SQOWL: Type Inference in an RDBMS

P.J. McBrien, N. Rizopoulos, and A.C. Smith

Imperial College Londofi, 180 Queen’s Gate, London, UK

Abstract. In this paper we describe a method to perform type inference over
data stored in an RDBMS, where rules over the data are specified usihg OW
DL. Since OWL-DL is an implementation of tHgescription Logic (DL) called
SHOZIN (D), we are in effectimplementing a method &+ OZN (D) reason-

ing in relational databases. Reasoning may be broken down into twosgescef
classificationandtype inference Classification may be performed efficiently by

a number of existing reasoners, and since classification alters theadhesed
only be performed once for any given relational schema as a pregsor of the
schema before creation of a database schema. However, typantdareeds to

be performed for each data value added to the database, and hedsetode
more tightly coupled with the database system. We propose a techniquetto mee
this requirement based on the use of triggers, which is the first techtiduly
implementSHOZN (D) as part of normal transaction processing.

1 Introduction

There is currently a growing interest in the developmentysfesms that store and pro-
cess large amounts of Semantic Web knowledge [6, 14, 17].ndnoan approach is to
represent such knowledge as data in RDF tuples [1], togettikrrules in OWL-DL
[10]. When large quantities dhdividuals in a ontology need to be processed effi-
ciently, it is natural to consider that the individuals aeddhin arelational database
management systenfRDBMS), in which case we refer to the individuals as data, and
make theunique name assumptionUNA). Hence, the question arises of how knowl-
edge expressed in OWL-DL can be deployed in a relational databontext, and take
advantage of the RDBMS platforms in use today to processidaa ontology, and
make inferences based on the open world assumption.

To illustrate the issues we address in this paper, consiffagenent from theer-
minology box (TBox) of the Wine Ontology [12] expressed in DL:

Loire = Wine M locatedIn:{LoireRegion} 1)
WhiteLoire = Loire 1 WhiteWine (2)
WhiteLoire C VmadeFromGrape.{CheninBlanc, PinotBlanc, SauvignonBlanc} (3)
T C VlocatedIn™ .Region 4)
T C VYmadeFromGrape.Wine (5)
T C VYmadeFromGrape™.WineGrape (6)

To differentiate between classes and properties, clasagsngth an upper case letter,
e.g. Wine. Properties start with a lower case letteg. madeFromGrape. Individuals
start with an upper case letter and appear inside curly btagkg. {LoireRegion}.

** The work reported in this paper was funded by the Systems Engine@iinggutonomous
Systems (SEAS) Defence Technology Centre established by the UK Miofdrefence.

Obviously, there is a simple mapping from classes and ptiggen DL to unary
and binary relations in an RDBMS. Thus, from the above DLestegnts we can infer a

relational schema:
Wine (id) WineGrape(id) madeFromGrape(domain,range)

Loire(id) Region(id) locatedIn(domain,range)

WhiteWine (id) WhiteLoire(id)

Furthermore, each property has a domain and a range whichecesstricted. For
example, (5) could infer the foreign keyadeFromGrape .domain — Wine.id and
(6) infermadeFromGrape.range — WineGrape.id.

However, as it stands, the relational schema, with its degerld semantics, does
not behave in the same manner to the open world semantice @lthFor example,
we can insert into the database the following facts (whicBlinwould be called the
assertion box(ABox)):

Loire(SevreEtMaineMuscadet) (7)
WhiteWine(SevreEtMaineMuscadet) (8)
madeFromGrape(SevreEtMaineMuscadet, PinotBlancGrape) (9)

Using these rules, we have the problems that in the DBMS o the ontology:

P1 SevreEtMaineMuscadet would not be a member diine, despite that being im-
plied by TBox rule (1) from ABox rule (7) and by (5) from (9)

P2 SevreEtMaineMuscadet is not a member ofVhiteLoire, despite that being implied
by TBox rule (2) from ABox rule (7) and (8) together.

P3 Assertion of the property membership (9) would fail, sime have not previously
asserted th@inotBlancGrape as a member dfVineGrape.

Performingclassificationusing a reasoner on the TBox infers new subclass relation-
ships (.e. in a relational terms, foreign keys), and such classificati&n partially solve
these problems. In particular, classification would infer tollowing:

Loire C Wine (20)
Loire C locatedIn:{LoireRegion} (11)
WhiteLoire C Loire (12)
WhiteLoire = WhiteWine (13)

which will then allow us to infer additional foreign keys. Fexample, (10) would im-
ply Loire.id — Wine.id. Now, the insert of data valugevreEtMaineMuscadet
into Loire would be disallowed unless the data value was alread¥iie. However,
this does not capture the open world semantics of the DLmagie Intype inference
performed by a reasoner on the ABox, data values can be éasietto classes if their
presence is logically determined by the presence of dateesah other classes. Hence
in open world systems with type inference, you are alloweth$ertSevreEtMaine-
Muscadet into Loire provided that data value was either a membeW\bie already,
or it could be inserted int&Vine. Furthermore, type inference would determine that
SevreEtMaineMuscadet should be a member &¥hiteLoire based on TBox and ABox
rules (2), (7) and (8).

In general, when performing type inference over data in alBRB, there is a
choice between the reasoning being performed by a sepgplieadion outside the
database, or being performed within the database systemer@implementations of
the separate application approach all have the disadwatttageach change to the data

requires the external application to reload the data andnpate type inference for
all the individuals. Whilst data updates in semantic webiappibns might not be very
intensive, even moderately sized databases will take admnable time to be loaded
and have type inference performed. For example, our teptsf fe SOR [7] system
with the LUBM benchmark [14] containing 350,000 individsidbok 16 seconds to
load the set of individuals. Hence, each addition to a datbéthat size would need
to be locked for 16 seconds whilst type inference is perfakme

It might be argued that it is possible to achieve tightergragion with an external
application, such that a total reload is not required eaule tn insert is made. How-
ever, it will always be an inefficient process to keep the dtatn external application
synchronised with the contents of a DBMS. Hence we invegtigathis paper how
type inference can be performed within an RDBMS. One prey/ipproach followed
in DLDB2 [14] is to use views to compute inferred types, anddach relation have an
intentional definition based on rules and an extensionahitiefn with stored values.
An alternative approach studied in this paper is to use ¢ngd¢o perform type infer-
ence as data values are inserted into the database. Th@appras the advantage that
since the classes are all materialised, query processmgas faster than when using
the view based approach. Although there is to materialised maintenance [4, 16],
to implement OWL-DL we must allow a relation to be both a badéetand have view
statements to derive certain additional values. Our agprdas the disadvantage of
additional data storage for the materialised views, andtiaddl time taken to insert
data into the database. The prototype of our SQOWL approatBde times faster
than DLDB2 at query processing, but 10 times slower than DRRBinserts on the
LUBM case study. Since most database applications are dutensive rather than up-
date intensive, there will be a large range of applicatidrasg tould benefit from out
approach.

The SQOWL approach presented in this paper is the first comfiletthe sense
of supporting all OWL-DL constructs) implementation of tyipéerence for OWL-DL
on data held in an RDBMS where the type inference is entireljopmed within the
RDBMS. Compared to previous reasoners for use on ontologislarge numbers
of individuals, our approach has the following advantagedidated by experiments
comparing our prototype with other implementations):

— In common with other rule based approaches [13, 6], our @mbrto type inference
is much more efficient than tableaux based reasoners [2f site do not need to
use a process of refutation to infer instances as being mambelasses.

— Apart from SOR [7], we are the only rule based approach implging the full
SHOZIN (D) DL [2] of OWL-DL. By fully implement, we mean supporting all of
the OWL-DL constructs includingneOf andhasValue restrictions, and providing
a type inference complete enough to be able to run all quaridee LUBM [14]
and UOBM [8] benchmarks.

— Apart from DLDB2 [14], we are the only approach of any type wehall type
inference is performed within the RDBMS, and hence we alldvBRIS based
applications to incorporate OWL-DL knowledge without adiimn to the RDBMS
platform.

— Since we materialise the data instances of classes, we @ diagter query process-
ing than any other approach.

The remainder of this paper is structured as follows. Se@igives an outline of
how the SQOWL approach works, describing the basic techrigrumplementing type
inference implied by OWL-DL constructs using relationalesctas and triggers on the
schema. The set of production rules for mapping all OWL-DLstarcts to relational
schemas with triggers is presented in Section 3. We give & ohetailed description of
related work in Section 4, and give our summary and conahssio Section 5.

2 The SQOWL Approach

Our approach to reasoning over large volumes of data is lmasadhree stage approach
to building the reasoning system, which we describe belogether with some techni-
cal details of the prototype implementation of the SQOWL apph that we developed
in order to run the benchmark tests.

i. Classification and consistency checking of the TBox of ANLEDL ontology is
performed with any suitable reasoner to produce the indeckesure of the TBox.
In our prototype system, we load an OWL-DL ontology as a Jena Owadel
using the Protege-OWL API, and use Pellet [15], a tableaugdesasoner.

ii. From the TBox we produce an SQL schema, that can storeléisses and proper-
ties of the TBox. In our prototype system, we take the simpier@ach of imple-
menting each class as a unary relation, each property asagybiglation, which
generates a set of ANSI SQIREATE TABLE statements, but use triggers to per-
form type inference rather than use foreign keys to mairitdegrity constraints.

iii. We use a set of production rules, that generate SQL ériggiatements that per-
form the type inference and ABox consistency checking. Toeyction rules map
statements in OWL-DL to triggers in an abstract syntax. Ingototype system,
the production rules are programmed in Java, and produceotingrete syntax of
PostgreSQL function definitions and trigger definitions.

Note that once steps (i)—(iii) have been performed, theldeta is ready to accept
ABox rules such as (7), (8) and (9) implemented as insertiorthe corresponding
relations in the database.

We have already illustrated in the introduction how stepsufid (ii) of the above
process work to produce a set of SQL tables. However, ond detdted in the intro-
duction is thatanonymous classesuch as that for the enumeration of individuals in
TBox rule (3) will also cause a table to be created for the gmmus class (which in
our prototype would be nametheninblanc_pinotblanc_sauvignonblanc).

Now we shall introduce the abstract trigger syntax we usedp 6ii) above, and
how the triggers serve to perform type inference within tfiEBRIS. The triggers are
ECA rules in the standanthen event if condition then action form, where:

— event will always be some insertion of a tuple to a table, prefixethwi ‘~ if the
condition and action is to execute before the insertion efttiple is applied to
the table, or prefixed with a if the condition and action is to execute after the
insertion of the tuple to the table is applied.

— condition is some Datalog query over the database. Each comma in tliitioon
specifies a logical AND operator.
— action is one of
e some list of tuple(s) to insert into the database, or
e reject if the whole transaction involving thevent is to be aborted, or
e ignore if the event is to be ignored, which may only be used if &ent is
prefixed by—, i.e. is a before trigger.

In order to perform type inference within the RDBMS, we reguhat we have a
trigger for each table that appears in the left-hand sideS)Léf a sufficientC) DL rule,
with that table as thevent. The remainder of the LHS is re-evaluated in toedition,
and if it holds, then the changes to the right-hand side (Rb{$)e DL rule made as
the action. These actions must be made before changes to the tablepiedap the
database, and hence we must have a ‘before trigger’. F@miost for TBox rule (12),
we can identify a trigger rule:

when *WhiteLoire(z) if true then Loire(x)
which states that after the insertionmointo thewhiteLoire table, we unconditionally
go on to assert the is a value ofLoire. This in turn may be implemented by an SQL
trigger, the PostgreSQL version being presented in Fig(ag Due to the design of
PostgreSQL, the trigger has to call a function that impleisére actions of the trigger.
The functioninsert Loire() first checks whether the new tuplBE{.id) already
exists inLoire, and if not, then inserts the new tuple.

For each necessary and sufficiesd (TBox rule, we require a trigger on any table
appearing in the RHS of the rule to reevaluate the RHS, andahksert the LHS after
the RHS is inserted into the database. Thus there is oneetrigg each table in the
RHS, that table being thevent, the remainder of the RHS in themndition, and the
tables of the LHS in thection. For example, for TBox rule (2), we have two triggers,

one for each table in the RHS:
when TLoire(z) if WhiteWine (x) then WhiteLoire(z)

when TWhiteWine(z) if Loire (x) then WhiteLoire(z)

3 Translating OWL-DL to ECA rules

In this section we will describe how we translate an OWL-DL Koi the ECA rules
introduced in the previous section. Note that these EC/Asruiay in turn be translated
into any specific implementation of SQL triggers that suppbothBEFORE andAFTER
triggers on row level updates. The outline of the mappingifourwhen if then ECA
rules to SQL is as follows:

when ~C(z) := BEFORE INSERT ON C

when *C(z) := AFTER INSERT ON C

if C(z) = IF EXISTS (SELECT id FROM C' WHERE id=x)

if =C(z) = IF NOT EXISTS (SELECT id FROM C WHERE id=x)
then C'(x) :=THEN INSERT INTO (C'(id) VALUES(z) END IF;
then ignore := THEN RETURN NULL END IF;

then reject := THEN RAISE EXCEPTION ’...’ END IF;

In the section we present the translation of basic OWL-DLsdasand properties
in Sections 3.1 and 3.2. Then we describe how class deseripéire translated in Sec-

CREATE FUNCTION insert_Loire()
RETURNS OPAQUE AS ’BEGIN
IF NOT EXISTS(

SELECT id FROM Loire WHERE id=NEW.id)
INSERT INTO Loire(id) VALUES(NEW.id);
END IF;

RETURN NEW;
END;’
LANGUAGE ’plpgsql’;

CREATE TRIGGER propagateTo_Loire

AFTER INSERT ON WhiteLoire

FOR EACH ROW EXECUTE PROCEDURE
insert_Loire();

(a) WhiteLoire C Loire

CREATE FUNCTION reject_insert_cps()

RETURNS OPAQUE AS ’BEGIN

IF NOT EXISTS(SELECT id FROM
cheninblanc_pinotblanc_sauvignonblanc
WHERE id=NEW.id)

THEN RAISE EXCEPTION
’Unable to change enumeration’;

END IF;

RETURN NULL;

END;

LANGUAGE ’plpgsql’;

CREATE TRIGGER rejectinsert

BEFORE INSERT ON
cheninblanc_pinotblanc_sauvignonblanc
FOR EACH ROW EXECUTE PROCEDURE
reject_insert_cps();

CREATE FUNCTION skip_insert_Wine()
RETURNS OPAQUE AS ’BEGIN
IF EXISTS(
SELECT id FROM Wine WHERE id=NEW.id)
THEN RETURN NULL;
END IF;
RETURN NEW;
END;’ LANGUAGE ’plpgsql’;

CREATE TRIGGER skipinsert

BEFORE INSERT ON Wine

FOR EACH ROW EXECUTE PROCEDURE
skip-insert Wine();

(b) Allow asserts oiWine

CREATE FUNCTION insert_Wine()
RETURNS OPAQUE AS ’BEGIN
IF NOT EXISTS(

SELECT id FROM Wine WHERE id=NEW.id)
INSERT INTO Wine(id) VALUES(NEW.id);
END IF;

RETURN NEW;
END;’
LANGUAGE ’plpgsql’;

CREATE TRIGGER propagateTo_Wine

AFTER INSERT ON Loire

FOR EACH ROW EXECUTE PROCEDURE
insert_Wine();

(d) Loire C Wine

(c) {CheninBlanc, PinotBlanc, SauvignonBlanc}

Fig. 1. Some examples of Postgres triggers implementing type inference forabdngents

tion 3.3, and the special case of intersections in classitiefia is handled in Sec-
tion 3.4. Finally we present the translation of restriciam properties in Section 3.5.

3.1 OWL-DL classes and individuals

An OWL-DL ontology contains declarations of classes. In oanslation to SQL, each
class declaration’ maps to an SQL tabl€'. The production rule is:
Class : C' ~» CREATE TABLE C'(id VARCHAR PRIMARY KEY),

when ~C(z) if C(x) then ignore

with the semantics that any clagésfound in OWL-DL causes two additions to the
relational schema. The first addition is a table to hold thekminstances of this class,
and the second addition is an SQL trigger on tadl¢o ignore any insertions of a
tuple valuex wherex already exists inC'. Note that the trigger is fired before is
actually inserted int@”, hence preventing spurious duplicate key error messages fr
the RDBMS when a fact that has already been inserted, is attempted to be inserted
again. To illustrate how a class is implemented in the RDBI& declaration of class
Loire in TBox rule (1) produces:

CREATE TABLE Loire(id VARCHAR PRIMARY KEY)

when ~Loire(x) if Loire(x) then ignore

where the translation of the ECA rule to a Postgres trigggiuistrated in Figure 1(b).
The function checks whether the value to be inserted alreaibys. If it exists, then
the function return¥ULL, which corresponds to ignoring the insert. If it does nosgxi
then the function returngew, which is the value to be inserted.
An OWL-DL class may contaiindividual s. Each individual of clas€’ will be
inserted into tabl€’ with the name of the individual as thi@. The production rule is:
individual : C'(a) ~» INSERT INTO C' VALUES (a)

3.2 OWL-DL properties

An OWL-DL property defines a binary predicate(D, R), where the domairD is
always an OWL-DL class, and the rangfevaries according to which of two typg3
belongs to. Adatatype property has a range which is a datatype, normally defined as
an RDF literal or XML Schema datatype [3]. Aabject property has a range which is
an OWL-DL class.

Hence, there is a rough analogy between properties andasshialationships, in
that membership of a property implies membership in the dioclass, and if it exists,
the range class. Thus the implementation of properties &sta®-column table, with
triggers to update any classes that the property refereguésg the following rules:

datatypeProperty: P(D, R) ~»

CREATE TABLE P (domain VARCHAR, range sqlT'ype(R))

when ~ P(xz,y) if P(x,y) then ignore if true then D(z)
objectProperty: P(D, R) ~~

CREATE TABLE P (domain VARCHAR, range VARCHAR)

when ~ P(xz,y) if P(z,y) then ignore if true then D(z), R(x)

Note that the functiosqlType(R) returns the SQL data type corresponding to the
OWL-DL datatypeR. Applying the above to wine ontology rulésC VhasFlavor.Wine
and T C VhasFlavor~.WineFlavor will lead to a table to represent the object property
being created:

CREATE TABLE hasFlavor(domain VARCHAR, range VARCHAR).
plus a trigger that causes an updaté&igFlavor to be propagated to bothine and
WineFlavor. Instances of a property have the obvious mapping to integreents on
the corresponding property table:

propertylnstance: P(x,y) ~» INSERT INTO TABLE P VALUES (z,y)

With these definitions, we have a solution to problegin the introduction, since
assertions of membership such as in (9) will cause any ‘missilass memberships,
such afinotBlancGrape being a member diVineGrape to be created.

3.3 OWL-DL Class Descriptions

In OWL-DL, if C, D each denote a clasB,denotes a property, and, . . . , a,, individ-
uals, then a class description takes the form:
(class-des) ::= (class-expression) | (property-restriction) |
(class-des) M (class-des) | (class-des) LI {class-des)
(class-expression) = D | =D | {a1,...,an}
(property-restriction) = VP.D | 3P.D | 3P:a | =nP | >nP | <nP

If £, F, Es> are class descriptions, therpartial class definitionC' = E means
that all instances of the clagésmust be instances df, but notvice versa. A complete
class descriptiod’ = E means that the instances@fand £ must always be the same.
However, sinc& = E — C C E,E C C we only need consider partial definitions
of the formC C F or E C C. Furthermore, for unionl and intersection we can state
CCEMNMEy, — CEEl,CEEQandEluEQ cC — FE; EC,EQ C C, thus
not needing to consider further those uses of union andsietéion. FoiIC C Fy LI Ey
there are no inferences possible, since values holding'forfer a value holding for
FE, or Es, but we do not know which of the two expressions it holds féwd with the
exception ofZ; M E,; & C (which we will deal with in Section 3.4), all we need to
consider are cases wheteC E or £ C (', andF is a class expression or a property
restriction.

The simplest class definition is a subclass relationshijigiwimay be implemented
as an ECA rule that ensures that instances of the table ingpitang the subclass are
also instances of the table implementing the superclass:

subClassOf: C' C D ~» when TC(z) if true then D(x)

An example of the Postgres Trigger generated by the aboveeAs shown in Fig-
ure 1(d) for the TBox rule (10). Combined with the implemeiata of a class and its
associated ECA rule, we have an implementation that is aldeal with problenP1
in the introduction. Specifically, when ABox rule (7) is tedated to

INSERT INTO Loire VALUES (ServeEtMaineMuscadet)
and the trigger in Figure 1(d) will cause an insert ifittme to be attempted. If the
individual ServeEtMaineMuscadet had already been inserted infane this insert
will be ignored by the trigger in Figure 1(b), otherwise theert proceeds to correctly
add a new instance tbine.

A class D might be declared to be a subclass of the complement of ancithes
C'. In this case, one trigger is created that checks whethaple tuexists inC, before
x is inserted inD. If it does exist, then the insertion is rejected and thesaation that
initiated it is rolled back. The production rule is:

complementOf: D C —=C' ~» when ~D(z) if C(z) then reject
In the case where the complement(ofs a subclass oD, then an insertion of on C
means that: is not a member of the complement @f which implies that: is not a
member ofD. Thus, the production rule is:

complementOf: =C'C D ~» when ~C(z) if D(z) then reject

The oneOf construct enables a clagsto be defined exactly by enumerating its
instances{ay,...,a,}. In our system (where we make the UNA) the enumeration
class corresponds to a anonymous table that contains oalingtancesy, ..., a,.
This can be created by inserting values into the table, asldheating a ECA rule that
fails when any further inserts are performed.

enumeration: {a,...,a,} ~ INSERT INTO D VALUES (a1), ..., (ap)

when ~D(z) if =D(x) then reject

For example, the TBox rule (3) in the introduction, introds@n anonymous class
which is an enumeration. The anonymous class is translateditable, and then the
production rule for the enumeration performs three insantthat table:

INSERT IN cheninblanc_pinotblanc_sauvignonblanc VALUES
(CheninBlanc), (PinotBlanc), (SauvignonBlanc)
and then defines the trigger

when ~cheninblanc_pinotblanc_sauvignonblanc(z)

if ~cheninblanc_pinotblanc_sauvignonblanc(z) then reject
which causes any further inserts on that table to cause anséction in which they
take place to abort. The implementation of this trigger istBeSQL is illustrated in
Figure 1(c).

The allValuesFrom VP.D restriction on property? defines a set of individuals
where(z,y) appears inP andy in D. Note that theallValuesFrom restriction can be
satisfied trivially if there are no tuples for prope® In the case o C VP.D, then
each individual: of C that also appears in a tuple, y) of P will infer that y is an
individual of D. This restriction translates into two triggers based onattter tuples
are inserted in table§' and P. The first trigger is executed after an insertionuoin
tableC. If x is not associated with any value in tatite then the restriction is satisfied.
If a tuple (x, y) already exists in tablé’ such thaty is not an instance aob, then the
trigger insertgy in D. The second trigger is executed after an insertion of t¢pleg)
in P. If x already exists i’ then the trigger insertgin D.

allValuesFrom: C C VP.D ~~ when T C(z) if P(z,y) then D(y)

when T P(z,y) if C(z) then D(y)

For example, based on TBox rule (6), we know that for eachviddal « which
has a tuplex, y) in madeFromGrape, theny is a WineGrape. Thus, based on ABox
rule (9) we can infer thaRinotBlancGrape is a WineGrape. As a trigger, the”' table
corresponds ta@ in DL, and hence isrue in the trigger, and we simply have a trigger:

when madeFromGrape(z, y) if true then WineGrape(y)

We cannot infer anything fromP.D C C, since even ifY P.D holds for some
(z,y) in P andy in D, there might (by open world semantics) be somg,’) in P that
is correct but not yet inserted into the database. Ifithwas not a correct value dp,
thenz should not be irvP.D.

someValuesFrom 3P.D holds for eache in where there is at least one tugle y)
of P such thaty a member of clas®. For the implementation af C 3P.D we could
define that for each insertiofi(x) we insert a tuplgz, null) on P. However, this is
not necessary since the existence of the typlewll) cannot be used for any kind of
inference. Thus the rule’s body is empty

someValuesFrom: C C 3P.D ~» —

For example, based on the ruM&ne(TaylorPort) andWine C JlocatedIn.Region we
know thatTaylorPort is locatedIn a Region, but we cannot insert any tuples on table
locatedIn since we do not know the exaRegion.

In the case oHP.D C (, each individual: associated if® with a y, which is a
member ofD, becomes a member 6f. The trigger is executed after an insertion of
tuple (z,y) in P.

someValuesFrom: 3P.D C C ~» when * P(z,y) if D(y) then C(z)

when T D(y) if P(z,y) then C(z)

The OWL constructsardinality, minCardinality, maxCardinality restrict the num-
ber of tuples(z,y) in P an individualz of C' can have. As in the previous restriction
we could create a rule that adds tup{esnull) so that the cardinality restriction is sat-

isfied. However, these tuples cannot be used for inferererefitre the body of the rule
is empty:

cardinality: C C =nP ~» —

maxCardinality: C' C <nP ~» —

minCardinality: C C >nP ~» —

In the case oEnP C (), the restriction specifies that for amywhich hasn tuples
(x,y1)s ..., (x,yn) In P, thenz is a member of”. However, due to the open world
assumption of the DL, we cannot be certain about the caitiraila property (except
if the property is functional). For example, evemituples exist forx in P, this does
not exclude the fact that there might be other tupleszfavhich are not yet known.
Thus, the rule’s body for this restriction is empty. Simiyeor the case oknP C C.

cardinality: =nP E C ~~» —

maxCardinality: <nP C C ~» —

However, in the case of thainCardinality construct>nP C C, if x is associated
with n tuples(x, y1), ..., (z,y,) in P, then the restriction is satisfied amdecomes a
member ofC. The trigger implementing this restriction is illustrateelow and it uses
function count(P(x, -)) which returns the number of tuplés, y) in P for individual
xZ.

minCardinality: >nP C C ~ when * P(x,y) if count(P(x,-)) > n then C(z)

The DL hasValue constructC' C 3P:a specifies that each individual of C has
a tuple(x,a) in P. This restriction translates into a trigger which is exeduafter an
insertion of instance into C. The trigger inserts the tuple:, a) into tableP .

hasValue: C' C 3P:a ~ when TC(z) if true then P(z,a)

For example, based on the TBox rule (11) we know that éa@le wine islocatedIn
LoireRegion. Thus, when the ABox rule (7) is examined, the trigger wiernt tuple
{SevreEtMaineMuscadet, LoireRegion} in tablelocatedIn. In the case oP:a C C,
for eachx with (z, a) a tuple of P, x is inserted intaC'.

hasValue: 3P:a C C' ~» when * P(z,y) if P(z,a) then C(x)

3.4 Inferences from intersections

When an intersection appears on the left of a subclass ne&hijo there is an additional
inference that can be performed. For example, from TBox (2)lewe have

Loire M WhiteWine C WhiteLoire
and hence if there is an individual inserted which is both a member béire and
a member ofWhiteWine, then it can be inferred to be a memberWhiteLoire. To
achieve this we would need a trigger which is executed afténstancer is inserted in
tableLoire or WhiteWine, and if the value is present in the other of those two tables,

insertsz into WhiteLoire:
when TLoire(z) if WhiteWine(x) then WhiteLoire(x)

when TWhiteWine(z) if Loire(x) then WhiteLoire(x)
In general, ifE; M ... M E, C C, then we require a trigger on eaéh that will
check to seeif; M... M E, now holds. Thus the implementation of intersection is:
intersection: E1 M ... NE, CEC ~
v, when T trigger(E;) if holds(Ey M ...M E,) then C(z)
where thetrigger function identifies the tables to trigger on as follows:

trigger(> nP) := P(x,y) trigger(E;) := Fy;(x)
trigger(3P.D) := P(x,y) trigger(P:{a}) := P(x,y)
trigger(VP.D) := P(x,y)

and theholds function maps the OWL-DL intersection into predicate logiod hence
SQL) as follows:
holds(D M E) := holds(D), holds(E) holds(D) := D(x)
holds(>n P) := count(P(xz,_)) >n holds(P:{a}) := P(x,a)
holds(3P.D) := P(z,y), D(y) holds(VP.D) := false
Note that we say théP.D is assumed to be false, simply because with open world
semantics, there is no simple query that can determinesftitiie. As an example of
using the above rules, if we apply them to the TBox rule (2) haee thatF; = Loire
and E5 = WhiteWine, and that expands out to:
when *trigger(Loire) if holds(Loire 11 WhiteWine) then WhiteLoire(z)
when *trigger(WhiteWine) if holds(Loire 11 WhiteWine) then WhiteLoire(z)
and expanding th&igger andholds function gives:
when TLoire(x) if Loire(z),WhiteWine(x) then WhiteLoire(x)
when TWhiteWine(z) if Loire(z),WhiteWine(x)then WhiteLoire(x)
If we remove the redundant check daire in the condition of the first rule, and the
redundant check owhiteWine in the condition of the second rule, we have the two
ECA rules we talked about in the beginning of this section, f@ve provided a solution
to problemP2in the introduction.

3.5 Restrictions on and between OWL-DL Properties

Properties can binctional and/orinverse functional. A functional propertyP(D, R)
can have only one tuplg:, y) for eachz in D, and an inverse functional can have only
one tuple(x, y) for eachy in R. We translate these restrictions into SQL as key/unique
constraints:

FunctionalProperty: P ~+ ALTER TABLE P ADD PRIMARY KEY (domain)

InverseFunctionalProperty: P ~» ALTER TABLE P ADD CONSTRAINT UNIQUE (range)

In the Wine ontology there is a functional property definitio C <1 hasFlavor
which adds a primary key constraint on tabhlesFlavor on itSdomain column. This
constraint will not allow the same wine to appear in HagFlavor table twice, there-
fore it will enforce the functional constraint on the progeNote that it would be possi-
ble in an implementation to normalise a functional proptabje (such agasFlavor)
with the class of its domain (such @sne) to make the range a column in the class
table (.e. to have a columigrape in Wine, instead of the separatasFlavor prop-
erty table). All triggers that were on the property table Wdnstead be on the relevant
columns of the class table. However this would make our ptesen more complex,
and so we do not use such an optimisation in this paper.

Properties can also beansitive and/orsymmetric. For example, théocatedIn
property in the Wine ontology is transitive, and hence if wew:

locatedIn(ChateauChevalBlancStEmilion,BordeauxRegion)

locatedIn(BordeauxRegion,FrenchRegion)
then we can infer:
locatedIn(ChateauChevalBlancStEmilion, FrenchRegion)

The production rule for a transitive properfyneeds to define a trigger to be exe-
cuted after each insert of tuple, y) in P. The rule will insert for eacly, z) existing
in P the tuple(x, z) and for eaclz,) in P the tuple(z, y) will be inserted. The macro
foreach must be used in the production rule that performs theseibesa

foreach(z, P(y,z), P(z,2)) :=

FOR z IN (SELECT range FROM P WHERE domain=y)
LOOP IF x,z NOT IN SELECT domain,range FROM P
THEN INSERT INTO P VALUES (z,z)
END IF; END LOOP;
The production rule is as follows:
TransitiveProperty: P € P, ~» when ™ P(z,y) if true then
foreach(z, P(y, z), P(x, 2)), foreach(z, P(z,z), P(z,y))

If a propertyP is declared to be symmetric, then a rule needs to be defineditha
insert in P the tuple(y, =) after an event inserts tuple, y) on P:

SymmetricProperty: P = P~ ~» when T P(z,y) if true then P(y,x)

Like classes, OWL-DL properties can be related to one anoBmrexample, a
property P might be declared to be a subpropertythfwhich means that each tuple of
Pis also atuple o). An SQL trigger is added on table to specify that after inserting
any tuple(z, y) in P, then the tuple must be inserteddh The production rule is as
follows:

subPropertyOf: P C @ ~ when T P(z,y) if true then Q(z,y)

A property P might be declared as the inverse of another prop@rtyhis decla-
ration asserts that for each tupgle, y) in P, the inverse tupléy, =) exists inQ, and
vice versa. An SQL trigger is added on talfteto specify that after each insertion on
P the inverse tuple must be inserted @nif it does not already exist. Note that in our
methodology, for each such property declaration twarseOf constructs are created:
P =@ and@ = P~. The production rule for thaverseOf construct is :

inverseOf: P = Q~ ~» when T P(x,y) if -Q(y, z) then Q(y, x)

Finally, a propertyP might be declared to be equivalent to another prop@rtyn
this case, an SQL trigger is added on taBléhat after each insertion of tuple, y) in
P the trigger inserts the tuple on talile and vice versa. The production rule is:

equivalentProperty: P = @ ~» when T P(z,y) if true then Q(z,y)

when TQ(z,y) if true then P(z,y)

4 Related Work

DL reasoners come in a number of forms [2]. The most commoa e Tableaux
based reasoners like Racer, FacT++ and Pellet. These areffierent at computing
classification hierarchies and checking the consisteneylofowledge base. However,
the tableaux based approach is not suited to the task ofgsimgeontologies with large
numbers of individuals, due to the use of a refutation prooedather than a query
answering algorithm [5].

Rule based reasoners provide an alternative to the tableased approach that
is more promising for handling large datasets. O-DEVICH ftdnslates OWL rules
into an in-memory representation, and can process all cantprocess all of OWL-

DL exceptoneOf, complementOf or data ranges. The fact that the system is memory
based provides fast load and query times, but means thagst ot scale beyond tens
of thousands of individuals. OWLIM [6] is similar in both femes and problems, but
supports a smaller subset of OWL-DL than O-DEVICE.

KAONZ2 [13] does reasoning by means of theorem proving. ThexTiB translated
into first-order clauses, which are executed on a disjuadiatalog engine to compute
the inferred closure. KAON2 has fast load and query times,idunable to handle
nominals (i.e. hasValue andoneOf, i.e. misses the O ISHOZN (D)).

DLDB2 [14] and SOR [17] (previously called Minerva) are msishilar to SQOWL,
since they use an RDBMS as their rule engine. DLDB2 storegules inside the
database as non-materialised views. Tables are createghébratomic property and
class, populated with individuals from the ontology. A sgpa DL reasoner is used to
classify the ontology. The resulting TBox axioms are tratesl into non-recursive Dat-
alog rules that are translated into SQL view create statsnBi.DB2 enjoys very fast
load times because the inferred closure of the database taftowulated at load time,
but its querying is slow. An advantage of the system is thaabse the closure is only
calculated when queries are posed on the system, updateelebels can be performed
on the system. DLDB?2 is not able to perform type inferencetasallValuesFrom.

SOR [17] also uses a standard tableaux based DL reasonesttoldissify the on-
tology. It differs from DLDB2 in that rules are kept outsideetdatabase and the SQL
statements created from the OWL-DL rules are not used toeckeetvs but are rather
executed at load time to materialise the inference restiiis. makes query processing
faster. Because the rules are kept outside the databasegdditions to the database
necessitate a rerun of the reasoning.

5 Summary and Conclusions

We have described a method of translating an OWL-DL ontologyan active database
that can be queried and updated independently of the somtoéogy. In particular,
we have implemented type inference for OWL-DL in relationatadbases, and have
produced a prototype implementation that builds such tyyerénce into Postgres
databases. Our approach gives a complete implementatiOlVbFDL in a relational
database, assuming that we make the UNA. As such, we havesdaméandle OWL-
DL constructsdifferentFrom, AllDifferent, or sameAs since they are concerned with
issues where the UNA does not hold.

Running the LUBM [14] and UOBM [8] benchmarks shows we aremeein two
and 1000 times faster at query answering than other DBMSlkageroaches [9]. Only
the DLDB2 approach has the same advantage of performing &flde inference within
the DBMS, and DLDB2 is at least 30 times slower than SQOWL imrgaaswering in
these benchmarks.

The current prototype is crude in its generation of trigdatesnents, in that it does
not attempt to combine multiple triggers on one table intongls trigger and function
call. Furthermore, it does not make the obvious optimisetiiat all functional proper-
ties of a class can be stored as a single table, which woulttesfiirther the number
of triggers and reduce the number of joins required in queoggssing. A more sub-

stantial addition would be to handle deletes and updatese sie would then need to
consider how a fact might be derived from more than one rule.

We have shown that the SQOWL approach offers for a certais ofessemantic web

application, a method of efficiently storing data, and perfiog type inference. We also
believe that our work opens up the possibility of using cog@ds expressed in OWL-
DL to enhance database schemas with type inference cadjeshidind will explore this

theme of ‘knowledge reasoning’ in RDBMS applications irufit work.

References

10.

11.

12.

13.

14.

15.
16.

17.

. Resource Description Framework (RDF), 2001. http://www.w3.dd§HR
. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and Patel-8chneider.The De-

scription Logic Handbook: Theory, Implementation, and Applications. Cambridge Univer-
sity Press, 2003.

. P. Biron and A. Malhotra. XML Schema part 2: Datatypes second aditio

http://www.w3.0rg/TR/xmlschema-2, 2004.

. S. Ceriand J. Widom. Deriving production rules for incrementabvigintenance. IRroc.

VLDB, pages 577-589, 1991.

. U. Hustadt and B. Motik. Description logics and disjunctive datalog they Sto far. In

Description Logics, 2005.

. A. Kiryakov, D. Ognyanov, and D. Manov. Owlim - a pragmatic setitarepository for

OWL. In WISE Workshops, pages 182-192, 2005.

. J. Ly, L. Ma, L. Zhang, J.-S. Brunner, C. Wang, Y. Pan, anduy. Sor: A practical system

for ontology storage, reasoning and searchvllDB, pages 1402—-1405, 2007.

. L. Ma, Y. Yang, Z. Qiu, G. T. Xie, Y. Pan, and S. Liu. Towards a pbete OWL ontology

benchmark. IEESWC, pages 125-139, 2006.

. P. McBrien, N. Rizopoulos, and A. Smith. SQOWL: Performing OWLpe inference in

SQL. Technical report, AutoMed Technical Report 37, 2009.

D. McGuinness and F. van Harmelen. OWL Web Ontology Languagavi@w, 2004.
http://www.w3.org/TR/owl-features/.

G. Meditskos and N. Bassiliades. A rule-based object-oriented @aA&oner] EEE Trans.
Knowl. Data Eng., 20(3):397—-410, 2008.

M.K.Smith, C. Welty, and D. McGuinness. OWL Web Ontology Langu&uide, 2004.
www.w3.0rg/TR/owl-guide/.

B. Motik and U. Sattler. A comparison of reasoning techniques feryjg large description
logic aboxes. IlLPAR, pages 227-241, 2006.

Z. Pan, X. Zhang, and J. Heflin. DLDBZ2: A scalable multi-perspectemantic web repos-
itory. In Web Intelligence, pages 489-495, 2008.

Pellet. http://clarkparsia.com/pellet/.

T. Urd and A. Olive. A method for change computation in deductive databaseBrom
VLDB, pages 225-237, 1992.

J. Zhou, L. Ma, Q. Liu, L. Zhang, Y. Yu, and Y. Pan. Minerva: dakble OWL ontology
storage and inference system . ABWC, pages 429-443, 2006.

