x)→ ∃~yφT (~x, ~y))

with φS(~x) conjunction of atoms over S, and φT (~x, ~y) conjunction of atoms

over T (cfr. GLAV mappings in data integration)
• a set Σt of target dependencies, each one of the form (tgd, or equality generating

dependency)

∀~x (φS(~x)→ ∃~yφT (~x, ~y)) or ∀~x (φT (~x)→ (x1 = x2))

Maurizio Lenzerini P2P Data integration 28

Formal framework for data exchange

The data exchange problem associated with the data exchange setting

E = (S, T , Σst, Σt) is the following:

• given a finite instance C of S (source instance)

• find a finite instance J of T (target instance) such that (I, J) satisfies Σst, and

J satisfies Σt.

Such a J is called a solution for E wrt C, or simply for C. The set of all solutions is

denoted by Sol(C).

Maurizio Lenzerini P2P Data integration 29

Example of data exchange

Σst:

{ ∀a∀b∀c (P (a, b, c)→ ∃Y ∃Z T (a, Y, Z))

∀a∀b∀c (Q(a, b, c)→ ∃X∃U T (X, b, U))

∀a∀b∀c (R(a, b, c)→ ∃V ∃W T (V,W, c)) }
C = {P (a0, b1, c1), Q(a2, b0, c2), R(a3, b3, c0)}
Some possible solutions:

J = {T (a0, Y0, Z0), T (X0, b0, U0), T (V0,W0, c0)}
J1 = {T (a0, b0, c0)}
J2 = {T (a0, b0, Z1), T (V1,W1, c0)}

Maurizio Lenzerini P2P Data integration 30

Data exchange: results

The following results appear in [Fagin&al. ICDT’03]:

• If C is a source instance and J, J ′ are universal solutions for C, then J and J ′

are homomorphically equivalent

• Let C, C ′ be two source instances, J a universal solution for C, and J ′ a

universal solution for C ′. Then Sol(C)=Sol(C ′) if and only if J and J ′ are

homomorphically equivalent

• If the tgds in Σt are weakly acyclic (i.e., cycles do not involve existentially

quantified variables), then the existence of a solution for C can be checked in

polynomial time wrt the size of C. Moreover, if a solution for C exists, then a

universal solution for C can be produced in polynomial time wrt the size of C (by

“chasing” C)

Maurizio Lenzerini P2P Data integration 31

Outline

• Peer-based Distributed Information Systems

• Mediator-based data integration

• Data exchange

• P2P data integration

• Conclusions

Maurizio Lenzerini P2P Data integration 32

P2P data integration

P1

Local mapping

P2

P5

P3

P4

Peer schema

Local source P2P mapping

Peer

Answer(Q)

Maurizio Lenzerini P2P Data integration 33

P2P data integration: general framework

A P2P system Π is a set {P1, . . . , Pn} of peers, where each peer Pi models an

autonomous information site, that

• exports its information content in terms of a schema

• stores actual data in a set of (local) sources

• is related to other peers in Π by means of a set of P2P mappings, where each

P2P mapping is a schema level assertion relating information in another peer Pj

to information in Pi

Inspired by [Catarci&Lenzerini COOPIS ’92], Halevy&al. ICDE’03]. Other related

work: [Ghidini&Serafini FCS ’98], [Bernstein&al. WebDB ’02, Franconi&al.’03].

Maurizio Lenzerini P2P Data integration 34

Logic-based formal framework for P2P data integration

Each peer of Π is a tuple P = (G,S, L,M) constituted by

• a schema G, i.e., a set of FOL formulas over a peer alphabet AG

• a set S of (local) sources (simply a finite relational alphabet)

• a set L of local mapping assertions between G and S, each of the form

cqS ; cqG

where cqS and cqG are conjunctive queries over S and G, respectively

• a set M of P2P mapping assertions, each of the form

cq ′ ; cq

where: – cq ′ is a conjunctive query over one of the other peers in Π

– cq is a conjunctive query over the peer schema of P

(cq ′ and cq are of the same arity)

Maurizio Lenzerini P2P Data integration 35

Formal framework for P2P data integration: semantics

• We assume that all peers are interpreted over a fixed infinite domain

• We also refer to a fixed, infinite, denumerable, set Γ of constants, that act as

standard names (i.e., Γ is isomorphic to the interpretation domain)

• ... but see the conclusions for a more general approach

In the following, we will use constants of Γ to denote elements of the interpretation

domain

Maurizio Lenzerini P2P Data integration 36

Semantics of one peer

For each peer P = (G,S, L,M) we define a FOL theory TP as follows:

• The alphabet of TP is obtained as union of the alphabets of the schema G and

of the sources S

• The axioms of TP are as follows:

– all FOL formulas in the schema G

– for each local mapping assertion

{~x | ∃~y ϕS(~x, ~y)} ; {~x | ∃~zϕG(~x,~z)} in L, one formula of the form

∀~x (∃~y ϕS(~x, ~y) ⊃ ∃~zϕG(~x,~z))

Notice that TP does not consider the P2P mappings in M

It follows that we are modeling each peer P as a GLAV data integration system, in

turn modeled as a FOL theory TP (ignoring the P2P mappings M)

Maurizio Lenzerini P2P Data integration 37

Semantics of one peer (cont’d)

We resort to the standard notion of certain answer in data integration:

• We start from a source database D for the peer P , i.e., a database over Γ for

the source relation symbols in S

• A model of P based on D is an interpretation of TP that

– coincides with D on the source relation symbols

– satisfies all formulas in TP

• Given a query Q of arity n expressed over (the schema G of) P , and a source

database D, the (local) certain answers of P to Q based on D are

ans(Q,P,D) = {~t ∈ Γn | ~t ∈ QI , for every model I of P based on D}

Maurizio Lenzerini P2P Data integration 38

Semantics of a P2P system

• A source databaseD for Π is the disjoint union of one source database for each

peer Pi in Π

• Given a source databaseD for Π, the set of models of Π relative toD is:

semD(Π) = { I | I is a model of all peer theories TPi
based onD, and

I satisfies all P2P mapping assertions }

The meaning of I satisfying a P2P mapping assertion may vary in the various

approaches

• Given a query Q of arity n posed to a peer Pi of Π, and a source databaseD,

the certain answers to Q based onD are

ans(Q, Π,D) = {~t ∈ Γn | ~t ∈ QI , for every I ∈ semD(Π) }
Maurizio Lenzerini P2P Data integration 39

Possible formalizations of P2P mappings

We consider two alternatives for specifying the semantics of P2P mappings:

• Based on First-Order Logic

P2P mappings are considered as material logical implications

• Based on Epistemic Logic

P2P mappings are considered as specifications of exchange of certain answers

Maurizio Lenzerini P2P Data integration 40

First-Order Logic semantics of P2P mappings

The semantics of P2P mapping assertions is given in terms of First-Order Logic

[Halevy&al. ICDE’03, Bernstein&al. WebDB ’02]

An interpretation I satisfies a P2P mapping assertion

{~x | ∃~y ϕ1(~x, ~y)} ; {~x | ∃~zϕ2(~x,~z)}

if it satisfies the FOL formula

∀~x (∃~y ϕ1(~x, ~y) ⊃ ∃~zϕ2(~x,~z))

which is equivalent to the condition

{~x | ∃~y ϕ1(~x, ~y)}I ⊆ {~x | ∃~zϕ2(~x,~z)}I

Maurizio Lenzerini P2P Data integration 41

Inadequacy of FOL semantics of P2P mappings

The FOL semantics is not adequate for P2P data integration:

• Lack of modularity

– the system is modeled by a flat FOL theory, with no formal separation

between the various peers

– the modular structure of the system is not reflected in the semantics

• Bad computational properties

Computing the set of certain answers to a conjunctive query Q posed to a peer is

undecidable, even when all peer schemas are empty [Halevy&al. ICDE’03,

Koch FOIKS’02]

• Lack of generality

To recover decidability, one has to limit the expressive power of P2P mappings

(e.g., assume acyclicity) [Halevy&al. ICDE’03]

Maurizio Lenzerini P2P Data integration 42

Epistemic semantics for P2P mappings: objectives

A new semantics for P2P mappings, with the following aims:

• Peers in our context are to be considered autonomous sites that exchange

information

• We do not want to limit a-priori the topology of the mapping assertions among the

peers in the system

• Defining a setting where query answering is decidable, and possibly, polynomially

tractable

Maurizio Lenzerini P2P Data integration 43

Epistemic semantics for P2P mappings: basic idea

The new semantics is based on epistemic logic [Reiter TARK’88]

• A P2P mapping cq i ; cq j (with cq i over Pi and cq j over Pj) is interpreted as

an epistemic formula which imposes that only the certain answers to cq i in Pi

(i.e., the facts that are known by Pi) are transferred to Pj as facts satisfying cq j .

In other words, peer Pi communicates to peer Pj only facts that are certain, i.e.,

true in every model of the P2P system

• The modular structure of the system is now reflected in the semantics (by virtue

of the modal semantics of epistemic logics)

• Good computational properties: computing the certain answers to a conjunctive

query Q based on a source databaseD is polynomial time in the size ofD, even

for cyclic mappings

Maurizio Lenzerini P2P Data integration 44

Epistemic logic: basic notions

In epistemic logic, we have a new form of atoms, namely (ϕ is again a formula):

Kϕ

An epistemic interpretation is a pair 〈I,W〉, whereW is a set of FOL interpretations

and I ∈ W
• a FOL formula constituted by an atom a(~x) is satisfied in 〈I,W〉 by the tuples~t

of constants such that a(~t) is true in I
• an atom of the form Kϕ(~x) is satisfied in 〈I,W〉 by the tuples~t of constants

such that ϕ(~t) is satisfied in all epistemic interpretations 〈J ,W〉 with J ∈ W
An epistemic model of an epistemic logic theory {ϕ1, . . . , ϕt} is an epistemic

interpretation 〈I,W〉 that satisfies every axiom ϕi

An axiom ϕi is satisfied in 〈I,W〉 if ϕi is satisfied in all 〈J ,W〉 with J ∈ W
Maurizio Lenzerini P2P Data integration 45

Epistemic logic: example 1

I J
W

S(d) S(d)

P (a) R(b) R(c)

〈I,W〉 |= P (a)

〈J ,W〉 6|= P (a)

〈I,W〉 6|= KP (a)

Maurizio Lenzerini P2P Data integration 46

Epistemic logic: example 2

I J
W

S(d) S(d)

P (a) R(b) R(c)

〈I,W〉 |= K (R(b) ∨R(c))

〈I,W〉 6|= (KR(b)) ∨ (KR(c))

〈I,W〉 |= KS(d)

Maurizio Lenzerini P2P Data integration 47

Epistemic logic: example 3

I J
W

S(d) S(d)

P (a) R(b) R(c)

〈I,W〉 |= K (∃xR(x))

〈I,W〉 6|= ∃x (KR(x))

〈I,W〉 |= ∃x (KS(x))

Maurizio Lenzerini P2P Data integration 48

Epistemic semantics for P2P mappings: basic idea

We formalize a P2P system Π in terms of the epistemic logic theory EΠ:

• the alphabetAΠ is the disjoint union of the alphabets of the various peer

theories TP , one for each peer P in Π

• all the formulas of the various theories TP are axioms in EΠ

• for each P2P mapping assertion

{~x | ∃~y ϕ1(~x, ~y)} ; {~x | ∃~zϕ2(~x,~z)}

in the peers of Π, there is one axiom in EΠ of the form

∀~x ((K ∃~y ϕ1(~x, ~y)) ⊃ ∃~zϕ2(~x,~z))

Maurizio Lenzerini P2P Data integration 49

Epistemic semantics for P2P mappings: basic idea

In other words, 〈I,W〉 satisfies the P2P mapping assertion cq1 ; cq2 if,

for every tuple~t of constants in Γ,

when~t ∈ cqJ1 for every FOL model J inW , then~t ∈ cqI2

An epistemic model of Π based onD is an epistemic interpretation 〈I,W〉 such

that

• W is a set of models of TΠ based onD, and

• 〈I,W〉 satisfies all axioms corresponding to the P2P mapping assertions in the

peers of Π

Given a query Q of arity n posed to a peer Pi of Π, and a source databaseD, the

certain answers to Q based onD under epistemic semantics are

ansk(Q, Π,D) = {~t ∈ Γn | ~t ∈ QI , for every epistemic model

〈I,W〉 of Π based onD }

Maurizio Lenzerini P2P Data integration 50

Semantics of P2P mappings: example

Parent

Mother Father

Man

Woman

Person

P1
P2

P4

P3

Parent(d), Father(e)

Maurizio Lenzerini P2P Data integration 51

FOL semantics of P2P mappings: model 1

Parent

Mother Father

Man

Woman

Person

P1
P2

P4

P3

Parent(d), Father(e)

Person(e)
Person(d)

Man(e)

Woman(d)

Maurizio Lenzerini P2P Data integration 52

FOL semantics of P2P mappings: model 2

Parent

Mother Father

Man

Woman

Person

P1
P2

P4

P3

Parent(d), Father(e)

Person(e)
Person(d)

Man(e), Man(d)

According to the FOL semantics, Person(d) is true in all cases, and therefore is a

certain answer to {x | Person(x)}

Maurizio Lenzerini P2P Data integration 53

Epistemic semantics of P2P mappings

Parent

Mother Father

Man

Woman

Person

P1
P2

P4

P3

Parent(d), Father(e)

Person(e)

Man(e)

According to the epistemic semantics, Person(d) is not a certain answer to

{x | Person(x)}

Maurizio Lenzerini P2P Data integration 54

Query answering: example

P1 R(x,y)

R(d,e)

P2Q(x,y)
R(x,y) → Q(x,y)

S(x,y)
R(x,z) ← Q(x,y), S(y,z)

S(e,f)

Maurizio Lenzerini P2P Data integration 55

Query answering: example

P1 R(x,y)

R(d,e)

P2Q(x,y)
R(x,y) → Q(x,y)

S(x,y)
R(x,z) ← Q(x,y), S(y,z)

Q(d,e) , S(e,f)

Maurizio Lenzerini P2P Data integration 56

Query answering: example

P1 R(x,y)

R(d,e), R(d,f)

P2Q(x,y)
R(x,y) → Q(x,y)

S(x,y)
R(x,z) ← Q(x,y), S(y,z)

Q(d,e) , S(e,f)

Maurizio Lenzerini P2P Data integration 57

Query answering: example

P1 R(x,y)

R(d,e), R(d,f)

P2Q(x,y)
R(x,y) → Q(x,y)

S(x,y)
R(x,z) ← Q(x,y), S(y,z)

Q(d,f), Q(d,e) , S(e,f)

Maurizio Lenzerini P2P Data integration 58

Query answering in P2P systems under epistemic semantics

• We are interested in an algorithm for distributed query answering

– the query is posed to one peer in the system

– each peer executes the same algorithm, and in doing so exchanges

information only with the peers it is connected to

– no central coordination or centralized data structures

• We assume that peers accept queries in a query language L (subsuming at least

conjunctive queries)

• We require that each peer, given a query Q in L, is able to compute a Datalog

query Q′ that is a perfect reformulation of Q

Maurizio Lenzerini P2P Data integration 59

Perfect reformulation

• P2P mappings in a peer P are of the form cq ′ ; cq (where cq may be an

arbitrary conjunctive query)

– for each such mapping we introduce in P a new source predicate symbol E

(called external source)

– the symbol E has the same arity as cq

– we add to P a local mapping assertion {~x | E(x)} ; cq

• Given a query Q in L, a Datalog query Q1 is a perfect reformulation of Q if

– Q1 is expressed over the original and the external source predicates of P

– for each source database D for P (i.e., over the original and the external

sources), we have that

QD
1 = ans(Q,P, D)

• Perfect reformulations exists in several settings

Maurizio Lenzerini P2P Data integration 60

Distributed query answering in P2P systems

We have devised a distributed query algorithm based on the following ideas

• Each peer reformulates the queries that are requested to it in terms of the local

and external sources

• A reference to an external source triggers a request to the peer to which the

external source is connected

• Answers to such requests consist of a Datalog program with two parts:

– an extensional part, which is a set of facts (about source relations received

from other peers)

– an intensional part, which is a set of Datalog rules

• Infinite looping is avoided by:

– associating to each (user) query a unique (global) transaction id

– avoiding requests that have already been made for the same transaction id
Maurizio Lenzerini P2P Data integration 61

Query answering technique: example

R1/1

S1 b d
c a
c b

S1(x,) ; R1(x)

P1

R1(x) ; R3(x, b)

R21(x,), R22(, x) ; R1(x)

R21/2

a a
a c
b c

R3/2

S3

S3(x, y) ;

R3(x, y)

P3

P2

R3(x, y) ; R21(x, z), R22(z, y)

R22/2

Maurizio Lenzerini P2P Data integration 62

Query answering technique: example

P1

E1(x) ; R1(x)

E1/1

R21/2 R22/2
P2

a a
a c
b c

R3/2

S3

S3(x, y) ;

R3(x, y)

P3

R3(x, y) ; R21(x, z), R22(z, y)

R1(x) ; R3(x, b)

R21(x,), R22(, x) ; E1(x)

R1/1

S1 b d
c a
c b

S1(x,) ; R1(x)

Maurizio Lenzerini P2P Data integration 63

Query answering technique: example

S1(x,) ; R1(x)

P1

E1(x) ; R1(x)

E1/1

R21/2 R22/2

E2(x, y) ; R21(x, z), R22(z, y)

P2

E2/2

a a
a c
b c

R3/2

S3

S3(x, y) ;

R3(x, y)

P3R1(x) ; R3(x, b)

R3(x, y) ; E2(x, y)

R21(x,), R22(, x) ; E1(x)

R1/1

S1 b d
c a
c b

Maurizio Lenzerini P2P Data integration 64

Query answering technique: example

S1(x,) ; R1(x)

P1

E1(x) ; R1(x)

E1/1

R21/2 R22/2

E2(x, y) ; R21(x, z), R22(z, y)

P2

E2/2

a a
a c
b c

R3/2

S3

E3(x) ;

R3(x, b) S3(x, y) ;

R3(x, y)

P3

E3/1

R1(x) ; E3(x)

R3(x, y) ; E2(x, y)

R21(x,), R22(, x) ; E1(x)

R1/1

S1 b d
c a
c b

Maurizio Lenzerini P2P Data integration 65

Query answering technique: example

b d
c a
c b

S1(x,) ; R1(x)

P1

E1(x) ; R1(x)

E1/1

R21/2 R22/2

E2(x, y) ; R21(x, z), R22(z, y)

P2

E2/2

a a
a c
b c

R3/2

S3

E3(x) ;

R3(x, b) S3(x, y) ;

R3(x, y)

P3

E3/1R21(x,), R22(, x) ; E1(x)

R1(x) ; E3(x)

R3(x, y) ; E2(x, y)

Q = {x | R1(x) }
R1/1

S1

1

{
Q(x) ← S1(x,)

Q(x) ← E1(x)

Maurizio Lenzerini P2P Data integration 66

Query answering technique: example

b d
c a
c b

S1(x,) ; R1(x)

P1

E1(x) ; R1(x)

E1/1

R21/2 R22/2

E2(x, y) ; R21(x, z), R22(z, y)

P2

E2/2

a a
a c
b c

R3/2

S3

E3(x) ;

R3(x, b) S3(x, y) ;

R3(x, y)

P3

E3/1R21(x,), R22(, x) ; E1(x)

R1(x) ; E3(x)

R3(x, y) ; E2(x, y)

Q = {x | R1(x) }
R1/1

S1

1

{
Q(x) ← S1(x,)

Q(x) ← E1(x)

2
{

E1(x) ← E2(x,), E2(, x)

Maurizio Lenzerini P2P Data integration 67

Query answering technique: example

b d
c a
c b

S1(x,) ; R1(x)

P1

E1(x) ; R1(x)

E1/1

R21/2 R22/2

E2(x, y) ; R21(x, z), R22(z, y)

P2

E2/2

a a
a c
b c

R3/2

S3

E3(x) ;

R3(x, b) S3(x, y) ;

R3(x, y)

P3

E3/1R21(x,), R22(, x) ; E1(x)

R1(x) ; E3(x)

R3(x, y) ; E2(x, y)

Q = {x | R1(x) }
R1/1

S1

1

{
Q(x) ← S1(x,)

Q(x) ← E1(x)

2
{

E1(x) ← E2(x,), E2(, x)

3

{
E2(x, y) ← S3(x, y)

E2(x, y) ← E3(x), y = b

Maurizio Lenzerini P2P Data integration 68

Query answering technique: example

b d
c a
c b

S1(x,) ; R1(x)
E1(x) ; R1(x)

E1/1

R21/2 R22/2

E2(x, y) ; R21(x, z), R22(z, y)

P2

E2/2

a a
a c
b c

R3/2

S3

E3(x) ;

R3(x, b) S3(x, y) ;

R3(x, y)

P3

P1

E3/1R21(x,), R22(, x) ; E1(x)

R3(x, y) ; E2(x, y)

Q = {x | R1(x) }

R1(x) ; E3(x)

R1/1

S1

1

{
Q(x) ← S1(x,)

Q(x) ← E1(x)

2
{

E1(x) ← E2(x,), E2(, x)

3

{
E2(x, y) ← S3(x, y)

E2(x, y) ← E3(x), y = b

4

{
E3(x) ← S1(x,)

E3(x) ← E1(x)

Maurizio Lenzerini P2P Data integration 69

Query answering technique: example

S1 b d
c a
c b

S1(x,) ; R1(x)
E1(x) ; R1(x)

E1/1

R21/2 R22/2

E2(x, y) ; R21(x, z), R22(z, y)

P2

E2/2

a a
a c
b c

R3/2

S3

E3(x) ;

R3(x, b) S3(x, y) ;

R3(x, y)

P3

P1

E3/1R21(x,), R22(, x) ; E1(x)

R1(x) ; E3(x)

R3(x, y) ; E2(x, y)

4

Q = {x | R1(x) }
R1/1

1

{
Q(x) ← S1(x,)

Q(x) ← E1(x)

2
{

E1(x) ← E2(x,), E2(, x)

3

{
E2(x, y) ← S3(x, y)

E2(x, y) ← E3(x), y = b

4

{
E3(x) ← S1(x,)

E3(x) ← E1(x)

Maurizio Lenzerini P2P Data integration 70

Query answering technique: example

S1 b d
c a
c b

S1(x,) ; R1(x)
E1(x) ; R1(x)

E1/1

R21/2 R22/2

E2(x, y) ; R21(x, z), R22(z, y)

P2

E2/2

a a
a c
b c

R3/2

S3

E3(x) ;

R3(x, b) S3(x, y) ;

R3(x, y)

P3

P1

E3/1

4 ∪ 3 ∪ S3

R21(x,), R22(, x) ; E1(x)

R3(x, y) ; E2(x, y)

R1(x) ; E3(x)

Q = {x | R1(x) }
R1/1

1

{
Q(x) ← S1(x,)

Q(x) ← E1(x)

2
{

E1(x) ← E2(x,), E2(, x)

3

{
E2(x, y) ← S3(x, y)

E2(x, y) ← E3(x), y = b

4

{
E3(x) ← S1(x,)

E3(x) ← E1(x)

Maurizio Lenzerini P2P Data integration 71

Query answering technique: example

S1 b d
c a
c b

S1(x,) ; R1(x)
E1(x) ; R1(x)

E1/1

R21/2 R22/2

E2(x, y) ; R21(x, z), R22(z, y)

P2

E2/2

a a
a c
b c

R3/2

S3

E3(x) ;

R3(x, b) S3(x, y) ;

R3(x, y)

P3

P1

E3/1R21(x,), R22(, x) ; E1(x)

R3(x, y) ; E2(x, y)

4 ∪ 3 ∪ 2 ∪ S3

R1(x) ; E3(x)

Q = {x | R1(x) }
R1/1

1

{
Q(x) ← S1(x,)

Q(x) ← E1(x)

2
{

E1(x) ← E2(x,), E2(, x)

3

{
E2(x, y) ← S3(x, y)

E2(x, y) ← E3(x), y = b

4

{
E3(x) ← S1(x,)

E3(x) ← E1(x)

Maurizio Lenzerini P2P Data integration 72

Query answering technique: example

S1 b d
c a
c b

S1(x,) ; R1(x)
E1(x) ; R1(x)

E1/1

R21/2 R22/2

E2(x, y) ; R21(x, z), R22(z, y)

P2

E2/2

a a
a c
b c

R3/2

S3

E3(x) ;

R3(x, b) S3(x, y) ;

R3(x, y)

P3

P1

E3/1R21(x,), R22(, x) ; E1(x)

R1(x) ; E3(x)

Q = {x | R1(x) }
evaluate 4 ∪ 3 ∪ 2 ∪ 1 over S1 ∪ S3

R3(x, y) ; E2(x, y)

R1/1

1

{
Q(x) ← S1(x,)

Q(x) ← E1(x)

2
{

E1(x) ← E2(x,), E2(, x)

3

{
E2(x, y) ← S3(x, y)

E2(x, y) ← E3(x), y = b

4

{
E3(x) ← S1(x,)

E3(x) ← E1(x)

Maurizio Lenzerini P2P Data integration 73

Query answering algorithm

Each peer provides two main functionalities:

• answering a user query by initiating a new transaction

• computing the Datalog program for a request coming from a peer

The algorithm is executed over a source databaseD representing the state of all

peers

Algorithm P.user-query-handler

Input: user query q ∈ L
Output: set of tuples for q

begin

generate a new transaction id T;

DP := P.peer-query-handler(q, rq, T);

return Eval(rq, DP)
end

Maurizio Lenzerini P2P Data integration 74

Query answering algorithm (cont’d)

Algorithm P.peer-query-handler

Input: query q ∈ L, query predicate rq , transaction id T

Output: Datalog program DP = (DPI , DPE)
DPI := computePerfectRef(q, rq, P); DPE := ∅;
for each predicate r ∈ S ∪ AuxAlph(P) occurring in DPI do

if getTransaction(r, T) = notProcessed then

setTransaction(r, T, processed);

if r ∈ S then /* r is a source symbol in P */

DPE := DPE ∪ Extension(r,D)
else /* r is an external source symbol */

DP′ := peer(r).peer-query-handler(query(r), r, T);

DPI := DPI ∪ DP′I ; DPE := DPE ∪ DP′E
return DP

Maurizio Lenzerini P2P Data integration 75

Properties of the algorithm

• It is an algorithm, i.e., it always terminates

• Sound and complete for the epistemic semantics

• Runs in polynomial time in the size of the source database

• Notice that the reformulation step is independent of the data, and hence does not

affect data complexity

Maurizio Lenzerini P2P Data integration 76

Dealing with inconsistencies: example

P1 Pe(D,_,London) P2 Cit(D,Roma,Paris)

Per(D,London,Paris)

S1(D,3,London) S2(D,4,London) S3(D,Roma,Paris)

Person(D,_,Paris)

D leaves in Paris
Don’ t know where D was born

P3

D was born in London
D leaves in Paris

P4

Maurizio Lenzerini P2P Data integration 77

Dealing with inconsistencies and preferences: example

P1 Pe(D,_,London) P2 Cit(D,Roma,Paris)

Per(D,London,Paris)

S1(D,3,London) S2(D,4,London) S3(D,Roma,Paris)

Person(D,Roma,Paris)

D leaves in Paris
D was born in Roma

P3

D was born in London
D leaves in Paris

P4

2

1

2 1>

Maurizio Lenzerini P2P Data integration 78

Outline

• Peer-based Distributed Information Systems

• Mediator-based data integration

• Data exchange

• P2P data integration

• Conclusions

Maurizio Lenzerini P2P Data integration 79

Conclusions

Many open problems and issues, including

• Classes of integrity constraints in peer schemas affect the perfect reformulation

problem

• Global schema (or target schema, or peer schemas) expressed in terms of

semi-structured data (with constraints)

• Limitations in accessing the sources

• Privacy-based restrictions on peer answers

• Dealing with inconsistencies vs. data cleaning

• How to incorporate the notion of data quality (peer reliability, accuracy, etc.)

• Optimization

• Going beyond the “unique domain assumption”, i.e., by means of so-called

mapping tables [Arenas&al SIGMOD03]

• Adding materialization

Maurizio Lenzerini P2P Data integration 80

