
SQOWL: Type Inference in an RDBMS

P.J. McBrien, N. Rizopoulos, and A.C. Smith

Imperial College London⋆⋆, 180 Queen’s Gate, London, UK

Abstract. In this paper we describe a method to perform type inference over
data stored in an RDBMS, where rules over the data are specified using OWL-
DL. Since OWL-DL is an implementation of theDescription Logic (DL) called
SHOIN (D), we are in effect implementing a method forSHOIN (D) reason-
ing in relational databases. Reasoning may be broken down into two processes of
classificationandtype inference. Classification may be performed efficiently by
a number of existing reasoners, and since classification alters the schema, it need
only be performed once for any given relational schema as a preprocessor of the
schema before creation of a database schema. However, type inference needs to
be performed for each data value added to the database, and hence needs to be
more tightly coupled with the database system. We propose a technique to meet
this requirement based on the use of triggers, which is the first techniqueto fully
implementSHOIN (D) as part of normal transaction processing.

1 Introduction

There is currently a growing interest in the development of systems that store and pro-
cess large amounts of Semantic Web knowledge [6, 14, 17]. A common approach is to
represent such knowledge as data in RDF tuples [1], togetherwith rules in OWL-DL
[10]. When large quantities ofindividuals in a ontology need to be processed effi-
ciently, it is natural to consider that the individuals are held in arelational database
management system(RDBMS), in which case we refer to the individuals as data, and
make theunique name assumption(UNA). Hence, the question arises of how knowl-
edge expressed in OWL-DL can be deployed in a relational database context, and take
advantage of the RDBMS platforms in use today to process datain an ontology, and
make inferences based on the open world assumption.

To illustrate the issues we address in this paper, consider afragment from theter-
minology box (TBox) of the Wine Ontology [12] expressed in DL:

Loire ≡ Wine ⊓ locatedIn:{LoireRegion} (1)
WhiteLoire ≡ Loire ⊓ WhiteWine (2)
WhiteLoire ⊑ ∀madeFromGrape.{CheninBlanc,PinotBlanc,SauvignonBlanc} (3)
⊤ ⊑ ∀locatedIn−.Region (4)
⊤ ⊑ ∀madeFromGrape.Wine (5)
⊤ ⊑ ∀madeFromGrape−.WineGrape (6)

To differentiate between classes and properties, classes start with an upper case letter,
e.g. Wine. Properties start with a lower case letter,e.g. madeFromGrape. Individuals
start with an upper case letter and appear inside curly brackets,e.g. {LoireRegion}.

⋆⋆ The work reported in this paper was funded by the Systems Engineering for Autonomous
Systems (SEAS) Defence Technology Centre established by the UK Ministry of Defence.

Obviously, there is a simple mapping from classes and properties in DL to unary
and binary relations in an RDBMS. Thus, from the above DL statements we can infer a
relational schema:

Wine(id) WineGrape(id) madeFromGrape(domain,range)

Loire(id) Region(id) locatedIn(domain,range)

WhiteWine(id) WhiteLoire(id)
Furthermore, each property has a domain and a range which canbe restricted. For

example, (5) could infer the foreign keymadeFromGrape.domain → Wine.id and
(6) infermadeFromGrape.range → WineGrape.id.

However, as it stands, the relational schema, with its closed world semantics, does
not behave in the same manner to the open world semantics of the DL. For example,
we can insert into the database the following facts (which inDL would be called the
assertion box(ABox)):

Loire(SevreEtMaineMuscadet) (7)
WhiteWine(SevreEtMaineMuscadet) (8)
madeFromGrape(SevreEtMaineMuscadet,PinotBlancGrape) (9)

Using these rules, we have the problems that in the DBMS version of the ontology:

P1 SevreEtMaineMuscadet would not be a member ofWine, despite that being im-
plied by TBox rule (1) from ABox rule (7) and by (5) from (9)

P2 SevreEtMaineMuscadet is not a member ofWhiteLoire, despite that being implied
by TBox rule (2) from ABox rule (7) and (8) together.

P3 Assertion of the property membership (9) would fail, since we have not previously
asserted thePinotBlancGrape as a member ofWineGrape.

Performingclassificationusing a reasoner on the TBox infers new subclass relation-
ships (i.e. in a relational terms, foreign keys), and such classification can partially solve
these problems. In particular, classification would infer the following:

Loire ⊑ Wine (10)
Loire ⊑ locatedIn:{LoireRegion} (11)
WhiteLoire ⊑ Loire (12)
WhiteLoire ⊑ WhiteWine (13)

which will then allow us to infer additional foreign keys. For example, (10) would im-
ply Loire.id → Wine.id. Now, the insert of data valueSevreEtMaineMuscadet
into Loire would be disallowed unless the data value was already inWine. However,
this does not capture the open world semantics of the DL statement. Intype inference
performed by a reasoner on the ABox, data values can be inserted into classes if their
presence is logically determined by the presence of data values in other classes. Hence
in open world systems with type inference, you are allowed toinsertSevreEtMaine-
Muscadet into Loire provided that data value was either a member ofWine already,
or it could be inserted intoWine. Furthermore, type inference would determine that
SevreEtMaineMuscadet should be a member ofWhiteLoire based on TBox and ABox
rules (2), (7) and (8).

In general, when performing type inference over data in an RDBMS, there is a
choice between the reasoning being performed by a separate application outside the
database, or being performed within the database system. Current implementations of
the separate application approach all have the disadvantage that each change to the data

requires the external application to reload the data and recompute type inference for
all the individuals. Whilst data updates in semantic web applications might not be very
intensive, even moderately sized databases will take a considerable time to be loaded
and have type inference performed. For example, our tests [9] of the SOR [7] system
with the LUBM benchmark [14] containing 350,000 individuals took 16 seconds to
load the set of individuals. Hence, each addition to a database of that size would need
to be locked for 16 seconds whilst type inference is performed.

It might be argued that it is possible to achieve tighter integration with an external
application, such that a total reload is not required each time an insert is made. How-
ever, it will always be an inefficient process to keep the datain an external application
synchronised with the contents of a DBMS. Hence we investigate in this paper how
type inference can be performed within an RDBMS. One previous approach followed
in DLDB2 [14] is to use views to compute inferred types, and for each relation have an
intentional definition based on rules and an extensional definition with stored values.
An alternative approach studied in this paper is to use triggers to perform type infer-
ence as data values are inserted into the database. This approach has the advantage that
since the classes are all materialised, query processing ismuch faster than when using
the view based approach. Although there is to materialised view maintenance [4, 16],
to implement OWL-DL we must allow a relation to be both a base table and have view
statements to derive certain additional values. Our approach has the disadvantage of
additional data storage for the materialised views, and additional time taken to insert
data into the database. The prototype of our SQOWL approach is1000 times faster
than DLDB2 at query processing, but 10 times slower than DLDB2 at inserts on the
LUBM case study. Since most database applications are queryintensive rather than up-
date intensive, there will be a large range of applications that would benefit from out
approach.

The SQOWL approach presented in this paper is the first complete (in the sense
of supporting all OWL-DL constructs) implementation of typeinference for OWL-DL
on data held in an RDBMS where the type inference is entirely performed within the
RDBMS. Compared to previous reasoners for use on ontologieswith large numbers
of individuals, our approach has the following advantages (validated by experiments
comparing our prototype with other implementations):

– In common with other rule based approaches [13, 6], our approach to type inference
is much more efficient than tableaux based reasoners [2], since we do not need to
use a process of refutation to infer instances as being members of classes.

– Apart from SOR [7], we are the only rule based approach implementing the full
SHOIN (D) DL [2] of OWL-DL. By fully implement, we mean supporting all of
the OWL-DL constructs includingoneOf andhasValue restrictions, and providing
a type inference complete enough to be able to run all queriesin the LUBM [14]
and UOBM [8] benchmarks.

– Apart from DLDB2 [14], we are the only approach of any type where all type
inference is performed within the RDBMS, and hence we allow RDBMS based
applications to incorporate OWL-DL knowledge without alteration to the RDBMS
platform.

– Since we materialise the data instances of classes, we support faster query process-
ing than any other approach.

The remainder of this paper is structured as follows. Section 2 gives an outline of
how the SQOWL approach works, describing the basic techniquefor implementing type
inference implied by OWL-DL constructs using relational schemas and triggers on the
schema. The set of production rules for mapping all OWL-DL constructs to relational
schemas with triggers is presented in Section 3. We give a more detailed description of
related work in Section 4, and give our summary and conclusions in Section 5.

2 The SQOWL Approach

Our approach to reasoning over large volumes of data is basedon a three stage approach
to building the reasoning system, which we describe below, together with some techni-
cal details of the prototype implementation of the SQOWL approach that we developed
in order to run the benchmark tests.

i. Classification and consistency checking of the TBox of an OWL-DL ontology is
performed with any suitable reasoner to produce the inferred closure of the TBox.
In our prototype system, we load an OWL-DL ontology as a Jena OWLmodel
using the Protege-OWL API, and use Pellet [15], a tableaux based reasoner.

ii. From the TBox we produce an SQL schema, that can store the classes and proper-
ties of the TBox. In our prototype system, we take the simple approach of imple-
menting each class as a unary relation, each property as a binary relation, which
generates a set of ANSI SQLCREATE TABLE statements, but use triggers to per-
form type inference rather than use foreign keys to maintainintegrity constraints.

iii. We use a set of production rules, that generate SQL trigger statements that per-
form the type inference and ABox consistency checking. The production rules map
statements in OWL-DL to triggers in an abstract syntax. In ourprototype system,
the production rules are programmed in Java, and produce theconcrete syntax of
PostgreSQL function definitions and trigger definitions.

Note that once steps (i)–(iii) have been performed, the database is ready to accept
ABox rules such as (7), (8) and (9) implemented as insertionsto the corresponding
relations in the database.

We have already illustrated in the introduction how steps (i) and (ii) of the above
process work to produce a set of SQL tables. However, one detail omitted in the intro-
duction is thatanonymous classessuch as that for the enumeration of individuals in
TBox rule (3) will also cause a table to be created for the anonymous class (which in
our prototype would be namedcheninblanc pinotblanc sauvignonblanc).

Now we shall introduce the abstract trigger syntax we use in step (iii) above, and
how the triggers serve to perform type inference within the RDBMS. The triggers are
ECA rules in the standardwhen event if condition then action form, where:

– event will always be some insertion of a tuple to a table, prefixed with a ‘−’ if the
condition and action is to execute before the insertion of the tuple is applied to
the table, or prefixed with a ‘+’ if the condition and action is to execute after the
insertion of the tuple to the table is applied.

– condition is some Datalog query over the database. Each comma in the condition
specifies a logical AND operator.

– action is one of
• some list of tuple(s) to insert into the database, or
• reject if the whole transaction involving theevent is to be aborted, or
• ignore if the event is to be ignored, which may only be used if theevent is

prefixed by−, i.e. is a before trigger.

In order to perform type inference within the RDBMS, we require that we have a
trigger for each table that appears in the left-hand side (LHS) of a sufficient (⊑) DL rule,
with that table as theevent. The remainder of the LHS is re-evaluated in thecondition,
and if it holds, then the changes to the right-hand side (RHS)of the DL rule made as
the action. These actions must be made before changes to the table are applied in the
database, and hence we must have a ‘before trigger’. For instance, for TBox rule (12),
we can identify a trigger rule:

when +WhiteLoire(x) if true then Loire(x)
which states that after the insertion ofx into theWhiteLoire table, we unconditionally
go on to assert thex is a value ofLoire. This in turn may be implemented by an SQL
trigger, the PostgreSQL version being presented in Figure 1(a). Due to the design of
PostgreSQL, the trigger has to call a function that implements the actions of the trigger.
The functioninsert Loire() first checks whether the new tuple (NEW.id) already
exists inLoire, and if not, then inserts the new tuple.

For each necessary and sufficient (≡) TBox rule, we require a trigger on any table
appearing in the RHS of the rule to reevaluate the RHS, and then assert the LHS after
the RHS is inserted into the database. Thus there is one trigger for each table in the
RHS, that table being theevent, the remainder of the RHS in thecondition, and the
tables of the LHS in theaction. For example, for TBox rule (2), we have two triggers,
one for each table in the RHS:

when +Loire(x) if WhiteWine(x) then WhiteLoire(x)
when +WhiteWine(x) if Loire(x) then WhiteLoire(x)

3 Translating OWL-DL to ECA rules

In this section we will describe how we translate an OWL-DL KB into the ECA rules
introduced in the previous section. Note that these ECA rules may in turn be translated
into any specific implementation of SQL triggers that supports bothBEFORE andAFTER
triggers on row level updates. The outline of the mapping from ourwhen if then ECA
rules to SQL is as follows:

when
−C(x) := BEFORE INSERT ON C

when
+C(x) := AFTER INSERT ON C

if C(x) := IF EXISTS (SELECT id FROM C WHERE id=x)

if ¬C(x) := IF NOT EXISTS (SELECT id FROM C WHERE id=x)

then C(x) := THEN INSERT INTO C(id) VALUES(x) END IF;

then ignore := THEN RETURN NULL END IF;

then reject := THEN RAISE EXCEPTION ’...’ END IF;

In the section we present the translation of basic OWL-DL classes and properties
in Sections 3.1 and 3.2. Then we describe how class descriptions are translated in Sec-

CREATE FUNCTION insert Loire()
RETURNS OPAQUE AS ’BEGIN
IF NOT EXISTS(
SELECT id FROM Loire WHERE id=NEW.id)

INSERT INTO Loire(id) VALUES(NEW.id);
END IF;
RETURN NEW;
END;’
LANGUAGE ’plpgsql’;

CREATE TRIGGER propagateTo Loire
AFTER INSERT ON WhiteLoire
FOR EACH ROW EXECUTE PROCEDURE
insert Loire();

(a) WhiteLoire ⊑ Loire

CREATE FUNCTION skip insert Wine()
RETURNS OPAQUE AS ’BEGIN
IF EXISTS(

SELECT id FROM Wine WHERE id=NEW.id)
THEN RETURN NULL;
END IF;
RETURN NEW;
END;’ LANGUAGE ’plpgsql’;

CREATE TRIGGER skipinsert
BEFORE INSERT ON Wine
FOR EACH ROW EXECUTE PROCEDURE
skip insert Wine();

(b) Allow asserts onWine

CREATE FUNCTION reject insert cps()
RETURNS OPAQUE AS ’BEGIN
IF NOT EXISTS(SELECT id FROM

cheninblanc pinotblanc sauvignonblanc
WHERE id=NEW.id)

THEN RAISE EXCEPTION
’Unable to change enumeration’;

END IF;
RETURN NULL;
END; ’
LANGUAGE ’plpgsql’;

CREATE TRIGGER rejectinsert
BEFORE INSERT ON
cheninblanc pinotblanc sauvignonblanc
FOR EACH ROW EXECUTE PROCEDURE
reject insert cps();

(c) {CheninBlanc, PinotBlanc, SauvignonBlanc}

CREATE FUNCTION insert Wine()
RETURNS OPAQUE AS ’BEGIN
IF NOT EXISTS(
SELECT id FROM Wine WHERE id=NEW.id)

INSERT INTO Wine(id) VALUES(NEW.id);
END IF;
RETURN NEW;
END;’
LANGUAGE ’plpgsql’;

CREATE TRIGGER propagateTo Wine
AFTER INSERT ON Loire
FOR EACH ROW EXECUTE PROCEDURE
insert Wine();

(d) Loire ⊑ Wine

Fig. 1.Some examples of Postgres triggers implementing type inference for DL statements

tion 3.3, and the special case of intersections in class definitions is handled in Sec-
tion 3.4. Finally we present the translation of restrictions on properties in Section 3.5.

3.1 OWL-DL classes and individuals

An OWL-DL ontology contains declarations of classes. In our translation to SQL, each
class declarationC maps to an SQL tableC. The production rule is:

Class : C CREATE TABLE C(id VARCHAR PRIMARY KEY),

when
−C(x) if C(x) then ignore

with the semantics that any classC found in OWL-DL causes two additions to the
relational schema. The first addition is a table to hold the known instances of this class,
and the second addition is an SQL trigger on tableC to ignore any insertions of a
tuple valuex wherex already exists inC. Note that the trigger is fired beforex is
actually inserted intoC, hence preventing spurious duplicate key error messages from
the RDBMS when a factx that has already been inserted, is attempted to be inserted
again. To illustrate how a class is implemented in the RDBMS,the declaration of class
Loire in TBox rule (1) produces:

CREATE TABLE Loire(id VARCHAR PRIMARY KEY)

when
−Loire(x) if Loire(x) then ignore

where the translation of the ECA rule to a Postgres trigger isillustrated in Figure 1(b).
The function checks whether the value to be inserted alreadyexists. If it exists, then
the function returnsNULL, which corresponds to ignoring the insert. If it does not exist,
then the function returnsNEW, which is the value to be inserted.

An OWL-DL class may containindividual s. Each individual of classC will be
inserted into tableC with the name of the individual as theid. The production rule is:

individual : C(a) INSERT INTO C VALUES (a)

3.2 OWL-DL properties

An OWL-DL property defines a binary predicateP (D,R), where the domainD is
always an OWL-DL class, and the rangeR varies according to which of two typesP
belongs to. Adatatype property has a range which is a datatype, normally defined as
an RDF literal or XML Schema datatype [3]. Anobject property has a range which is
an OWL-DL class.

Hence, there is a rough analogy between properties and subclass relationships, in
that membership of a property implies membership in the domain class, and if it exists,
the range class. Thus the implementation of properties is asa two-column table, with
triggers to update any classes that the property references, giving the following rules:

datatypeProperty: P (D,R)
CREATE TABLE P (domain VARCHAR, range sqlType(R))
when

−P (x, y) if P (x, y) then ignore if true then D(x)
objectProperty: P (D,R)

CREATE TABLE P (domain VARCHAR, range VARCHAR)

when
−P (x, y) if P (x, y) then ignore if true then D(x), R(x)

Note that the functionsqlType(R) returns the SQL data type corresponding to the
OWL-DL datatypeR. Applying the above to wine ontology rules⊤ ⊑ ∀hasFlavor.Wine
and⊤ ⊑ ∀hasFlavor−.WineFlavor will lead to a table to represent the object property
being created:

CREATE TABLE hasFlavor(domain VARCHAR, range VARCHAR).
plus a trigger that causes an update tohasFlavor to be propagated to bothWine and
WineFlavor. Instances of a property have the obvious mapping to insert statements on
the corresponding property table:

propertyInstance: P (x, y) INSERT INTO TABLE P VALUES (x, y)
With these definitions, we have a solution to problemP3 in the introduction, since

assertions of membership such as in (9) will cause any ‘missing’ class memberships,
such asPinotBlancGrape being a member ofWineGrape to be created.

3.3 OWL-DL Class Descriptions

In OWL-DL, if C,D each denote a class,P denotes a property, anda1, . . . , an individ-
uals, then a class description takes the form:

〈class-des〉 ::= 〈class-expression〉 | 〈property-restriction〉 |
〈class-des〉 ⊓ 〈class-des〉 | 〈class-des〉 ⊔ 〈class-des〉

〈class-expression〉 = D | ¬D | {a1, . . . , an}
〈property-restriction〉 = ∀P.D | ∃P.D | ∃P :a | =nP | >nP | <nP

If E,E1, E2 are class descriptions, then apartial class definitionC ⊑ E means
that all instances of the classC must be instances ofE, but notvice versa. A complete
class descriptionC ≡ E means that the instances ofC andE must always be the same.
However, sinceC ≡ E → C ⊑ E,E ⊑ C we only need consider partial definitions
of the formC ⊑ E or E ⊑ C. Furthermore, for union⊔ and intersection⊓ we can state
C ⊑ E1 ⊓ E2 → C ⊑ E1, C ⊑ E2 andE1 ⊔ E2 ⊑ C → E1 ⊑ C,E2 ⊑ C, thus
not needing to consider further those uses of union and intersection. ForC ⊑ E1 ⊔ E2

there are no inferences possible, since values holding forC infer a value holding for
E1 or E2, but we do not know which of the two expressions it holds for. Thus with the
exception ofE1 ⊓ E2 ⊑ C (which we will deal with in Section 3.4), all we need to
consider are cases whereC ⊑ E or E ⊑ C, andE is a class expression or a property
restriction.

The simplest class definition is a subclass relationship, which may be implemented
as an ECA rule that ensures that instances of the table implementing the subclass are
also instances of the table implementing the superclass:

subClassOf: C ⊑ D when
+C(x) if true then D(x)

An example of the Postgres Trigger generated by the above ECArule is shown in Fig-
ure 1(d) for the TBox rule (10). Combined with the implementation of a class and its
associated ECA rule, we have an implementation that is able to deal with problemP1
in the introduction. Specifically, when ABox rule (7) is translated to

INSERT INTO Loire VALUES (ServeEtMaineMuscadet)

and the trigger in Figure 1(d) will cause an insert intoWine to be attempted. If the
individual ServeEtMaineMuscadet had already been inserted intoWine this insert
will be ignored by the trigger in Figure 1(b), otherwise the insert proceeds to correctly
add a new instance toWine.

A classD might be declared to be a subclass of the complement of another class
C. In this case, one trigger is created that checks whether a tuple x exists inC, before
x is inserted inD. If it does exist, then the insertion is rejected and the transaction that
initiated it is rolled back. The production rule is:

complementOf: D ⊑ ¬C when
−D(x) if C(x) then reject

In the case where the complement ofC is a subclass ofD, then an insertion ofx onC

means thatx is not a member of the complement ofC, which implies thatx is not a
member ofD. Thus, the production rule is:

complementOf: ¬C ⊑ D when
−C(x) if D(x) then reject

The oneOf construct enables a classC to be defined exactly by enumerating its
instances,{a1, . . . , an}. In our system (where we make the UNA) the enumeration
class corresponds to a anonymous table that contains only the instancesa1, . . . , an.
This can be created by inserting values into the table, and then creating a ECA rule that
fails when any further inserts are performed.

enumeration: {a1, . . . , an} INSERT INTO D VALUES (a1), ..., (an)

when
−D(x) if ¬D(x) then reject

For example, the TBox rule (3) in the introduction, introduces an anonymous class
which is an enumeration. The anonymous class is translated into a table, and then the
production rule for the enumeration performs three insertson that table:

INSERT IN cheninblanc pinotblanc sauvignonblanc VALUES

(CheninBlanc), (PinotBlanc), (SauvignonBlanc)

and then defines the trigger
when

−cheninblanc pinotblanc sauvignonblanc(x)
if ¬cheninblanc pinotblanc sauvignonblanc(x) then reject

which causes any further inserts on that table to cause the transaction in which they
take place to abort. The implementation of this trigger in PostgreSQL is illustrated in
Figure 1(c).

The allValuesFrom ∀P.D restriction on propertyP defines a set of individualsx
where〈x, y〉 appears inP andy in D. Note that theallValuesFrom restriction can be
satisfied trivially if there are no tuples for propertyP . In the case ofC ⊑ ∀P.D, then
each individualx of C that also appears in a tuple〈x, y〉 of P will infer that y is an
individual of D. This restriction translates into two triggers based on theorder tuples
are inserted in tablesC andP . The first trigger is executed after an insertion ofx in
tableC. If x is not associated with any value in tableP , then the restriction is satisfied.
If a tuple 〈x, y〉 already exists in tableP such thaty is not an instance ofD, then the
trigger insertsy in D. The second trigger is executed after an insertion of tuple〈x, y〉
in P . If x already exists inC then the trigger insertsy in D.

allValuesFrom: C ⊑ ∀P.D when
+C(x) if P (x, y) then D(y)

when
+P (x, y) if C(x) then D(y)

For example, based on TBox rule (6), we know that for each individual x which
has a tuple〈x, y〉 in madeFromGrape, theny is a WineGrape. Thus, based on ABox
rule (9) we can infer thatPinotBlancGrape is aWineGrape. As a trigger, theC table
corresponds to⊤ in DL, and hence istrue in the trigger, and we simply have a trigger:

when madeFromGrape(x, y) if true then WineGrape(y)
We cannot infer anything from∀P.D ⊑ C, since even if∀P.D holds for some

〈x, y〉 in P andy in D, there might (by open world semantics) be some〈x, y′〉 in P that
is correct but not yet inserted into the database. If they′ was not a correct value ofD,
thenx should not be in∀P.D.

someValuesFrom ∃P.D holds for eachx in where there is at least one tuple〈x, y〉
of P such thaty a member of classD. For the implementation ofC ⊑ ∃P.D we could
define that for each insertionC(x) we insert a tuple〈x, null〉 on P . However, this is
not necessary since the existence of the tuple〈x, null〉 cannot be used for any kind of
inference. Thus the rule’s body is empty−.

someValuesFrom: C ⊑ ∃P.D −
For example, based on the rulesWine(TaylorPort) andWine ⊑ ∃locatedIn.Region we
know thatTaylorPort is locatedIn a Region, but we cannot insert any tuples on table
locatedIn since we do not know the exactRegion.

In the case of∃P.D ⊑ C, each individualx associated inP with a y, which is a
member ofD, becomes a member ofC. The trigger is executed after an insertion of
tuple〈x, y〉 in P .

someValuesFrom: ∃P.D ⊑ C when
+P (x, y) if D(y) then C(x)

when
+D(y) if P (x, y) then C(x)

The OWL constructscardinality, minCardinality, maxCardinality restrict the num-
ber of tuples〈x, y〉 in P an individualx of C can have. As in the previous restriction
we could create a rule that adds tuples〈x, null〉 so that the cardinality restriction is sat-

isfied. However, these tuples cannot be used for inference therefore the body of the rule
is empty:

cardinality: C ⊑ =nP −
maxCardinality: C ⊑ <nP −
minCardinality: C ⊑ >nP −
In the case of=nP ⊑ C, the restriction specifies that for anyx which hasn tuples

〈x, y1〉, . . . , 〈x, yn〉 in P , thenx is a member ofC. However, due to the open world
assumption of the DL, we cannot be certain about the cardinality of a property (except
if the property is functional). For example, even ifn tuples exist forx in P , this does
not exclude the fact that there might be other tuples forx which are not yet known.
Thus, the rule’s body for this restriction is empty. Similarly for the case of<nP ⊑ C.

cardinality: =nP ⊑ C −
maxCardinality: <nP ⊑ C −
However, in the case of theminCardinality construct>nP ⊑ C, if x is associated

with n tuples〈x, y1〉, . . . , 〈x, yn〉 in P , then the restriction is satisfied andx becomes a
member ofC. The trigger implementing this restriction is illustratedbelow and it uses
functioncount(P (x,)) which returns the number of tuples〈x, y〉 in P for individual
x.

minCardinality: >nP ⊑ C when
+P (x, y) if count(P (x,)) > n then C(x)

The DL hasValue constructC ⊑ ∃P :a specifies that each individualx of C has
a tuple〈x, a〉 in P . This restriction translates into a trigger which is executed after an
insertion of instancex into C. The trigger inserts the tuple〈x, a〉 into tableP .

hasValue: C ⊑ ∃P :a when
+C(x) if true then P (x, a)

For example, based on the TBox rule (11) we know that eachLoire wine islocatedIn
LoireRegion. Thus, when the ABox rule (7) is examined, the trigger will insert tuple
{SevreEtMaineMuscadet, LoireRegion} in tablelocatedIn. In the case of∃P :a ⊑ C,
for eachx with 〈x, a〉 a tuple ofP , x is inserted intoC.

hasValue: ∃P :a ⊑ C when
+P (x, y) if P (x, a) then C(x)

3.4 Inferences from intersections

When an intersection appears on the left of a subclass relationship there is an additional
inference that can be performed. For example, from TBox rule(2), we have

Loire ⊓ WhiteWine ⊑ WhiteLoire
and hence if there is an individualx inserted which is both a member ofLoire and
a member ofWhiteWine, then it can be inferred to be a member ofWhiteLoire. To
achieve this we would need a trigger which is executed after an instancex is inserted in
tableLoire or WhiteWine, and if the value is present in the other of those two tables,
insertsx into WhiteLoire:

when +Loire(x) if WhiteWine(x) then WhiteLoire(x)
when +WhiteWine(x) if Loire(x) then WhiteLoire(x)
In general, ifE1 ⊓ . . . ⊓ En ⊑ C, then we require a trigger on eachEi that will

check to see ifE1 ⊓ . . . ⊓ En now holds. Thus the implementation of intersection is:
intersection: E1 ⊓ . . . ⊓ En ⊑ C

∀n

i=1when
+trigger(Ei) if holds(E1 ⊓ . . . ⊓ En) then C(x)

where thetrigger function identifies the tables to trigger on as follows:

trigger(> nP) := P (x, y) trigger(Ei) := Ei(x)
trigger(∃P.D) := P (x, y) trigger(P :{a}) := P (x, y)
trigger(∀P.D) := P (x, y)

and theholds function maps the OWL-DL intersection into predicate logic (and hence
SQL) as follows:

holds(D ⊓ E) := holds(D), holds(E) holds(D) := D(x)
holds(>n P) := count(P (x,)) > n holds(P :{a}) := P (x, a)
holds(∃P.D) := P (x, y),D(y) holds(∀P.D) := false

Note that we say the∀P.D is assumed to be false, simply because with open world
semantics, there is no simple query that can determine if it is true. As an example of
using the above rules, if we apply them to the TBox rule (2), wehave thatE1 ≡ Loire
andE2 ≡ WhiteWine, and that expands out to:

when
+trigger(Loire) if holds(Loire ⊓ WhiteWine) then WhiteLoire(x)

when
+trigger(WhiteWine) if holds(Loire ⊓ WhiteWine) then WhiteLoire(x)

and expanding thetrigger andholds function gives:
when

+Loire(x) if Loire(x), WhiteWine(x) then WhiteLoire(x)
when

+WhiteWine(x) if Loire(x), WhiteWine(x)then WhiteLoire(x)
If we remove the redundant check onLoire in the condition of the first rule, and the
redundant check onWhiteWine in the condition of the second rule, we have the two
ECA rules we talked about in the beginning of this section, and have provided a solution
to problemP2 in the introduction.

3.5 Restrictions on and between OWL-DL Properties

Properties can befunctional and/orinverse functional. A functional propertyP (D,R)
can have only one tuple〈x, y〉 for eachx in D, and an inverse functional can have only
one tuple〈x, y〉 for eachy in R. We translate these restrictions into SQL as key/unique
constraints:

FunctionalProperty: P ALTER TABLE P ADD PRIMARY KEY (domain)

InverseFunctionalProperty: P ALTER TABLE P ADD CONSTRAINT UNIQUE (range)

In the Wine ontology there is a functional property definition ⊤ ⊑ 61 hasFlavor
which adds a primary key constraint on tablehasFlavor on itsdomain column. This
constraint will not allow the same wine to appear in thehasFlavor table twice, there-
fore it will enforce the functional constraint on the property. Note that it would be possi-
ble in an implementation to normalise a functional propertytable (such ashasFlavor)
with the class of its domain (such asWine) to make the range a column in the class
table (i.e. to have a columngrape in Wine, instead of the separatehasFlavor prop-
erty table). All triggers that were on the property table would instead be on the relevant
columns of the class table. However this would make our presentation more complex,
and so we do not use such an optimisation in this paper.

Properties can also betransitive and/orsymmetric. For example, thelocatedIn
property in the Wine ontology is transitive, and hence if we know:

locatedIn(ChateauChevalBlancStEmilion,BordeauxRegion)
locatedIn(BordeauxRegion,FrenchRegion)

then we can infer:
locatedIn(ChateauChevalBlancStEmilion,FrenchRegion)

The production rule for a transitive propertyP needs to define a trigger to be exe-
cuted after each insert of tuple〈x, y〉 in P . The rule will insert for each〈y, z〉 existing
in P the tuple〈x, z〉 and for each〈z, x〉 in P the tuple〈z, y〉 will be inserted. The macro
foreach must be used in the production rule that performs these iterations:

foreach(z, P (y, z), P (x, z)) :=
FOR z IN (SELECT range FROM P WHERE domain=y)

LOOP IF x, z NOT IN SELECT domain,range FROM P

THEN INSERT INTO P VALUES (x, z)
END IF; END LOOP;

The production rule is as follows:
TransitiveProperty: P ∈ P+ when

+P (x, y) if true then

foreach(z, P (y, z), P (x, z)), foreach(z, P (z, x), P (z, y))
If a propertyP is declared to be symmetric, then a rule needs to be defined that will

insert inP the tuple〈y, x〉 after an event inserts tuple〈x, y〉 onP :
SymmetricProperty: P ≡ P− when

+P (x, y) if true then P (y, x)
Like classes, OWL-DL properties can be related to one another. For example, a

propertyP might be declared to be a subproperty ofQ, which means that each tuple of
P is also a tuple ofQ. An SQL trigger is added on tableP to specify that after inserting
any tuple〈x, y〉 in P , then the tuple must be inserted inQ. The production rule is as
follows:

subPropertyOf: P ⊑ Q when
+P (x, y) if true then Q(x, y)

A propertyP might be declared as the inverse of another propertyQ. This decla-
ration asserts that for each tuple〈x, y〉 in P , the inverse tuple〈y, x〉 exists inQ, and
vice versa. An SQL trigger is added on tableP to specify that after each insertion on
P the inverse tuple must be inserted onQ, if it does not already exist. Note that in our
methodology, for each such property declaration twoinverseOf constructs are created:
P ≡ Q− andQ ≡ P−. The production rule for theinverseOf construct is :

inverseOf: P ≡ Q− when
+P (x, y) if ¬Q(y, x) then Q(y, x)

Finally, a propertyP might be declared to be equivalent to another propertyQ. In
this case, an SQL trigger is added on tableP that after each insertion of tuple〈x, y〉 in
P the trigger inserts the tuple on tableQ, and vice versa. The production rule is:

equivalentProperty: P ≡ Q when
+P (x, y) if true then Q(x, y)

when
+Q(x, y) if true then P (x, y)

4 Related Work

DL reasoners come in a number of forms [2]. The most common type are Tableaux
based reasoners like Racer, FacT++ and Pellet. These are very efficient at computing
classification hierarchies and checking the consistency ofa knowledge base. However,
the tableaux based approach is not suited to the task of processing ontologies with large
numbers of individuals, due to the use of a refutation procedure rather than a query
answering algorithm [5].

Rule based reasoners provide an alternative to the tableauxbased approach that
is more promising for handling large datasets. O-DEVICE [11] translates OWL rules
into an in-memory representation, and can process all of. Itcan process all of OWL-

DL exceptoneOf, complementOf or data ranges. The fact that the system is memory
based provides fast load and query times, but means that it does not scale beyond tens
of thousands of individuals. OWLIM [6] is similar in both features and problems, but
supports a smaller subset of OWL-DL than O-DEVICE.

KAON2 [13] does reasoning by means of theorem proving. The TBox is translated
into first-order clauses, which are executed on a disjunctive Datalog engine to compute
the inferred closure. KAON2 has fast load and query times, but is unable to handle
nominals (i.e. hasValue andoneOf, i.e. misses the O inSHOIN (D)).

DLDB2 [14] and SOR [17] (previously called Minerva) are mostsimilar to SQOWL,
since they use an RDBMS as their rule engine. DLDB2 stores therules inside the
database as non-materialised views. Tables are created foreach atomic property and
class, populated with individuals from the ontology. A separate DL reasoner is used to
classify the ontology. The resulting TBox axioms are translated into non-recursive Dat-
alog rules that are translated into SQL view create statements. DLDB2 enjoys very fast
load times because the inferred closure of the database is not calculated at load time,
but its querying is slow. An advantage of the system is that because the closure is only
calculated when queries are posed on the system, updates anddeletes can be performed
on the system. DLDB2 is not able to perform type inference based onallValuesFrom.

SOR [17] also uses a standard tableaux based DL reasoner to first classify the on-
tology. It differs from DLDB2 in that rules are kept outside the database and the SQL
statements created from the OWL-DL rules are not used to create views but are rather
executed at load time to materialise the inference results.This makes query processing
faster. Because the rules are kept outside the database, anyadditions to the database
necessitate a rerun of the reasoning.

5 Summary and Conclusions

We have described a method of translating an OWL-DL ontology into an active database
that can be queried and updated independently of the source ontology. In particular,
we have implemented type inference for OWL-DL in relational databases, and have
produced a prototype implementation that builds such type inference into Postgres
databases. Our approach gives a complete implementation ofOWL-DL in a relational
database, assuming that we make the UNA. As such, we have no need to handle OWL-
DL constructsdifferentFrom, AllDifferent, or sameAs since they are concerned with
issues where the UNA does not hold.

Running the LUBM [14] and UOBM [8] benchmarks shows we are between two
and 1000 times faster at query answering than other DBMS based approaches [9]. Only
the DLDB2 approach has the same advantage of performing all its type inference within
the DBMS, and DLDB2 is at least 30 times slower than SQOWL in query answering in
these benchmarks.

The current prototype is crude in its generation of trigger statements, in that it does
not attempt to combine multiple triggers on one table into a single trigger and function
call. Furthermore, it does not make the obvious optimisation that all functional proper-
ties of a class can be stored as a single table, which would reduce further the number
of triggers and reduce the number of joins required in query processing. A more sub-

stantial addition would be to handle deletes and updates, since we would then need to
consider how a fact might be derived from more than one rule.

We have shown that the SQOWL approach offers for a certain class of semantic web
application, a method of efficiently storing data, and performing type inference. We also
believe that our work opens up the possibility of using ontologies expressed in OWL-
DL to enhance database schemas with type inference capabilities, and will explore this
theme of ‘knowledge reasoning’ in RDBMS applications in future work.

References

1. Resource Description Framework (RDF), 2001. http://www.w3.org/RDF/.
2. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider.The De-

scription Logic Handbook: Theory, Implementation, and Applications. Cambridge Univer-
sity Press, 2003.

3. P. Biron and A. Malhotra. XML Schema part 2: Datatypes second edition.
http://www.w3.org/TR/xmlschema-2, 2004.

4. S. Ceri and J. Widom. Deriving production rules for incremental view maintenance. InProc.
VLDB, pages 577–589, 1991.

5. U. Hustadt and B. Motik. Description logics and disjunctive datalog the story so far. In
Description Logics, 2005.

6. A. Kiryakov, D. Ognyanov, and D. Manov. Owlim - a pragmatic semantic repository for
OWL. In WISE Workshops, pages 182–192, 2005.

7. J. Lu, L. Ma, L. Zhang, J.-S. Brunner, C. Wang, Y. Pan, and Y.Yu. Sor: A practical system
for ontology storage, reasoning and search. InVLDB, pages 1402–1405, 2007.

8. L. Ma, Y. Yang, Z. Qiu, G. T. Xie, Y. Pan, and S. Liu. Towards a complete OWL ontology
benchmark. InESWC, pages 125–139, 2006.

9. P. McBrien, N. Rizopoulos, and A. Smith. SQOWL: Performing OWL-DL type inference in
SQL. Technical report, AutoMed Technical Report 37, 2009.

10. D. McGuinness and F. van Harmelen. OWL Web Ontology Language Overview, 2004.
http://www.w3.org/TR/owl-features/.

11. G. Meditskos and N. Bassiliades. A rule-based object-oriented OWL reasoner.IEEE Trans.
Knowl. Data Eng., 20(3):397–410, 2008.

12. M.K.Smith, C. Welty, and D. McGuinness. OWL Web Ontology Language Guide, 2004.
www.w3.org/TR/owl-guide/.

13. B. Motik and U. Sattler. A comparison of reasoning techniques for querying large description
logic aboxes. InLPAR, pages 227–241, 2006.

14. Z. Pan, X. Zhang, and J. Heflin. DLDB2: A scalable multi-perspective semantic web repos-
itory. In Web Intelligence, pages 489–495, 2008.

15. Pellet. http://clarkparsia.com/pellet/.
16. T. Urṕı and A. Oliv́e. A method for change computation in deductive databases. InProc.

VLDB, pages 225–237, 1992.
17. J. Zhou, L. Ma, Q. Liu, L. Zhang, Y. Yu, and Y. Pan. Minerva: A scalable OWL ontology

storage and inference system. InASWC, pages 429–443, 2006.

