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a b s t r a c t

An open problem in optimization with noisy information is the computation of an exact minimizer that
is independent of the amount of noise. A standard practice in stochastic approximation algorithms is to
use a decreasing step-size. This however leads to a slower convergence. A second alternative is to use
a fixed step-size and run independent replicas of the algorithm and average these. A third option is to
run replicas of the algorithm and allow them to interact. It is unclear which of these options works best.
To address this question, we reduce the problem of the computation of an exact minimizer with noisy
gradient information to the study of stochastic mirror descent with interacting particles. We study the
convergence of stochastic mirror descent and make explicit the tradeoffs between communication and
variance reduction. We provide theoretical and numerical evidence to suggest that interaction helps
to improve convergence and reduce the variance of the estimate.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Optimization models that arise in artificial intelligence and
tatistical learning applications often include noisy estimates of
he function and its gradient. This is the case when for exam-
le the gradient is computed over a subset (or mini-batch) of
he data. In such a situation it is known that the optimization
lgorithm will converge to a neighborhood of the minimizer [1].
he size of the neighborhood depends on the amount of noise. In
ddition, for constrained optimization problems noise can violate
he constraints making the situation even more complex.

In various applications it can be beneficial to be able to control
he fluctuations around the true minimum. The conventional
ay to control the error is to decrease the step size. Theoretical
nalysis suggests step sizes which are slow in practice, e.g. O(1/t)

in [2]. An alternative is to use a vanishing noise variance [3]
or heuristics such as to increase the batch size over time (see
e.g. [4]); this however increases the computational costs and is
difficult to tune. Another option is to run independent replicas of
the algorithm. We will refer to each of these runs as a particle.
The question we address in this paper is whether it is beneficial
to allow these particles to interact with each other. We study
this question using the general framework of Stochastic Mirror
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Descent (SMD) (see [5]). SMD can be used to solve constrained
and unconstrained problems, and is known to be an optimal
algorithm for certain classes of optimization problems [6].

In this paper we will consider generic convex optimization
problems of the form,

min
x∈X

{f (x)},

here X ⊂ Rd is a closed convex set that describes the con-
traints. We are interested in investigating the performance and
roperties when the minimizer x∗ is estimated using the follow-
ng Itô stochastic differential equation (SDE)

z it = −∇f (xit )dt +

N∑
j=1

Aij(z
j
t − z it )dt + σdBi

t ,

xit = ∇Φ∗(z it ), i = 1, . . . ,N,

where each particle is driven by independent Brownian motions
Bi
t and Φ is the mirror map used in Mirror Descent (MD); we

will present more details in Section 2. The interesting feature
here is that particles interact through the matrix A = {Aij}

N
i,j=1,

hich is a N × N doubly-stochastic matrix representing the
interaction weights. This interaction will attract particles towards
each other. The matrix A represents an interaction graph which
imposes communication constraints on the agents: each particle
i can communicate directly only with its immediate neighbors,
i.e. j ∈ {1, . . . ,N} for whom Aij ̸= 0. In the absence of interactions
(i.e. when A = 0) the dynamics would correspond to independent
replicas of SMD.
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The aim of this paper is to demonstrate the advantages of us-
ing the interacting particle system, in comparison to independent
copies of SMD. We will show that interaction reduces the variance
of the estimation of x∗ and can improve the convergence proper-
ties including the convergence rate to the stationary distribution.
In particular, we show that for a (strongly) convex objective
the distance to the optimum is bounded by a term related to
the standard optimization error in which the noise variance is
reduced by a factor of N and an interaction term measuring the
eviation of each particle from the system average. This latter
erm is bounded, so that under certain assumptions consensus
nd consequently convergence to the optimum is achieved. Using
ogarithmic Sobolev inequalities we can furthermore improve on
his rate and show that the convergence to a stationary dis-
ribution can be achieved at an exponential rate. In addition,
e believe that the ability to impose communication constraints
hrough the interaction A will be beneficial also from a practical
oint of view as it will decrease communication costs in a parallel
mplementation. In this paper we will work with the continuous
ime formulation for SMD and its proposed interacting version.
he main reason behind this is that the analysis for continuous
ime dynamics provides a clear and complete picture for the
enefit of interaction. In our numerical experiments we used a
imple forward Euler discretization scheme and we expect that
he results can only improve with more sophisticated schemes. A
etailed error analysis of the discretization scheme is beyond the
cope of this paper.

.1. Related literature

It is a well-known problem that stochastic optimization algo-
ithms converge to a neighborhood of the (local) optimal solution.
he size of this neighborhood is proportional to the noise variance
or the second moment of the sample gradient). Traditionally,
ommon strategies for mitigating this include using a decreasing
tepsize or attaining vanishing noise variance by increasing the
atch size. Both of these come at additional computational costs.
n the context of SMD, the authors of [2] study the convergence of
MD under the assumption that either the variance of the noise
ecreases over time or the step size is reduced exponentially
low. Various strategies have been also proposed to mitigate the
ffect of this noise variance to enable convergence closer to the
ptimum. The effect of sampling strategies such as importance
ampling [7] can decrease the effect of the noise variance. Various
ariance reduction methods have been proposed, e.g. [8–10]. The
ork of [11] and [12] studied an accelerated version of SMD,
owever the distance to the optimum remains a function of the
oise.
In this work we propose to use interacting particles to achieve
similar variance reduction. The work most closely related to
urs is that of [13] in continuous time and [14] in discrete
ime. The authors in [13] study continuous and interacting SMD
owever only attained convergence rates for linear dynamics in
he mirror domain and did not present any numerical results. The
ork of [14] covers the deterministic and noisy gradient setting in
iscrete time in a distributed setting; our work is in continuous
ime with all particles optimizing the same objective and uses
ifferent assumptions on the noise dynamics.
Our work also has parallels with the vast distributed opti-

ization literature from which we list some indicative recent
eferences: [15–18]. We remark that our objective is different
rom that in distributed optimization. Our goal here is to study
ow interaction can improve the convergence properties of SMD
nd analyze the variance reduction effects, while in distributed
ptimization the task is to optimize efficiently an objective func-
ion that is distributed across different nodes. For example a
2

distributed version of the interacting SDE above would require
using a different drift −∇fi(xtt ) in the dynamics. There are also
parallels with the work on consensus and synchronization, see
e.g. [19–22] and [23]. Our work generalizes some of these results
to the SMD setting and combine it with results on convergence
to the minimum. There is also parallel work using stochastic
gradient descent (SGD) for constrained sampling problems con-
sidered in [24–26]. While there are many similarities, the goals
of sampling and optimization are different and different dynamics
are used in each case [27]; specifically, in optimization one wants
to converge to the optimizer, while in sampling the objective is
to converge to the correct invariant measure.

1.2. Contributions and organization

Our main focus is on the convergence properties of stochas-
tic mirror descent with interacting particles (ISMD). We derive
regret bounds for the proximity of f (xit ) to the optimal value
using Lyapunov-based arguments. The application of Lyapunov
techniques to optimization problems is an established approach.
Our results have similarities with [13] and [2] bar a number of
differences. We use different Lyapunov functions and analyze a
general convex cost function. We show that in the case of ISMD
there is a tradeoff between communication cost, i.e. how many
particles interact, and variance reduction. In particular, with a
fixed learning rate and non-vanishing noise variance, interaction
between the particles can reduce the size of the neighborhood
around the optimum to which the algorithm converges. Further-
more, we show that the particles converge to an area around the
optimizer at an exponential rate using log-Sobolev inequalities
and Bakry–Emery theory (see [28] and [29]). Although such re-
sults are standard for the analysis of interacting SDEs with convex
potentials (e.g. [30,31]), they have not been considered previously
in the context of SMD. In addition, in our setting the particles are
not restricted to all interact simultaneously, so our results deviate
from the mean field type analysis like in [30,31].

Our contributions can be summarized as follows:

• We propose interaction between N particles as a way of
controlling the convergence of a stochastic optimization
algorithm — and in particular the distance to the minimum.
In the presence of noise in the gradients interacting particles
are an effective alternative to vanishing learning rates or
noise variances.

• We establish that interaction leads to variance reduction. In
particular under strong convexity and smoothness assump-
tions (to be specified later) we show that there exist positive
constants K1 and K2 such that,∫ T

0
eK1κ(t−T )E

[
f (xit ) − f (x∗)

]
dt ≤ K2

(
1
2
e−K1κT

+
σ 2

2N
+

N − 1
N

dσ 2

λ + κ

)
,

where λ is the first nonzero eigenvalue of the graph Lapla-
cian and κ is the strong convexity constant related to the
mirrored objective. A similar average regret bound can be
established for the convex case (and κ = 0). This result,
together with the technical assumptions, proofs and exten-
sions will be presented in Propositions 15–16 and 17–18.
The distance to optimality is thus bounded by three terms:
(1) a term which decays exponentially with time, (2) a noise
term which decreases as the number of particles increases
(3) a term which arises from the distance between the
particle values which is smaller for a connected graph, a
stronger interaction and a larger strong convexity constant.

• We provide explicit rates of convergence and concentra-
tion inequalities for the particle system using log Sobolev
inequalities. This will be presented in Section 4.2. These
results establish exponential rate of convergence in time for
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the law of the particle system, so that at equilibrium the
samples z it will oscillate around the optimum z∗. The strong
convexity constant plays a similar role as in the previous
result, with a higher κ resulting in a smaller distance to the
optimum.

• Finally, we show the benefits of using interaction in con-
vergence speed and variance reduction through different
numerical experiments. In a distributed optimization setup
we manage to achieve comparable performance and con-
vergence to the full batch gradient descent, when using a
‘‘mini-batch’’ approach that uses N particles with a mini-
batch size that is 1/N times the total number of data-points
or summands in f (see Fig. 8 in Section 5 for more details).

The organization of this paper is as follows: Section 2 presents
ackground material on MD and SMD together with some ba-
ic convergence results. Most of the material in this section is
nown, but we use this opportunity to set our framework and
o relate the continuous time formulation with common discrete
ime implementations. We then propose ISMD in Section 3 and
rovide a detailed convergence analysis on how the particles
pproach the minimum as time increases. In Section 4 we apply
he Bakry–Emery theory for the law of the corresponding particle
ystem. In Section 5 we demonstrate the performance of ISMD in
ractice and demonstrate the effect of interaction on decreasing
he variance in a variety of examples. Finally, we provide some
oncluding remarks in Section 6.

.2.1. Notation
We will use the following notations: we denote by Id the d-

imensional identity matrix and 1d the d-dimensional vector of
nes. Let Diag(a) with a ∈ Rd refer to a matrix with diagonal
lements [a1, . . . , ad]. The Kronecker product is denoted by ⊗.
iven an arbitrary norm ∥ · ∥ on Rd, we will define B∥·∥ :=

v ∈ Rd
: ∥v∥ ≤ 1}. The dual norm ∥ · ∥∗ is defined as

z∥∗ := sup{zTv : v ∈ B∥·∥}. Denote with ∥A∥2 the spectral
orm if A is a matrix. Similarly, let ∥A∥F denote the Frobenius
orm given by ∥A∥

2
F =

∑N
i=1 λ2

i , where λi denote the eigenvalues
f A. Assume that the dual norm is compatible with the spectral
orm, i.e. ∥Az∥∗ ≤ ∥A∥2 ∥z∥∗. Unless specified otherwise K , K ′

tc. denote generic constants whose value may change according
o context.

We will define a µ strongly convex function f (w.r.t. a norm
· ∥) if there exists m > 0 such that for all x, y:

(y) ≥ f (x) + ∇f (x)T (y − x) +
m
2

∥y − x∥2.

he case m = 0 corresponds to the convex case. Note that
quivalently strong convexity can be defined using

x − y)T (∇f (x) − ∇f (y)) ≥ m∥x − y∥2.

urthermore, for a Lipschitz function we let

f ∥Lip = sup
x̸=y

|f (x) − f (y)|
∥x − y∥

< ∞.

When looking at the Hessian of a convex function f we will de-
note with Hess(f ) ⪰ λId that Hess(f )−λId is positive semidefinite
with λ ≥ 0.

For random variables X, Y we say X d
= Y to denote equality in

distribution. For a measure π and measurable function f we use
(f ) = Eµ[f ] =

∫
f (x)π (dx). For any measurable space (Z, B(Z))

e use P(Z) to denote the space of all probability measures on
and P2(Z) the one for finite second moments. A probability
easure ν satisfies a Log-Sobolev inequality with constant C is

for any smooth function f we have,

Ent (f 2) ≤ Cν(|∇f |2), (1)
ν

3

where the entropy is defined as,

Entν(f 2) = ν(f 2 log f 2) − ν(f 2) log(ν(f 2)).

or µ, ν ∈ P(Z) we will denote the Kullback–Leibler divergence
r relative entropy as,

(µ|ν) =

{∫
log dµ

dν dµ if µ ≪ ν,

+∞ otherwise.

The 2-Wasserstein distance is defined as

W2(µ, ν) =

(
inf

Π (µ,ν)

(
1
2

∫ ⏐⏐z − z ′
⏐⏐2 Π (dz, dz ′)

))1/2

,

where Π ∈ P2(Z × Z) is the coupling of µ, ν with Π (Z, ·) =

and Π (·,Z) = µ. We will assume that the optimization
lgorithm is started from a fixed deterministic point, and let E[·]

efer to the expected value conditional on the initial value.

. Background

.1. Preliminaries

We are interested in computing x∗
∈ argminx∈X {f (x)} un-

der the assumption of smoothness and convexity for f and X .
hroughout the paper we will assume continuity and smoothness
f f :

ssumption 1. We let f : Rd
→ R be L-Lipschitz continuous

with L-Lipschitz continuous gradients. X ⊂ Rd is a closed convex
set.

We allow f and ∇f to be Lipschitz w.r.t arbitrary norms. As all
norms are equivalent up to a proportionality constant, a natural
choice without loss of generality is the Euclidean norm, which is
also self dual, i.e. ∥·∥∗ = ∥·∥2 (see [32, Lemma 2.1.2]). Despite this
in the remainder we will distinguish between the chosen norm
and its dual mainly in order to emphasize the difference when
operating in the primal or mirror domain.

We will use a mirror map Φ : X → Rd to convert the
constrained optimization problem to an unconstrained one and
adopt the following standard assumptions (e.g. [6, Assumption
9.3]):

Assumption 2. Φ : X → Rd is µ strongly convex and continu-
ously differentiable.

The mirror map and its conjugate will be used to pass between
the constrained and unconstrained space. Define

Φ∗(z) := max
x∈X

(xT z − Φ(x))

to be the Legendre–Fenchel convex conjugate, so that

∇Φ∗(z) := argmax
x∈X

(zT x − Φ(x)).

Note that one has

∇Φ ◦ ∇Φ∗(z) = z.

Note when Φ is strongly convex with constant µ, the conjugate
correspondence theorem (see Section 5.3.1 in [6]) gives that the
gradient of Φ∗ is Lipschitz continuous:

∥∇Φ∗(z) − ∇Φ∗(z ′)∥ ≤ µ−1
∥z − z ′

∥∗.

We furthermore make the additional assumption that the
conjugate of the mirror map maps Rd to X :

∗ d ∗
Assumption 3. ∇Φ (R ) = X and ∥∆Φ ∥∞ < ∞.
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This simplifies the analysis as ∇Φ∗ maps directly to X and this
voids the need for projections. Extending our results without
sing Assumption 3 is possible by following a route similar to [2].
We will often use the notation z∗ for z∗

∈ Rn such that
∗

= ∇Φ∗(z∗) ∈ argminx∈X f (x).
The Bregman divergence is defined as,

Φ (x, y) = Φ(x) − Φ(y) − ∇Φ(y)T (x − y).

The Bregman divergence is meant to quantify how far a point
x is from y and Φ can be thought as a distance generating
function that adapts to the geometry or structure of X . Two well-
known examples of the Bregman divergence are the Euclidean
distance with Φ(x) =

1
2∥x∥

2
2, and the simplex constraint Φ(x) =

d
i=1 x(i) log x(i) − x(i).
An important property of using a mirror map with the Breg-

an divergence is that

Φ∗ (zt , z∗) = DΦ (x∗, xt ),

or some values zt and z∗ (xt and x∗) in unconstrained (con-
trained) space. In addition, the Φ-diameter of X is defined as

Φ,X := sup
x∈X ,x′∈X o

√
2DΦ (x, x′), (2)

and is meant to quantify the size of the constrained space X when
Φ (x, y) is used as a measure of distance.
We will make the following assumption on the Lipschitz-

ontinuity on the Bregman divergence.

ssumption 4. The Bregman divergence satisfies a Lipschitz
ondition of the form,

DΦ∗ (x, z) − DΦ∗ (y, z)| ≤ K∥x − y∥∗.

or some constant K .

This is a common technical condition (e.g. see [16]), which is
utomatically satisfied when the function Φ∗ is Lipschitz. Here it
s used only for the strongly convex case in Proposition 16.

We will assume convexity of the objective function f .

ssumption 5. f : Rd
→ R is convex.

This further implies that the gradient of f is uniformly
ounded on X by the constant L, i.e. ∥∇f (x)∥∗ ≤ L. Alternatively,
t times we will work under a strong convexity assumption.

ssumption 6. The function f : Rd
→ R is a µ-strongly convex

unction with respect to Φ . This means

f (x, y) ≥ µDΦ (x, y).

We further let the anti-derivative V be defined as ∇V = ∇f ◦

Φ∗. We note that knowledge of V here is mainly used to im-
rove exposition, convey intuition and in practice we work only
ith ∇V . The main use of V itself will be to describe invariant
istributions of the mirror descent SDEs as defined in Section 2.2.
or the analysis, we note that Assumptions 1 and 2 imply ∇V is
ipschitz and we will use the following convexity assumptions in
ection 3.3 to bound the fluctuations of the particle system and
n Section 4 to establish rates of convergence. We will distinguish
etween the convex and strongly convex cases for V .

ssumption 7. The function V is convex.

ssumption 8. The function V is κ- strongly convex with κ > 0.
4

2.2. Mirror descent

We begin the presentation of mirror descent (MD) with some
preliminaries on gradient descent. We provide a brief account
of the main approaches in discrete time and later discuss the
continuous time setting, which is of interest in this paper.

2.2.1. Projected gradient descent
One way of finding the solution of a constrained optimization

problem is through projected gradient descent (GD),

xk+1 = ΠX (xk − η∇f (xk)), (3)

where k here denotes discrete time, η is the learning rate and
we define the projection using the Euclidean norm, i.e. ΠX (y) =

argminx∈X ∥y − x∥2
2. The main drawback of this method is its

slow convergence: when d, the dimension of x, increases the
convergence can slow down. This is due to the fact that this
scheme is tied to the Euclidean geometry of Rd through the
projection operator ΠX . Consider a setting in which ∥∇f (x)∥∞ ≤

1. This implies ∥∇f (x)∥2 <
√
d, so projected gradient descent will

converge at a rate
√
d/k (see e.g. Example 9.17 from [6]).

2.2.2. Mirror descent in discrete and continuous time
A generalization of the projected gradient descent method is

mirror descent, which is given by:

∇Φ(yk+1) = ∇Φ(xk) − η∇f (xt ),
xk+1 = ΠΦ

X (yk+1) := argmin
x∈X

DΦ (x, yk+1).

he last step can be rewritten as,

k+1 = argmin
x∈X

{Φ(x) − ∇Φ(yk+1)T x}.

The current point xk is thus mapped into the dual space
Φ(xk); this is then updated to ∇Φ(yk+1) by stepping in the
irection of the negative gradient −η∇f (xk) and then mapped
ack to xk+1. Observe that for Φ(x) =

1
2∥x∥

2
2, we have ∇Φ(x) =

x and the Bregman divergence is simply given by DΦ (x, y) =
1
2∥x−y∥2

2, so that the algorithm is equivalent to projected gradient
escent. Consider Φ(x) =

∑n
i=1 x(i) log x(i) and let X := ∆d,

he d-dimensional simplex. Observe that ∇iΦ(x) = log x(i) + 1,
nd the projection of y with respect to this Bregman divergence
nto the simplex ∆d amounts to a scaling with the L1-norm. The
enefit of MD is that it can adapt to the structure or geometry of
and hence result in a much better dependence of the rate of

onvergence on the problem dimension d (see Chapter 9 in [6]).
Using Assumption 3 the continuous time version of mirror

escent is given by,

zt = −∇f (xt )dt, xt = ∇Φ∗(zt ), (4)

where we have set η = 1 for simplicity.

2.2.3. Convergence of MD in continuous time
We will proceed with presenting two well-known conver-

gence results for deterministic mirror descent and the dynamics
of (4); see [5,33]) for more details. These results are based on
using Bregman divergence in a Lyapunov function Vt and are
ncluded to ease exposition and to facilitate the comparison to
he stochastic case. Note that DΦ,X is defined in (2).

emma 9 (Convergence of MD for a Convex Objective). Assume that
ssumptions 1–3 and 5 hold. We then have the following result,

1
T

∫ T

0
(f (xt ) − f (x∗))dt ≤

D2
Φ,X

2T
.
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roof. Consider,

(zt ) := Φ∗(zt ) − Φ∗(z∗) − ∇Φ∗(z∗)T (zt − z∗).

bserve that V (z∗) = 0 and V (zt ) ≥ 0 for z∗
̸= zt . Furthermore,

dV (zt )
dt

= (∇Φ∗(zt )T − ∇Φ∗(z∗)T )
dzt
dt

= −(xt − x∗)T∇f (xt ) ≤ f (x∗) − f (xt ) ≤ 0,

here in the second equality we used xt = ∇Φ∗(zt ) and in last
inequality we have used the convexity of f . Integrating dV (zt )/dt
from t = 0 to t = T , using the convexity of f and the relationship
DΦ∗ (zt , z∗) = DΦ (x∗, xt ) so that V (z0) ≤

1
2D

2
Φ,X we obtain,∫ T

0
(f (xt ) − f (x∗))dt ≤

1
2
D2

Φ,X ,

nd the claim follows. □

Observe that furthermore since inf0≤t≤T f (xt ) ≤
1
T

∫ T
0 f (xt )dt ,

we can obtain a result for the best value of xt ,

inf
0≤t≤T

f (xt ) − f (x∗) ≤
D2

Φ,X

2T
.

Observe that for projected gradient descent we have Φ(x) =
1
2∥x∥

2
2. In this case, D

∥·∥
2
2,X = supx,x′∈X ∥x − x′

∥2. From Lemma 9
e observe that if D2

Φ,X is smaller than D
∥·∥

2
2,X then mirror

escent algorithm could achieve a faster convergence rate than
radient descent due to the smaller constant.
In the strongly convex case the convergence speed can be

ncreased to an exponential rate.

emma 10 (Convergence of MD for a Strongly Convex Objective). As-
sume that Assumptions 1–3 and 6 hold. We then have the following
esult,

Φ (x∗, xt ) ≤ e−µtDΦ (x∗, x0).

Proof. Since f is µ-strongly convex with respect to Φ , it holds,

Df (x, y) ≥ µDΦ (x, y). (5)

Observe that,
dDΦ∗ (zt , z∗)

dt
= −(xt − x∗)T∇f (xt )

= −Df (x∗, xt ) − f (xt ) + f (x∗)
≤ −µDΦ∗ (zt , z∗) − f (xt ) + f (x∗)

≤ −µDΦ∗ (zt , z∗), (6)

here in the second equality we have used the definition of the
regman divergence, in the second-to-last inequality we have
sed (5) and the fact that DΦ (x∗, xt ) = DΦ∗ (zt , z∗), and in the
ast inequality we have used the convexity of f , namely that
(x∗) − f (xt ) < 0. Let now,

(t, zt ) := eµtDΦ∗ (zt , z∗).

hen,
dV (t, zt )

dt
= µeµtDΦ∗ (zt , z∗) + eµt dDΦ∗ (zt , z∗)

dt
≤ µeµtDΦ∗ (zt , z∗) − µeµtDΦ∗ (zt , z∗) ≤ 0.

here in the second-to-last inequality we have used (6). Then,
ince dV (t,zt )

dt ≤ 0 it holds that V (t, zt ) ≤ V (0, z0). Using this and
DΦ (x∗, xt ) = DΦ∗ (zt , z∗) we have,

V (t, zt ) = eµtDΦ∗ (zt , z∗) = eµtDΦ (x∗, xt )
≤ V (0, z0) = DΦ (x∗, x0).

This implies,

DΦ (x∗, xt ) ≤ e−µtDΦ (x∗, x0). □
5

2.3. Stochastic mirror descent

Consider adding noise to (3):

xk+1 = ΠX
(
xk − ηϵ∇f (xk) +

√
ϵσζk

)
, ζk ∼ N (0, Id), i.i.d.

In the limit of the time step ϵ ↓ 0 one recovers the following Itô
stochastic integral equation [34]:

xt+1 = x0 − η

∫ t

0
∇f (xs)ds + σBt + ut , (7)

ut =

∫ t

0
1xt∈∂Xdus.

Here Bt is a d-dimensional Brownian motion and a local time con-
struction on the boundary of X is used for ut to ensure that Xt ∈

X almost surely; see [34,35] and the references therein for details.
Understanding in detail the ergodicity properties or long time
behavior of (7) is largely unexplored in the literature. We note
that at the level of the evolution of densities, reflecting boundary
conditions are commonly used for the forward or Fokker–Planck
equation, e.g. [36, Section 4.2.2], but a detailed study of (7) along
these lines goes beyond the scope of this article. In the remainder
we will consider the mapping to be on the mirror domain.

The stochastic mirror descent (SMD) is given by the SDE,

dzt = −∇f ◦ ∇Φ∗(zt )dt + σdBt , (8)

where xt = ∇Φ∗(zt ) and as before in (4) we use η = 1. Note
that when σ = 0 we obtain a deterministic variant of continuous
time mirror descent. The long time behavior of such dynamics are
very well understood. The law of zt will converge to an invariant
distribution with density proportional to exp(− 2

σ2 V) where recall
V denotes the anti-derivative of ∇f ◦ ∇Φ∗. We will discuss this
in more detail later in Section 4. The downside of this dynamics
is that SMD cannot converge to the exact solution, i.e. the noise
keeps the algorithm from fully converging exactly to x∗ (see [2,
13]). The latter would require the equilibrium distribution being a
Dirac/atomic measure, which in turn requires using a decreasing
noise in time; see [2] for more details.

Another interesting remark is that the dynamics in the dual
space is then equivalent to that of SGD with objective function
V . It is well-known that for a convex objective SGD methods
converge in O(1/t) to a neighborhood of the optimum the size
of which is proportional to the noise variance [1]. A similar result
can be shown to hold for SMD (see e.g. [2,13,37]).

Remark 11 (SGD and Additive Noise). We note that in this work
we refer to SGD as the SDE equivalent of gradient descent with
additive noise, i.e. we use a constant diffusion coefficient. This
is in disagreement with recent works in the areas of machine
learning whereby the noise in SGD arises only from sub-sampling
a deterministic loss function. The latter can be modeled asymp-
totically as an SDE with multiplicative noise and state-dependent
diffusion; see for instance [38–40].

2.3.1. Convergence of SMD
We proceed with presenting the analogs of Lemmas 9–10 for

the SMD case.

Proposition 12 (Convergence of SMD for a Convex Objective). As-
sume that Assumptions 1–3 and 5 hold. We then have the following
result,

E
[
1
T

∫ T

0
(f (xt ) − f (x∗))dt

]
≤

1
2T

D2
Φ,X +

1
2
σ 2

∥∆Φ∗
∥∞.
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roof. We define the following Lyapunov function,

(zt ) := Φ∗(zt ) − Φ∗(z∗) − ∇Φ∗(z∗)T (zt − z∗).

e then have the following results. By Itô’s lemma we obtain,

V (zt ) =

(
∇f (xt )T (x∗

− xt ) +
1
2
σ 2∆Φ∗(zt )

)
dt + σ (xt − x∗)TdBt ,

where for the last term we have σ (xt −x∗)TdBt
d
= σ∥xt −x∗

∥2dBt .
Integrating the expression we obtain,

V (zT ) = V (z0) +

∫ T

0
(x∗

− xt )T∇f (xt )dt

+
1
2
σ 2
∫ T

0
∆Φ∗(zt )dt + σ

∫ T

0
∥xt − x∗

∥2dBt .

Observe again that, (x∗
− xt )T∇f (xt ) ≤ f (x∗) − f (xt ), by convexity

of f . Furthermore, as before V (z0) ≤
1
2D

2
Φ,X . Lastly, we have

1
2σ

2
∫ T
0 ∆Φ∗(zt )dt ≤

1
2σ

2T∥∆Φ∗
∥∞. Rearranging we then obtain,

T

0
(f (xt )− f (x∗))dt ≤

1
2
D2

Φ,X +
1
2
σ 2T∥∆Φ∗

∥∞ +σ

∫ T

0
∥xt − x∗

∥2dBt .

Using the fact that the process {∥xt − x∗
∥2}t≥0 is adapted to the

filtration of xt so that

E
[
σ

∫ T

0
∥xt − x∗

∥2dBt

]
= 0,

we have,

E
[
1
T

∫ T

0
(f (xt ) − f (x∗))dt

]
≤

1
2T

D2
Φ,X +

1
2
σ 2

∥∆Φ∗
∥∞ □

A similar bound can be obtained for the time average[
f
(

1
T

∫ T
0 xtdt

)
− f (x∗)

]
by using Jensen’s inequality. Similar to

the deterministic case, if D2
Φ,X is smaller than D

∥·∥
2
2,X then MD

chieves a faster convergence rate than gradient descent.

roposition 13 (Convergence of SMD for a Strongly Convex Objec-
ive). Assume that Assumptions 1–3 and 6 hold. Then,[
DΦ (x∗, xT )

]
≤ e−µT 1

2
D2

Φ,X +
1
2µ

σ 2(1 − e−µT )∥∆Φ∗
∥∞.

Proof. Let V (t, zt ) = eµtDΦ∗ (zt , z∗). We have through Itô’s
emma,

V (t, zt ) =

(
eµt (x∗

− xt )T∇f (xt ) + µeµtDΦ∗ (zt , z∗)

+
1
2
σ 2eµt∆Φ∗(zt )

)
dt + σ eµt (xt − x∗)TdBt .

Integrating the expression we obtain,

V (T , zT ) =V (0, z0) +

∫ T

0
eµt ((x∗

− xt )T∇f (xt ) + µDΦ∗ (zt , z∗)
)
dt

+

∫ T

0

1
2
σ 2eµt∆Φ∗(zt )dt

+

∫ T

0
σ eµt (xt − x∗)TdBt .

Observe again that for a µ-strongly convex function Df (x∗, xt ) ≥

µDΦ (x∗, xt ) and by the properties of the mirror map DΦ (x∗, xt ) =

DΦ∗ (zt , z∗). This implies that ∇f (xt )T (x∗
− xt ) ≤ −Df (x∗, xt ) −

f (xt ) + f (x∗) ≤ −µDΦ (x∗, xt ) = −µDΦ∗ (zt , z∗). Furthermore,∫ T
σ eµt (x − x∗)TdB d

=
∫ T

σ eµt
∥x − x∗

∥ dB and it holds that
0 t t 0 t 2 t

6

∫ T
0

1
2σ

2eµt∆Φ∗(zt )dt ≤
1
2 (e

µT
− 1)σ 2

∥∆Φ∗
∥∞. Using these,

(T , zT ) ≤ V (0, z0)+
1
2
σ 2(eµT

− 1)∥∆Φ∗
∥∞ +

∫ T

0
σ eµt

∥xt − x∗
∥2dBt .

Taking expected values we obtain,

E
[
DΦ (x∗, xt )

]
≤ e−µTD2

Φ,X +
1
2
σ 2(1 − e−µT )∥∆Φ∗

∥∞,

here we have used that the expected value of an Itô integral is
ero and the relationship DΦ∗ (zt , z∗) = DΦ (x∗, xt ). □

Again in the strongly convex case the convergence speed can
e increased. However, as expected for both the convex and
trongly convex results, as T → ∞, the gap to optimality is
bounded from above by a quantity proportional to the noise vari-
ance σ 2. The solution will not converge exactly to the minimum,
but oscillate around it.

3. Interacting stochastic mirror descent

It is clear that when using a fixed learning rate and a constant
noise variance, SGD does not converge to the optimum. In fact,
the distance to the optimum is controlled by the amount of noise.
Various strategies such as using a vanishing noise variance by
increasing the batch size or variance-reduced SGD (see e.g. [8–
10]) have been proposed. In this work, we consider an alternative
approach for controlling the distance from the optimum; namely
by using interactions between the particles [13].

We consider as an alternative to (8) and we consider the
following interacting particle dynamics,

dz it = −∇f ◦∇Φ∗(z it )dt+
N∑
j=1

Aij(z
j
t −z it )dt+σdBi

t , i = 1, . . . ,N,

(9)

where Bi
t are independent Brownian motions and A = {Aij}

N
i,j=1 is

an N × N doubly-stochastic matrix representing the interaction
weights. As mentioned in Section 1 the matrix A represents an
interaction graph which can also impose communication con-
straints on the particles. Each particle i will be influenced only
from particles j for which Aij ̸= 0.

The discretized version of (9) is then,

xik = ∇Φ∗(z ik), (10)

z ik+1 = z ik − ϵ∇f (xik) + ϵ

N∑
j=1

Aij(z
j
k − z ik) +

√
ϵσζ i

k, (11)

where ζt ∼ N (0, Id) and ϵ is the discretization parameter. In the
absence of interactions, i.e. when Aij = 0, we obtain a discretized
version of SMD.

We remark here that the interacting mirror descent algorithm
is equivalent to an algorithm in which the particle interaction is
defined using a Bregman divergence instead of the L2 distance. In
particular for the time discretized version (10)–(11) we have the
following result.

Lemma 14 (Interacting Mirror Descent as Bregman Distance Inter-
ction in Primal Space). Let σ = 0 and ϵ = 1, then interacting

mirror descent in (10)–(11) can be rewritten as:

i
k+1 = argmin

x∈X
{∇f (xik)

T x +

N∑
j=1

AijDΦ (x, xjk)}.
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roof. We have,
i
k+1 = ∇Φ∗(z ik+1)

= argmin
x∈X

{DΦ (x, ∇Φ∗(z ik+1))}

= argmin
x∈X

{Φ(x) − Φ(xik+1) − ∇Φ ◦ ∇Φ∗(z ik+1)
T (x − ∇Φ∗(z ik+1))}

= argmin
x∈X

{Φ(x) − Φ(xik+1) − (z ik+1)
T x},

here in the last equality we have used ∇Φ(∇Φ∗(x)) = x.
ontinuing,

i
k+1 = argmin

x∈X
{Φ(x) − Φ(xik+1) + ∇f (xik)

T x −

N∑
j=1

Aij(z
j
k)

T x}

= argmin
x∈X

{∇f (xik)
T x +

N∑
j=1

Aij

(
Φ(x) − Φ(xik+1) − (z jk)

T x
)
},

where in the first equality we have used the evolution of z it+1
(note: the z it terms cancel out due to the double stochasticity of
Aij). Then,

xik+1 = argmin
x∈X

{∇f (xik)
T x

+

N∑
j=1

Aij

(
Φ(x) − Φ(xjk) − (∇Φ(xjk))

T (x − xik)
)
}

= argmin
x∈X

{∇f (xik)
T x +

N∑
j=1

AijDΦ (x, xjk)},

where in the first equality we have used z jk = ∇Φ(xjk), and – due
to the minimum being taken over x – replaced Φ(xik+1) with Φ(xjk)
and added the term ∇Φ(xjk)

T xjk and in the last equality we have
used the definition of the Bregman divergence. □

Unlike the standard L2 consensus algorithm where xit+1 =

argminx∈X ∇f (xit )
T x+

∑N
j=1 Aij∥x−xjt∥2

2, here the particles interact
in the Bregman distance. Lemma 14 can be combined with the
analysis in [34] to extend (7) to an interacting reflected SDE
like (9) that uses

∑N
j=1 AijDΦ (xit , x

j
t )dt as an interaction term. This

is useful for conveying intuition, but the analysis in the mirror
domain is much simpler. One does not have to deal with terms
like ut in (7), and the interaction term in (9) is symmetric, which
simplifies the analysis, see [30] for a more detailed discussion.

3.1. A useful reparameterization

It will often be useful to represent the dynamics of the particle
system presented in (9) as a vector SDE with all particles stacked
in a single vector variable zt = ((z1t )

T , . . . , (zNt )
T )T . We define the

graph Laplacian as L := Diag(A1N )− A, and let L := L⊗ Id, where
⊗ is the Kronecker product. Using the Laplacian, we can rewrite
the evolution of the z it-s in vector form as,

dzt = (−∇V(zt ) − Lzt) dt + σdBt , (12)

where Bt := ((B1
t )

T , . . . , (BN
t )

T )T is the stacked variable of Brown-
ian motions and ∇V(zt ) = (∇V(z1t )

T , . . . ,∇V(zNt )
T )T . Note that

the interaction is linear and the distinctive properties of ISMD
compared to N independent copies of SMD are contained L. Note
that given A is doubly stochastic we have

N∑ N∑
Aijz i =

N∑
z i
i=1 j=1 i=1

7

so the smallest eigenvalue of L is zero and L1dN = 0. We will
return to this point in Section 4. We assume throughout that
the network graph corresponding to the Laplacian is connected,
which in turn implies that L has eigenvalues [41]:

λ0 = 0 < λ ≤ λ3 ≤ · · · ≤ λdN .

e thus denote by λ the smallest non-zero eigenvalue of the
Laplacian.

3.2. Convergence of ISMD: a general bound

As we saw earlier, the SMD dynamics does not converge to the
minimum due to the noise in the optimization algorithm. Here
we show that introducing interaction between the particles can
reduce the effect of noise.

We will decompose each particle as a sum of the particle
average and a fluctuation term, z it := z̄Nt + z̃ it , where we let

z̄Nt :=
1
N

N∑
i=1

z it , z̃ it := z it − z̄Nt ,

and also define yNt := ∇Φ∗(z̄Nt ).
We begin by deriving the evolution of the average of the

particles z̄Nt . Observe,

dz̄Nt = −
1
N

N∑
i=1

∇f (xit )dt +
1
N

N∑
i=1

N∑
j=1

Aij(z
j
t − z it )dt +

σ

N

N∑
i=1

dBi
t

= −
1
N

N∑
i=1

∇f (xit )dt +
σ

N

N∑
i=1

dBi
t ,

where we have used the fact that 1
N

∑N
i=1
∑N

j=1 Aijz
j
t = z̄Nt due

to the matrix A being doubly stochastic. The particle average z̄t
moves along the gradient of f towards the minimum x∗. At the
same time the interaction aims to control fluctuations of each
particle z it around z̄t . This will appear clearly in the bounds in
the subsequent results. More specifically, we obtain a result that
the distance of a particle to the optimum is bounded by terms
standard to optimization with the variance reduced by a factor
of N and terms related to the fluctuation, which we will show is
bounded.

We proceed by presenting the analog of Proposition 12 for the
ISMD.

Proposition 15 (Convergence of ISMD for a Convex Objective).
Assume that Assumptions 1–3 and 5 hold. We then have,

1
T

∫ T

0
E
[
(f (xit ) − f (x∗))

]
dt ≤

1
2T

D2
Φ,X +

σ 2

2N
∥∆Φ∗

∥∞

+

∫ T

0

L
µT

E
[
∥z̃ it∥∗

]
dt

+

∫ T

0

2L
µNT

N∑
i=1

E
[
∥z̃ it∥∗

]
dt.

Proof. Observe that,∫ T

0
(f (xit ) − f (x∗))dt =

∫ T

0
(f (yNt ) − f (x∗))dt +

∫ T

0
(f (xit ) − f (yNt ))dt

≤

∫ T

0
(f (yNt ) − f (x∗))dt +

∫ T

0
L∥xit − yNt ∥dt

≤

∫ T

0
(f (yNt ) − f (x∗))dt +

∫ T

0

L
µ

∥z̃ it∥∗dt, (13)
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here we have used the L-Lipschitz continuity of f and the
onjugate correspondence theorem for ∇Φ∗. Furthermore,∫ T

0
(f (yNt ) − f (x∗))dt =

∫ T

0

1
N

N∑
i=1

(f (xit ) − f (x∗))dt

+

∫ T

0

1
N

N∑
i=1

(f (yNt ) − f (xit ))dt

≤

∫ T

0

1
N

N∑
i=1

(
f (xit ) − f (x∗) +

L
µ

∥z̃ it∥∗

)
dt, (14)

here we have again used the Lipschitz continuity of both f and
Φ∗. We furthermore have, by convexity of f ,∫ T

0

1
N

N∑
i=1

f (xit ) − f (x∗)dt ≤

∫ T

0

1
N

N∑
i=1

(xit − x∗)T∇f (xit )dt

≤

∫ T

0

1
N

N∑
i=1

∇f (xit )
T (xit − yNt )dt +

∫ T

0

1
N

N∑
i=1

∇f (xit )
T (yNt − x∗)dt

≤

∫ T

0

L
µN

N∑
i=1

∥z̃ it∥∗dt +

∫ T

0

1
N

N∑
i=1

∇f (xit )
T (yNt − x∗)dt, (15)

where we used in the last inequality that from Assumption 5 it
holds ∥∇f (x)∥∗ ≤ L and the Lipschitz continuity of ∇Φ∗. Using
Lemma 24 (proved in the Appendix Appendix A), combining
inequalities (13), (14) and (15), and taking expected values the
result follows. □

A similar result can be obtained for a strongly convex f .

Proposition 16 (Convergence of ISMD for a Strongly Convex Objec-
tive). Assume that Assumptions 1–4 and 6 hold. Then it holds,∫ T

0
eµ(t−T )E[(f (xit ) − f (x∗))]dt ≤

1
2
e−µTD2

Φ,X +
σ 2

2Nµ
(1 − e−µT )∥∆Φ∗

∥∞

+

∫ T

0
eµ(t−T ) L

µ
E
[
∥z̃ it∥∗

]
dt +

∫ T

0
eµ(t−T ) 2L + µ2

µN

N∑
i=1

E
[
∥z̃ it∥∗

]
dt.

Proof. Observe that, using strong convexity, we have,

1
N

N∑
i=1

(f (xit ) − f (x∗)) ≤
1
N

N∑
i=1

(
−Df (x∗, xit ) + (xit − x∗)T∇f (xit )

)
≤

1
N

N∑
i=1

(
−µDΦ (x∗, xit ) + (xit − x∗)T∇f (xit )

)
=

1
N

N∑
i=1

(
−µDΦ∗ (z it , z

∗) + µDΦ∗ (z̄Nt , z∗)
)

+
1
N

N∑
i=1

∇f (xit )
T (xit − yNt )

+
1
N

N∑
i=1

∇f (xit )
T (yNt − x∗) − µDΦ∗ (z̄Nt , z∗).

herefore,∫ T

0
eµt 1

N

N∑
i=1

(f (xit ) − f (x∗))dt

≤

∫ T

eµt 1
N

N∑
µ∥z̃ it∥∗dt +

∫ T

eµt 1
N

N∑ L
µ

∥z̃ it∥∗dt

0 i=1 0 i=1

8

+
1
2
D2

Φ,X +
σ 2

2N
(eµT

− 1)∆Φ∗(z̄Nt )

+

∫ T

0
eµt σ

√
N

∥yNT − x∗
∥2dWt , (16)

here we have used the Lipschitz continuity of ∇Φ∗, the assump-
tion that ∥∇f (x)∥∗ ≤ L, the assumption that

Φ∗ (z̄Nt , z∗) − DΦ∗ (z it , z
∗) ≤ ∥z̄Nt − z it∥∗,

and Lemma 25 (proved in Appendix A of the Appendix). Multi-
plying by e−µT , using the assumption that ∥∇f (x)∥∗ ≤ L and the
Lipschitz continuity of ∇Φ∗, combining inequalities (13), (14) and
(16), and taking expected values the result follows. □

The deviation from the minimum is upper-bounded by four
terms. The first two terms are the standard optimization errors,
where we observe that the noise variance is reduced by a factor of
N . The third and fourth terms are penalties incurred due to each
of the particles having different values. These two terms measure
the deviation of each individual particle from the particle aver-
age. Loosely speaking, if the fluctuation term ∥z̃ it∥∗ is bounded
and small then the interaction will drive the particle system to
a state near consensus and the gradient terms will direct the
particles towards the minimum. There is furthermore a tradeoff
between the interaction and the variance. If the interaction term
is bounded and not increasing with N , the more particles, the
smaller the distance to the optimum, as is witnessed by the term
σ2

2N ∥∇Φ∗
∥∞. This implies that the variance of the particles xit is

also smaller, and they lie closer around the optimal value. Com-
paring Proposition 15 in the convex case and Proposition 16 in the
µ-strongly convex case we observe that the strong convexity of f
can speed up convergence, mainly due to the additional factor 1

µ
.

e remark that the results presented in this section thus show
hat the expected value of the distance of the objective function
valuated at the time average to the objective function evaluated
n the optimum decreases as N increases. In addition to this, as
e will present in our numerical results later in Section 5 that
oth the variance of the cost function as well as the variance of
he samples are smaller when using interaction.

.2.1. A comparison with averaging
Consider the case of the convex objective. The interaction in

he previous section is introduced in order to obtain a way to
ontrol the effects of noise. In particular we observed that if the
erm ∥z̃ it∥∗ was bounded and not an increasing function of N , the
variance could be reduced by having interacting particles. We can
compare the setting with interaction to one in which we simply
average the trajectories of the particles.

If the following holds,

1
N

N∑
i=1

∇f (xit ) =
1
N

N∑
i=1

∇f ◦ ∇Φ∗(z it ) = ∇f ◦ ∇Φ∗

(
1
N

N∑
i=1

z it

)
:= ∇f (yNt ),

(17)

hen we have from Lemma 24 (in Appendix A) and the convexity
f f that[

1
T

∫ T

0
(f (yNt ) − f (x∗))dt

]
≤

1
2T

D2
Φ,X +

σ 2

2N
∥∆Φ∗(z̄Nt )∥∞.

otice that the Assumption in (17) holds for a function of the
orm f (x) = aT x + b + Φ(x) which is the particular loss function
considered in [13]. Thus in the setup of this kind structure in the
loss function and gradient, averaging the particles can decrease
the effect of the noise.
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In a general setting where the loss function is nonlinear,
one can decrease the effects of noise by averaging the particles
trajectories. Combining (14), (15) and Lemma 24 we have,

E
[
1
T

∫ T

0
(f (yNt ) − f (x∗))dt

]
≤

1
2T

D2
Φ,X +

σ 2

2N
∥∆Φ∗(z̄Nt )∥∞

+

∫ T

0

2L
αTN

N∑
i=1

∥z̃ it∥∗dt.

In the nonlinear case the average of the gradients is not the
gradient of the average and therefore the additional term repre-
senting the deviations of each individual particle from the particle
average plays a role.

3.3. Bounding the fluctuation term

In this section we present a bound on the fluctuation term.
When the fluctuation term is sufficiently small all particles have
approximately the same value; we refer to this as the particles
having achieved consensus. The dynamics of the fluctuation term
in a vectorized form is given by,

dz̃t =

[(
1
N
1N1T

N ⊗ Id − IdN

)
∇V(zt ) − Lzt

]
dt + σ

√
(N − 1)

N
dBt ,

where we have used that
(
IdN −

1
N 1N1T

N ⊗ Id
)
dBt

d
=

√
(N−1)

N dBt .

roposition 17 (Bounding the Fluctuation Term: a General Result
or the Convex Case). Assume that Assumptions 1–3 and 7 hold. Then,

1
TN

∫ T

0

N∑
i=1

E
[
V(z it ) − V(z̄Nt )

]
dt ≤

L
2TN

N∑
i=1

∥z̃ i0∥
2
2 +

1
2
dσ 2 (N − 1)

N
.

Proof. Define the Lyapunov function,

Vt (z̃) :=
1
2
z̃T z̃.

y Itô’s lemma it then follows that,

Vt = z̃T
[(

1
N
11T

⊗ Id − IdN

)
∇V(zt ) − Lzt

]
dt

+ dN
1
2
σ 2 (N − 1)

N
dt + z̃Tσ

√
(N − 1)

N
dBt .

efine z̄Nt = 1N ⊗ zNt . We can rewrite the drift term of dVt as,

t := z̃T
(

1
N
11T

⊗ Id

)
∇V(zt ) − z̃T∇V(zt ) − z̃TLzt + dN

1
2
σ 2 (N − 1)

N
.

Note that,

z̃T
(

1
N
11T

⊗ Id

)
∇V(zt ) = 0.

y Assumption 5,

z̃T∇V(zt ) ≤

N∑
i=1

(
V(z̄Nt ) − V(z it )

)
.

urthermore, by the properties of the graph Laplacian, it holds
1dN = 0, so that,

z̃Tt Lzt = −z̃Tt Lz̃t ≤ −λz̃Tt z̃t ≤ 0.

Then,

VT ≤ V0 +

∫ T N∑(
V(z̄Nt ) − V(z it )

)
dt + TdN

1
2
σ 2 (N − 1)

N
0 i=1

9

+

∫ T

0
σ

√
(N − 1)

N
∥z̃t∥2dBt ,

where we have additionally used that z̃TdBt
d
= ∥z̃∥2dBt . Rearrang-

ing, using the property of the Itô integral, and using VT ≥ 0 we
find,

1
TN

∫ T

0

N∑
i=1

E
[
V(z it ) − V(z̄Nt )

]
dt ≤

1
T
V0 + d

1
2
σ 2 (N − 1)

N
. □

We note that in the above result we used the convexity of V
but we did not exploit the interaction between the particles. From
the above statement we observe that in a deterministic setting,
i.e. if σ = 0, consensus can be achieved even without interaction.
Each particle is driven towards the optimum x∗ by the gradient
term. Consensus is in this case achieved exactly at optimality. In
the stochastic setting exact consensus can no longer be achieved
and the distance to optimality remains bounded by a function of
the noise.

Proposition 18 (Bounding the Fluctuation Term: the Strongly Con-
vex Case). Let Assumptions 1–3 and 8 hold. Then,

E

[
1
N

N∑
i=1

∥z̃ it∥
2
∗

]
≤

K
N
e−(κ+λ)t

N∑
i=1

∥z̃ i0∥
2
2

+
dK

(κ + λ)
σ 2 (N − 1)

N

(
1 − e−(κ+λ)t) .

Proof. Define again the Lyapunov function,

Vt (z̃) :=
1
2
z̃T z̃.

It is clear that Vt = 0 if z it = z jt , or in other words consensus has
been achieved and the fluctuation term is zero. By Itô’s lemma it
then follows that,

dVt = z̃T
[(

1
N
11T

⊗ Id − IdN

)
∇V(zt ) − Lzt

]
dt

+ dN
1
2
σ 2 (N − 1)

N
dt + z̃Tσ

√
(N − 1)

N
dBt .

Define z̄Nt = 1N ⊗ zNt . We can rewrite the drift term of dVt as,

µt :=z̃T
(

1
N
11T

⊗ Id

)
∇V(zt ) + z̃T (∇V(z̄Nt ) − ∇V(zt )) − z̃T∇V(z̄Nt )

− z̃TLzt + dN
1
2
σ 2 (N − 1)

N
.

Note that, since
∑N

i=1(z
i
t − z̄Nt ) = 0,

z̃T
(

1
N
11T

⊗ Id

)
∇V(zt ) = 0, z̃T∇V(z̄Nt ) = 0.

By Assumption 8,

z̃T (∇V(z̄Nt ) − ∇V(zt )) ≤ −κ z̃T z̃.

Furthermore, by the properties of the Laplacian, it holds L1dN =

0, so that,

Lzt = Lz̃t .

Therefore,

µt ≤ −κ z̃T z̃ − z̃TLz̃ + dN
1
2
σ 2 (N − 1)

N

≤ −(κ + λ)z̃T z̃ + dN
1
2
σ 2 (N − 1)

N
.
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ntegrating the expression and using the above bound we obtain,

t ≤ e−(κ+λ)tV0 +
1
2

∫ t

0
e−(κ+λ)(t−s)dNσ 2 (N − 1)

N
ds

+

∫ t

0
e−(κ+λ)(t−s)σ

√
(N − 1)

N
∥z̃s∥2dBs,

where we have additionally used that z̃TdBt
d
= ∥z̃t∥2dBt . Then,

taking expectations we have:

E[Vt ] ≤ e−(κ+λ)tV0 +
1

2(κ + λ)
dNσ 2 (N − 1)

N

(
1 − e−(κ+λ)t) .

The statement follows from norm equivalence, i.e. ∥ · ∥
2
∗

≤ K∥ ·
2
2. □

emark 19 (Constant in the Norm Equivalence). If the Euclidean
orm is used above in Assumptions 1–2, then K = 1. In certain
ases however, K can be dimension-dependent.

We furthermore note, by the bound on E
[

1
N

∑N
i=1 ∥z̃ it∥

2
∗

]
im-

plies a bound on E
[

1
N

∑N
i=1 ∥z̃ it∥∗

]
with the dependence on N

emaining the same. This is formalized in the following lemma.

emma 20. It holds for some constant K ,[
1
N

N∑
i=1

∥z̃ it∥∗

]

≤

(
K
N
e−(κ+λ)t

N∑
i=1

∥z̃ i0∥
2
2 +

dK
(κ + λ)

σ 2 (N − 1)
N

(
1 − e−(κ+λ)t)) 1

2

.

roof. Let ∥ · ∥ be an arbitrary norm. Observe that by Hölder’s
inequality E [|x|] ≤

(
E
[
|x|2

]) 1
2 . Let x =

∑N
i=1 ∥z it∥. Observe that,

x|2 =

N∑
i=1

∥z it∥
2
+

N∑
i=1

N∑
j̸=i

∥z it∥ ∥z jt∥

≤

N∑
i=1

∥z it∥
2
+

1
2

N∑
i=1

N∑
j̸=i

(
∥z it∥

2
+ ∥z jt∥

2
)

≤ (1 + N)
N∑
i=1

∥z it∥
2,

here we have applied Young’s inequality in the second inequal-
ty. We obtain,[

1
N

N∑
i=1

∥z it∥

]
≤ E

[
1 + N
N2

N∑
i=1

∥z it∥
2

] 1
2

.

he statement follows using Proposition 18. □

The above statements show that for a strongly convex objec-
ive approximate consensus can be achieved for a sufficiently high
and for a sufficiently large κ + λ. In the strongly convex case

approximate consensus can be achieved even in the case of no
interaction if κ is sufficiently large. For the convex case we have
κ = 0. In this case approximate consensus can be achieved if
λ is sufficiently high. For a convex objective without interaction
we would be left with the noise term similar to the result in
Proposition 17. Without interaction the strong convexity of the
objective thus determines in how much the effect of noise can
be reduced. With interaction the interaction type itself, i.e. the λ,
lso plays a role and for a sufficiently high λ the effects of noise

on consensus can be minimized. We remark furthermore that we
10
bound the dual norm by the L2 norm using norm equivalence; the
downside of this is that an additional dimensionality-dependence
can be obtained. This could be mitigated by working with directly
the dual norm as in [13] but in this case the obtained result is
rather limited to a specific set of objective functions; alternatively
one can work in the primal space directly. The latter idea will be
addressed in future work.

3.3.1. Extensions to distributed optimization
A common setting is to consider minimizing f (x) =

∑N
i=1 fi(x)

nd each particle corresponds to a computing worker or proces-
or having access only to fi and thus ∇fi ◦∇Φ∗(z it ) would be used
n (9) (instead of ∇f ◦ ∇Φ∗(z it )). The proof of Propositions 17
nd 18 is based the fact that each particle has access to the full
bjective function f . As a result terms that would be relevant in

a distributed setup related to variability of each fi vanish. Clearly,
his results in a better bound and thus a better convergence
esult, but the current results can be extended for the distributed
ase by increasing the interaction strength and multiplying A in
9) by a sufficiently high constant to ensure consensus arises. The
etails are left for future work.

.3.2. On the tradeoff between noise reduction and interaction
From the results in Section 3.2 we observed that for interacting

articles the convergence can be improved since the effect of
oise in the term 1

N σ∥∆Φ(z it )∥∞ is reduced by a factor 1/N .
e however remark that this will only be achieved if the term
z̃ it∥∗ is bounded and non-increasing with N . As we showed in

Section 3.3 we can present a bound on the interaction term. In
particular, we showed that the fluctuation is bounded and non-
increasing with N . The fluctuation is bounded in the L2 norm, and
a noise term does remain; as discussed, this noise term can be
controlled by the strong convexity of the objective or by imposing
an interaction strength, which means replacing A with ϑA for
ϑ > 1. In other words, when λ + κ is sufficiently high the
fluctuation term is sufficiently small. Specifically, in the strongly
convex case for a large N, T the fluctuation term is bounded by
dK

(κ+λ)σ
2 for some constant K . We conclude this section by saying

that as long as the decrease in the value of 1
N σ∥∆Φ(z it )∥∞ is

arger than the increase in the value of ∥z̃ it∥∗, interaction with N
articles achieves a closer convergence to the optimum. In other
ords, the amount of particles can be seen as an alternative to
decreasing learning rate or vanishing noise variance (e.g. the

atter can be achieved by increasing the mini-batch size).

. Understanding performance from convergence to station-
rity

We proceed with exploiting tools from the analysis of SDEs
nd in particular the rate of convergence to their invariant dis-
ribution. Studying the convergence of the Law(zt ) or Law(zt )
s a cornerstone in the analysis of sampling schemes and can
lso provide valuable insights into the optimization problems;
ee [42,43] for recent works in this direction. In particular, we
ill discuss the convergence of (8) or (9) to the corresponding
tationary distributions. Note that in the spirit of dual (or Nes-
erov) averaging the SDE in (9) is fairly standard as it evolves only
n the mirror space. In the analysis so far we were investigating
ow close a time average 1

T

∫ t
0 f (xit )dt (or 1

T

∫ t
0 f ◦ ∇Φ∗(z it )dt) is

to f (x∗) using a Lyapunov method based on Bregman divergence.
We will complement these results with rates of convergence
based on logarithmic Sobolev inequalities based on the celebrated
Bakry-Emery approach, see [28,29] for details.
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.1. Stationary distributions and particle correlations

We first consider the case when particles do not interact. One
pproach for finding x∗ is to run N independent copies of (8) for a
ong time and then select best particle i∗ as argmini∈{1,...,N} f (xit ).
This intuitive approach is based on min f being equivalent to
max exp(− 2

σ2 V) and on the convergence of dLaw(zt )
dz (z) to

1
Z exp(− 2

σ2 V). When stacking the particles together in z, then one
an postpone choosing the best particle and consider
inx
∑N

i=1 f (x
i) or minz

∑N
i=1 V (z i) instead, with each particle i

here sharing the same properties and dynamics.
To make this a bit clearer for our setup, denote with ηt =

aw(zt ) the law of N independent particles each following (8);
r equivalently each z it evolving as (9) with A = 0. It is well-
nown (see e.g. [36]) that under appropriate assumptions on the
bjective V , the stationary distribution of this SDE is given by,

∞ (dz) =
1
Z
exp

(
−

2
σ 2

N∑
i=1

V(z i)

)
dz,

with Z being a finite normalizing constant. It is clear that finding
the mode of η∞ is equivalent to solving the following optimiza-
tion problem:

z∗
= arg min

z∈RdN

N∑
i=1

V(z i). (18)

An important observation here is that independence of each i
s not crucial and one can modify the cost V(z i) by adding terms
hat do not affect the minimizer. This is true when using instead
he following cost function for z:

(z) =

N∑
i=1

V(z i) +
1
2

N∑
i=1

N∑
j=1

Aij(z i − z j)2. (19)

Note that the quadratic term due to interaction terms acts as a
regularizer, which aims to impose consensus i.e. z i = z̄N . We can
make the this claim more precise in the following lemma.

Lemma 21 (Interaction Preserves the Minimum). Let z∗
:=

argminz V(z), and let W(z) be as defined in (19). Then z∗
=

(z∗T , . . . , z∗T )
T
is a minimizer of W(z).

Proof. From the definition of z∗ and the optimality conditions
we have ∇V(z∗) = 0 and that there exists β > 0 such that
Hess(V)(z∗) ⪰ βId. We have,

(∇W(z))i = ∇V(z i) +

∑
j̸=i

Aij(zi − zj).

Clearly, when z i = z∗ for every i we then have ∇W(z) = 0.
Furthermore:

(Hess)(W(z))ii = Hess(V(z i)) +

∑
j̸=i

Aij, (20)

and

(Hess)(W(z))ij = −Aij. (21)

This implies

(Hess)(W(z∗))ii ≥ β −

∑
j̸=i

(Hess)(W(z∗))ij,

so that Hess(W)(z∗) ⪰ βIdN and z∗ minimizes W since β > 0. □

We will now extend the previous discussion on invariant
distributions and z∗ for ISMD and (9) with A being nonzero. We
11
will denote the distribution of the joint particle system and each
marginal as follows:

ηN
t = Law(zt ) and η

i,N
t = Law(z it ).

Recall zt evolves as in (12), whose the invariant distribution is
given as

ηN
∞

(dz) =
1
ZN

exp

(
−

2
σ 2

(
N∑
i=1

V(z i) +
1
2
zTLz

))
dz,

where ZN is the normalization constant. Similar as in the non-
interacting setting, finding the mode of ηN

∞
is equivalent to solv-

ing the following optimization problem:

z̃ = arg min
z∈RdN

W(z),

which we saw earlier in Lemma 21 is equivalent to solving (18).
Despite introducing correlations between the particles

through L, the mode of the invariant distribution of the inter-
acting particle system is exactly the minimizer of the objective V
and is achieved when all particles are at consensus. The presence
of the noise means that exact consensus or synchronization of
all particles cannot be achieved. Similar to SMD stochasticity
implies that at stationarity the z it will behave as samples from
the invariant distribution and thus oscillating together around the
optimum z∗. In this context it is convenient to use convergence
results for η

i,N
t for deriving performance bounds for optimization

or assessing the level of consensus based on differences between
η
i,N
t and η

j,N
t .

In addition to establishing positive curvature at z∗, using di-
agonal dominance in the final steps in the proof of Lemma 21
implies positive definiteness for W . This is not surprising given
the sum of quadratics in the interaction term acts as a convex
regularizer. We summarize this in the corollary below:

Corollary 22. Let Assumptions 1–3 and 8 hold. Then W is strongly
convex.

Proof. Assumption 8 implies that Hess(V)(z) ⪰ κ Id for some
κ > 0. Note that (20)–(21) hold for any z and

Hess(W) = Hess

(
N∑
i=1

V(z i)

)
+

1
2
Hess(zTLz) ⪰ κ IdN . □

The result is somewhat negative in that to obtain strict con-
vexity of W one requires strong convexity of V , that is adding
zTLz is not sufficient to obtain strong convexity when V is only
convex. This is particularly relevant later when we will apply
Bakry–Emery theory and derive log Sobolev inequalities.

4.2. Log-Sobolev inequalities for the particle system

We proceed to present the exponential convergence proper-
ties for ηN

t . Our first result in this section is to apply Bakry–Emery
theory to derive the Log-Sobolev inequality for the particle sys-
tem. Similar to the result in Lemma 3.5, Corollary 3.7 in [30] we
have the following result:

Proposition 23 (Convergence of ISMD using Bakry–Emery Theory).
Let Assumptions 1–3 and 7 hold (w.r.t the Euclidean norm). Assume
also ηN

0 satisfies a log-Sobolev inequality with constant C0. Then ηN
t

satisfies a log-Sobolev inequality for any smooth function f

Ent (f 2) ≤ C E
[
|∇f |2

]

ηNt

t ηNt
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ith constant Ct =
2
ρ

(
1 − e−ρt

)
+ C0e−ρt where ρ =

σ2

2 κ . If in
ddition Assumption 8 holds, we have

(ηN
t |ηN

∞
) ≤ Ke−2ρt and W2(ηN

t , ηN
∞
) ≤

√
K
2
e−ρt , (22)

and

|EηNt
W − W(z∗)| ≤

√
K
2
e−ρt

+
σ 2

2

(
2dN
ρ

−
1
2
log
(

σ 2

2LN

))
, (23)

ith LN =
L
µ

+ ∥L∥ where ∥L∥ is any matrix norm on L.

roof. For the proof we will rely on the Bakry–Emery theory. To
tate the Bakry–Emery criterion for (12), we need to define the
ollowing differential operators:

(f ) = −∇WT
∇f +

σ 2

2
Hess(f ),

(f ) =
1
2

(L(fg) − fL(g) − gL(f )) ,

Γ2(f ) =
1
2

(L(Γ (f , f )) − 2Γ (L(f ), f )) .

he Bakry–Emery criterion requires to verify Γ2(f ) ⪰ ρΓ (f , f ).
e have:

2(f ) − ρΓ (f , f ) =

(σ 2

2

)2
∥Hess(f )∥2

+
σ 2

2
∥∇f ∥2(

σ 2

2
Hess(W) − ρI),

o need to verify

ess(W) ⪰
2
σ 2 ρIdN ,

that holds for ρ =
σ2

2 κ from Assumption 7 or Assumption 8,
Corollary 22 and L1 = 0. For the second part we explicitly require
ρ > 0, which follows straightforwardly from Assumption 8. This
gives directly Ct and we note that the second term in Ct is due
to the random initialization (e.g. see [30, Corollary 3.7]). When
Assumption 8 holds and ρ > 0 we have

H(ηN
t |ηN

∞
) ≤ Ke−2ρt ,

for K = H(ηN
0 |ηN

∞
); see Theorem 27 in Appendix B.1. Theorem 26

gives W2(ηN
t , ηN

∞
) ≤

√
K
2 e

−ρt .
For the mean-mode result, we first need to establish ηN

∞
∈

P2(RdN ). This can be shown using Theorem 26 in Appendix B.2
with the log Sobolev constant C∞ =

2
ρ
implies

N
∞

(
esf
)

≤ esη
N
∞(f )+C∞s2 ,

or any 1-Lipschitz function f , so consider f (z) = z and the
oment generating function to get the following moment bounds

or s = 0

ηN∞

[
zzT
]

⪯

(
2C∞IdN + EηN∞

[z] EηN∞
[z]T

)
,

so moments can be bound using exponential integrability and ηN
∞

has finite second moment. Combining this with

log det
(
ΣN)

≤ Tr
(
ΣN

− I
)

gives

log det
(
ΣN)

≤ dN (2C∞ − 1) .

We can then gather Corollary 29 and Proposition 30 in Ap-
pendix B.2 we get

EηN∞
W − W(z∗) ≤

σ 2

2

(
dN
2

+
1
2
log det

(
ΣN)

−
1
2
log
(

σ 2

2LN

))
≤

σ 2 (2dN
−

1
log
(

σ 2 ))

2 ρ 2 2LN

12
The statement then follows by noting that,

|EηNt
W(zt ) − W(z∗)| ≤ |EηNt

W(zt ) − EηN∞
W(zt )| + |EηN∞

W(zt ) − W(z∗)|,

and using the convergence rate from the result derived above
in (22) for the first term and the mean-mode bound for the
second. □

This result shows that the rate of convergence to the in-
variant measure is exponential in time with factor ρ. Using the
relationship between the mode of the invariant measure and
the minimizer of the objective function, this result implies that
with exponential convergence the samples z it will oscillate around
the optimum z∗ for a strongly convex objective. Note that the
discrepancy between the mean and the mode at stationarity seen
in (23) means this oscillation is not centered around z∗. Eq. (23)
also shows that when the width of ηN

∞
is small, i.e. σ 2 is low, then

zt will lie closer to the minimizer. To identify z∗ in practice, one
needs to look at the histogram of zit (w.r.t i) or the occupation
measure of W(zt ) after some burn-in time t0 or a combination
of the two. The amount of required burn-in can be lower when
fast convergence to stationarity occurs. From the expression for
ρ we can see that the rate of convergence ρ increases with
the noise variance and the strong convexity coefficient of the
objective function. Finally, the dependence on N arrives from
dimensionality dependence of certain bounds involving Gaussian
integrals; see Proposition 30 in Appendix B.2.

At the level of the marginal ηi,N
∞

a similar bound to (23) can
be obtained, where dN is replaced with d. Convergence of ηN

t to
ηN

∞
implies convergence of the marginals so one can deduce a

similar result to Proposition 23 for the marginals and a similar
concentration inequality for V(z it ) showing that the dimension
dependence of the optimization is with d and not dN . The details
are omitted as the proof is very similar to Proposition 23.

4.2.1. On the tradeoff between noise reduction and interaction: a
sampling perspective

One could attempt to compare Proposition 23 with the results
obtained in Section 3.2, although they are quite different in na-
ture. In Propositions 15 and 16 we showed that the expected
time average converges to a neighborhood of the optimizer at
rate e−µt for the strongly convex objective (with µ being the
convexity constant for f ). Proposition 23 and specifically the
result in (23) looks directly at W(zt ) − W(z∗) and uses instead
κ , the convexity constant of V , which was also used to bound the
fluctuation terms in Section 3.3. While this means direct com-
parisons are case specific and depend on the choice of the mirror
map Φ , the convergence rates are in both settings exponential.
In other words, for the strongly convex case both Proposition 16
and Proposition 23 lead to exponential rate albeit with different
constants due to working with f and V respectively.

Furthermore, in terms of the tradeoffs between interaction and
convergence, both bounds give a similar result. Observe that from
Proposition 16 combined with Proposition 18 we obtain,

1
N

N∑
i=1

E
[
f (xi

∞
) − f (x∗)

]
≤ K

(
σ 2

2N
+

d(N − 1)
(κ + λ)N

σ 2
)1/2

,

where we remark that we have simplified notation to shorten
the presentation and we assume T ≫ 0 and denote with xi

∞
the

corresponding exponential time average. The expectation is fur-
thermore taken with respect to the initial condition. Furthermore,
from (23),

1
N

N∑
EηN∞

[
V(z i) − V(z∗)

]
≤ K

(
2d
κ

+
σ 2

4N
log
(
2LN
σ 2

))
.

i=1
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Fig. 1. A comparison between GD, MD, SGD and SMD for the linear system with condition number 10 with η = 0.3/
√
t (L) and condition number 100 with

= 0.1/
√
t (R). MD attains a better performance, both in the deterministic as stochastic setting for a high condition number.
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From the above bounds – while as mentioned different in nature
– we observe that both consist of a term which decreases with
N , and a term which is of O(1) in N . Both bounds additionally
ecrease with an increase in κ , or the strong convexity constant
f the objective function.

.3. Mapping back to the primal space

Convergence in the mirror domain and in z it should imply con-
ergence in the primal domain and xit . Given Φ is invertible the

law of Xt follows from standard change of variable/coordinates of
continuous random variables. This is we have for all t ≥ 0:

dLaw(xit )
dx

(x) =
dηi,N

t

dx
◦ ∇Φ∗(x)

⏐⏐det (∇2Φ∗(x)
)⏐⏐ .

Recall an implication of Proposition 23 is that W2(ηN
t , ηN

∞
) ≤

K ′e−ρt , so this is equivalent to

W2
(
Law(xit ), Law(xi

∞
)
)

≤ K ′e−ρt .

In the context of Bakry–Emery theory and Markov semigroups we
refer the interested reader to Section 1.15.1 of [29] and to [24]
for a rigorous treatment related to sampling methods including
equivalence in total variation norm.

5. Numerical results

In this section we report numerical experiments using two
standard benchmark problems. The first problem is based on
linear regression and is an adapted version of the experimental
setup that appeared in [6]. The second problem is based on a vari-
ation of the classic traffic assignment problem [2]. We consider
compare between (Stochastic) Gradient Descent with Euclidean
projections ((S)GD), (Stochastic) Mirror Descent with a Bregman
divergence generated by the entropy function. In our numerical
implementations of the optimization algorithm we use the Euler
discretization of the continuous SMD dynamics:

z it+1 = z it − ηϵ∇f (xit ) + ϵ

N∑
j=1

Aij(z
j
t − z it ) + σ

√
ϵN (0, 1).

he parameters that we have to choose are the time step ϵ, the
earning rate η, the number of training iterations TN and the
oise level σ (set to zero in case of GD or MD). Unless otherwise
entioned we set A =

1 , i.e. a mean-field interaction matrix.
ij N

13
5.1. Linear system with simplex constraints

We consider a first similar set-up as in Example 9.19 from [6]
to compare mirror descent with projected gradient descent. Con-
sider the problem,

min
x∈X

∥Wx − b∥2
2,

where X = ∆n, the unit simplex, W ∈ Rm×d and b ∈ Rm.
nless otherwise mentioned, we set ϵ = 0.1 and TN = 2000.
e generate A randomly with some given condition number κ ,

n particular a well-conditioned problem with κ(W ) = 1 and an
ll-conditioned one with κ(W ) = 100. We let bi ∼ N (0, 1). We
set m = 100 and d = 100.

Single particle optimization. We begin with a comparison of the
convergence speed of GD, MD and SGD and SMD, to show that
MD/SMD can outperform GD/SGD, as shown in the theoretical
results in Lemmas 9–10 and Propositions 12–13. We observe from
Fig. 1 that mirror descent algorithms attain a much faster con-
vergence than gradient descent in the system where the matrix
W has a high condition number. For a low condition number
the performance of mirror descent is similar to that of gradient
descent. Mirror descent seems more robust to a higher noise
level, and is able to converge even in a high noise setting. We
set σ = 0.05.

Interacting particle optimization. The theoretical results in Sec-
tion 3.2 show that the expected value of the distance between the
objective evaluated at the time average and the objective evalu-
ated at the optimum is smaller for a larger number of particles. In
this section we analyze this numerically and observe that ISMD is
indeed able to converge closer to the minimum. Here we consider
the linear system optimized with one, 10 and 100 particles. We
set σ = 0.05 and η = 0.01 for κ(W ) = 10 and η = 0.001 for
κ(W ) = 100. We remark that we thus use fixed learning rates. In
Fig. 2 we show the initial convergence speed. In the setting with
a high condition number the convergence speed using interaction
can be significantly faster than when considering just a single
particle.

In Fig. 3 we show the convergence speed as well as the
distribution of the loss f (xit ) − f (x∗) for the linear system with a
condition number 100. We observe from the plots and histograms
that the noise in the interacting sampler is smaller so that it able
to converge to closer to the global minimum than single-particle
optimization. More specifically, the more particles used, then the
smaller the variance of the samples is, so that the values are closer
to the true minimizer.
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Fig. 2. A comparison between the initial convergence of SMD and ISMD for the linear system with condition number 10 (L) and condition number 100 (R). We
observe a speedup in convergence using interacting particles.
Fig. 3. A comparison between SMD and ISMD for the linear system with condition number 100: (L) the loss function, (R) the histogram which shows the distribution
of the losses f (xit ) − f (x∗) after convergence (t > 1000).
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Convergence: vanishing noise against interaction. In this example
we study how using a vanishing noise compares to using a fixed
learning rate with and without interaction. Often in practice, a
vanishing noise is achieved by using a larger batch size, so that
the gradient noise is smaller. In Fig. 4 the results for the distance
to the optimum, f (xit ) − f (x∗), are shown. As usual, the con-
vergence speed using interaction is higher and using interaction
can achieve the same effect as using a vanishing noise in terms
of the distance to the optimum. We remark here that using an
interaction strength, i.e. letting the interaction term be given
by θ

∑N
i=1 Aij(z

j
t − z it ) can further help in controlling the noise

ariance. The effects and necessity of such an interaction term
ill be studied in future work. An additional benefit of having
oise is that noise allows to escape local minima in a non-convex
roblem. Being able to control this noise without decreasing the
onvergence speed is a significant benefit.

ariance reduction. As implied by the theory in Section 3.2 and
he numerical results in the last section, the expected value of
he distance between the objective evaluated at the time average
nd the objective evaluated at the optimum is smaller for a
arger number of particles. We keep the learning rate fixed at

= 0.001 and set the condition number to 100. To make a
air comparison we sample N i.i.d. copies of the SMD algorithm,
and use N particles in the ISMD algorithm. We first plot the
variance of f (xit ) − f (x∗) after convergence (t > 1000) for the
i.i.d. an interacting setting in the left-hand side of Fig. 5. Clearly,
in the non-interacting setting the variance is not decreased when
increasing the number of particles and due to the algorithm not
14
having converged properly the variance is fluctuating. Even more
so, the evolution of the variance of the loss is chaotic since the
number of particles does not influence it. In the interacting set-
ting more particles results in a lower loss variance. To understand
the effects of interaction and the number of particles on the
fluctuation term we compute ∥xiT −x̄Nt ∥2, whose results are shown
n the right-hand side of Fig. 5. As expected from the theoretical
nalysis the deviation from the mean is smaller in the interact-
ng case than in the i.i.d. case. Furthermore, as N increases the
eviation remains constant, validating the theoretical results in
ection 3.3 that the fluctuation is bounded and a non-increasing
unction of N .

.2. Traffic assignment problem

The objective of the traffic assignment problem is to compute
he optimal path between two nodes in a graph. To save space we
efer the reader to [2] for a precise description of the problem. We
nly mention that the problem is a convex optimization problem
ith a simplex constraint and therefore fits our framework.
Our experiments below are based on a random geometric

raph G(n, r) i.e. we placed n points uniformly at random in
0, 1]2 and connect any two points whose distance is at most
ome w. The weights of the edges in the graph also act as the
eight of each edge. We randomly chose two nodes to act as the
rigin and destination nodes. To set up the optimization problem
e also need to compute all the simple paths between the origin
nd destination node. We denote the length of the maximum
ath considered in this phase as r . The size of r decides
max max
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Fig. 4. The initial distance to the optimum (L) and the distance to the optimum after convergence (R) for the linear problem with condition number 100 for SMD
with a fixed noise σ = 0.05, SMD with a vanishing noise σ = σ/(t + 1)1/10 and ISMD with 10 particles.
Fig. 5. The variance of the loss trajectory as a function of the amount of particles (L) and the mean of the L2-norm of the fluctuation term ∥xiT − x̄Nt ∥2 for the i.i.d.
nd interacting case. We see that in the interacting case increasing the number of particles decreases the variance. The deviation from the mean is smaller in the
nteracting case, as expected.
he dimensionality of the problem. For the stochastic version of
he problem we added Gaussian N(0, σg ) noise on each edge. We
used a constant step-size for all algorithms. For mirror descent
(all variations) we used η = 0.2 and for gradient descent we
manually selected the best step-size for the problem (see below
for additional remarks regarding GD for this problem).

Comparison between MD and GD. An interesting difference be-
tween the regression problem above and the traffic assignment
problem is that the solution of the latter is sparse. As a result the
solution is on the boundary with many paths having zero load. In
this case the gradient descent algorithm performed considerably
worse than all variations of mirror descent (i.e. with many or
single particles) and in all variations of the problem we consid-
ered (small/large problems, with and without noise). In order to
illustrate the difference in performance between mirror descent
and gradient descent we plot the results for one example in Fig. 6.
The graph used to generate the problem above has 100 nodes,
and the resulting optimization problem has 5831 possible paths
i.e. d = 5831. We begin with an illustration of the performance
of standard MD against GD in Fig. 6; GD is significantly slower
to converge than MD. Given the large difference in performance
between MD and GD we will not report any more results from
GD for the traffic assignment problem.

Comparison between SMD and ISMD. Similar to the experiments
run for the linear regression we compare the iterations of the
single particle mirror descent i.e. (SMD) and its interacting variant
15
Fig. 6. A comparison between MD and GD. GD with Euclidean projections is
considerably slower than MD for this problem because the solution is sparse.
IMD performs the same as MD for deterministic problems.

(ISMD) with a different number of particles (N = 10, 100, 1000).
In the left of Fig. 7 we show the iteration history of (SMD) and
(ISMD) with N = 100 particles. To visualize the differences
between (SMD) and (ISMD) and the impact of the number of
particles we plot a histogram in the right plot in Fig. 7 of the
iterations after convergence (typically t > 100). Clearly there
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Fig. 7. Comparison between SMD and ISMD for a single path (L) and a histogram of the samples for the comparison between SMD and ISMD with 10, 100 and 1000
particles (R). With more particles the variance of the samples is lower.
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Table 1
A comparison of the variance of N i.i.d. copies of SMD and N particles in ISMD.
We obtain a variance reduction using interaction.

Nodes rmax d N σ2
SMD−σ2

ISMD
σ2
SMD

50 5 70 10 0.18
50 5 70 50 0.21
50 5 70 100 0.09

is a considerable reduction in the variance of the iterates be-
tween (MD) and (ISMD). We attempt to quantify the reduction
in variance in the next set of experiments.

In order to further quantify the variance reduction between
SMD and SMD in a fair way it is important to compare the
eduction in variance between N i.i.d. copies of SMD and ISMD
ith N particles. In Table 1 we present the variance reduction
esults for different particles and observe that interaction can
ignificantly reduce the variance.

.3. Mini-batch optimization

In machine learning the optimization objective typically con-
ists of a sum over data samples, i.e. f (x) =

∑m
i=1 fi(x), where m is

the sample size. The gradient is typically computed over a subset
of the data (a mini-batch), since for large m computing the full
gradient is too costly. The downside of computing the gradient
over a mini-batch is that the gradient contains noise. In our work
we proposed interaction as a way of reducing the effects of this
gradient noise. In this section we show how interaction helps
in reducing the effect of noise in mini-batch gradient descent,
and consider in more detail the computational costs related to
interaction against an increased batch size. The ideas presented
here can be generalized to popular machine learning techniques
such as neural networks.

Consider a similar setup as in Section 5.1,

f (x) =
1
m

m∑
i=1

fi(x) :=
1
m

m∑
i=1

∥Wi,·x − bi∥2
2.

In every iteration, the gradient is computed over a subset of the
data, fS(x) =

1
|S|

∑
i∈S fi(X), where |S| refers to the size of the

atch. The optimization algorithm is then given by,

i
t+1 = z it − ηϵ∇fS(xit ) + ϵ

N∑
j=1

Aij(z
j
t − z it ).

he noise is thus implicit in the gradient ∇f .
S

16
Convergence speed. In Fig. 8 the convergence results are pre-
sented for different batch sizes |S| with and without interaction.

e set m = 200 and d = 100, and use κ(W ) = 10 with η = 0.1
and κ(W ) = 200 with η = 0.1. Using N particles infers a com-
putational cost of N times that of a single particle. However, as
observed in the plot, using N particles allows to use a significantly
smaller batch, i.e. due to the interaction the optimization can
converge even with a higher noise. We conclude that interaction
can be a convenient methodology for improving the convergence
of the algorithm when using stochastic gradients.

Changing the interaction matrix. In this section we study the
trade-offs between interaction matrix sparsity and convergence
time. We use a batch size of 10 and 10 nodes, and κ(W ) =

00 with η = 0.01. Table 2 shows the results for a Erdős–
ényi communication graph, a random graph where each edge
s chosen with a certain probability. A connectivity probability
f p means that on average each node is connected to p × 10
ther nodes. The communication between the nodes is thus de-
ermined by the connectivity probability. The weight matrix A is
determined by a doubly stochastic version of this communication
graph. From the results we see, as expected, if more communi-
cation is present the convergence is faster at the cost of more
communication. Interestingly, the total communication is lowest
for the most sparse graph, showing that fast convergence can
even be achieved with minimal communication. We do remark
that this depends on the particular setup of the problem: in a
same f setting the convergence can be equally fast for sparse
and dense communication (not shown here) while for highly
different local functions fi more communication may be needed
to achieve convergence. In Fig. 9 we plot the convergence speed
for the different interaction matrices. In correspondence with
the results in Table 2 we observe a faster initial convergence
for the densely connected matrix. Interestingly, even with sparse
communications a relatively fast convergence can be obtained,
showing the potential of our methods.

6. Conclusion

In this work we analyzed stochastic mirror descent with in-
teracting particles with the aim of understanding the tradeoffs
between computation, communication and variance reduction.
With a fixed learning rate or a constant noise variance con-
vergence to the exact minimizer is not possible. Prior results
showed that decreasing the learning rate [43] or using a vanishing
noise variance [2] can result in good convergence properties of
stochastic optimization. In our work we showed that using N
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Fig. 8. The loss function (L) and the histogram (R) for ISMD with different batch sizes and different particles for κ(W ) = 10 (top) and κ(W ) = 200 (bottom). The
oss function is computed as a sum over samples, and the gradient is computed over a batch of samples. Using interacting particles allows to use a smaller batch
ize while still attaining convergence. The presented results are averaged over 10 runs.
Fig. 9. The loss function for initial convergence (L) and full convergence (R) for different interaction matrices. Interestingly, even with sparse communication a fast
onvergence can be achieved.
nteracting particles can in a similar fashion decrease the effect
f noise and result in a closer convergence to the optimum. In
ddition using interaction decreases the variance of the samples
urther than that of N independent replicas of SMD. We therefore
rgue that interaction between N particles is a viable method and
an control the convergence of the algorithm.
We analyzed the convergence from an optimization perspec-

ive exploiting Lyapunov functions. We showed that the deviation
f an individual particle from the particle mean is bounded and
howed that ISMD achieves a linear convergence rate in the con-
ex case and an exponential one in the strongly convex setting.
e furthermore presented the relationship between sampling
17
from the invariant measure and converging to the optimizer
of the objective function. Using log-Sobolev inequalities we ob-
tained an explicit convergence rate to the invariant measure,
implying that the particles converge to a neighborhood of the
optimizer at an exponential rate. Our numerical results show
that interaction is beneficial in cases where the solution is sparse
and therefore the behavior of the algorithm at the boundary
is important. This is a case where the role of the mirror map
becomes more critical, which is also reflected in our assumptions.

Interesting extensions include the study of SMD in the non-
convex setting where the noise can help escape from local min-
ima (see e.g. [44,45]). In this case the interaction can play the role
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comparison of the communication costs and convergence time for different

nteraction graphs. The results are averaged over 10 runs of the algorithm
both the generation of the graph as the optimization). Time to convergence
s determined as the first time the loss value hits below a certain level (here
3.02). The total communication for convergence is determined as the number
f iterations needed to converge times the average communication per round.
P(connectivity) 0.3 0.5 1

Time to convergence 883 712 347
Total communication for convergence 2649 3560 3470
Loss at t = 2000 42.93 42.83 41.93
Consensus error at t = 2000 0.013 0.012 0.011

of a regularizer due to the convexification of the loss surface [46].
Additionally,even in a non-convex setting using interaction en-
forces the particles to converge to consensus in a local minimum.
The interaction can also act as a pre-conditioner and its statistical
properties may help speed up the convergence or minimize the
variance. An open question is the study of the optimal interaction
matrix beyond just mixing times [47]. Alternatively of interest is
to study the choice of the interaction such that communication is
minimal, but variance reduction and consensus is still guaranteed.

It is also interesting to study such algorithms in a truly dis-
ributed setting, i.e. when each particle has access to a subset of
he data. This is the case in learning with privacy constraints or
ederated learning approaches. Some preliminary results on this
ave been presented in [48]. In this setting also the effect of an
nteraction strength will be of interest and we aim to address
he necessity of considering an additional interaction strength θ ,
.e. using θ

∑N
i=1 Aij(z

j
t − z it ), in future work. More specifically, in

a distributed setting the particles optimize different objectives,
and – unlike in our setting of a same objective – convergence to
consensus cannot be guaranteed without imposing a sufficiently
high interaction strength.

Lastly, the effect of time discretization was not considered
here. This is a well-understood topic. We refer the interested
reader to [31,49] for details related to the Euler discretization
and [12] for more advanced schemes which also include accel-
eration.
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Appendix A. Auxiliary results for Section 3

Here we prove the Lemmas that were used in Section 3. In
Proposition 15 we used the following lemma.

Lemma 24. Under the continuous stochastic mirror descent dynam-
ics (8) it holds,∫ T

0

1
N

N∑
i=1

(yNt − x∗)T∇f (xit )dt ≤
1
2
D2

Φ,X +
σ 2T
2N

∆Φ∗(z̄Nt )

+

∫ T

0

σ
√
N

∥yNt − x∗
∥2dBi

t .

roof. Consider the Lyapunov function defined as

(z̄Nt ) = Φ∗(z̄Nt ) − Φ∗(z∗) − (x∗)T (z̄Nt − z∗).

Applying Itô’s lemma and using the fact that σ (yNt − x∗)T 1
N∑N

i=1 dB
i
t

d
=

σ
√
N
∥yNt − x∗

∥2dBt we obtain,

V (z̄Nt ) =dΦ∗(z̄Nt ) − (x∗)Tdz̄Nt

=(∇Φ∗(z∗) − ∇Φ∗(z̄Nt ))
T 1
N

N∑
i=1

∇f (xit )dt

+
σ 2

2N
∆Φ∗(z̄Nt )dt +

σ
√
N

∥yNt − x∗
∥2dBt .

ntegrating, and using the standard bounds we obtain,

T

0

1
N
(yNt − x∗)T

N∑
i=1

∇f (xit )dt ≤
1
2
D2

Φ,X +
σ 2T
2N

∆Φ∗(z̄Nt )

+

∫ T

0

σ
√
N

∥yNt − x∗
∥2dBt . □

Similar to the convex case, in Proposition 16 we used the
ollowing lemma.

emma 25. Under the continuous stochastic mirror descent dynam-
cs (8) it holds,∫ T

0
eµt

(
1
N
(yNt − x∗)T

N∑
i=1

∇f (xit ) − µDΦ∗ (z̄Nt , z∗)

)
dt

≤
1
2
D2

Φ,X +
σ 2

2N
(eµT

− 1)∆Φ∗(z̄Nt )

+

∫ T

0
eµt σ

√
N

∥yNt − x∗
∥2dWt .

roof. Consider the Lyapunov function defined as V̄ (t, z̄Nt ) =
µtDΦ∗ (z̄Nt , z∗). Applying Itô’s lemma we obtain,

dV (t, z̄Nt ) =eµt (x∗
− yNt )

T 1
N

N∑
i=1

∇f (xit )dt

+ µeµtDΦ∗ (z̄Nt , z∗)dt +
σ 2

2N
eµt∆Φ∗(z̄Nt )dt

+
σ

√
N
eµt

∥yNt − x∗
∥2dWt ,

where we have used the evolution of z̄Nt . Integrating and using
the standard bounds we obtain the statement. □
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ppendix B. Auxiliary results for Section 4

.1. A primer on log Sobolev inequalities and Markov semigroups

Recall, we defined in Section 1.2.1 that a probability measure
satisfies a Log-Sobolev inequality with constant C is for any

mooth function f we have,

ntν(f 2) ≤ Cν(|∇f |2), (24)

here the entropy was defined as,

ntν(f 2) = ν(f 2 log f 2) − ν(f 2) log(ν(f 2)).

Satisfying (24) has many important consequences summarized
elow.

heorem 26. Let ν ∈ P(Rd) satisfy a log Sobolev inequality with
onstant C. Then we have the following:

1. Exponential integrability of Lipschitz functions (Herbst argu-
ment): Let f be a 1-Lipschitz function with ∥f ∥Lip ≤ 1, then
for every s ∈ R

ν
(
esf
)

≤ esν(f )+Cs2

and ν

(
er

2f
)

< ∞ for r2 < C−1;

2. A concentration of measure result:

ν (|f − Eν [f ]| ≥ r) ≤ 2 exp

(
−

r2

C ∥f ∥2
Lip

)
for any Lipschitz f ;.

3. The Wasserstein distance is bounded by relative entropy:
W2(ν, ν̃)2 ≤

C
2H (ν|ν̃) for ν ≪ ν̃;

roof. We provide references for each point: 1. see Proposition
.4.1 [29]; 2. see [50]; 3. see [51]. □

Note point 1. in Theorem 26 implies finite moments for Lips-
hitz f and p ≥ 2:(

|f |p
)2

≤ ν
(
|f |2

)2
+ 2C(p − 2) ∥f ∥2

Lip ,

ee Proposition 5.4.2 in [29] for details.
Proving Theorem 26 uses properties of certain Markov semi-

roups and the corresponding Fokker Planck equations. The con-
erse is also possible. One can establish the log-Sobolev inequali-
ies for the law of the process one can employ the classical results
rom [28]. We briefly summarize some useful results for an SDE
f the form,

zt = −∇V(zt )dt +
√
2dBt , z0 = z (25)

Let νt = Law(zt ). In order to demonstrate ergodicity and ex-
ponential convergence to equilibrium, one approach is to re-
quire existence of a (L2) spectral gap. A common requirement
lim|z|→∞

(
|∇V|2

2 − ∆V
)

= ∞ and this ensures that νt satisfies a
oincare inequality and the SDE is ergodic with invariant density

∞(dz) :=
1
Z
exp(V(z))dz,

ee Proposition 4.2 and Theorem 4.3 in [36] for more details.
ne can strengthen these results with log-Sobolev inequalities
rom [28]:

heorem 27. Assume

essV ⪰ ρI , ρ ∈ R (26)
d
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Then νt satisfies (1) with constant

Ct =
2
ρ

(
1 − e−ρt) .

If in addition ρ > 0, we get,

H(νt |ν∞) ≤ Ke−2ρt .

Note that requiring V being strongly convex is crucial to obtain
explicit rates of convergence to equilibrium. This is a particular
instance of the celebrated (and more general) Bakry–Emery cri-
terion on the curvature of Markov semigroups. To state the more
general version for any Markov semigroup we need to define the
following differential operators defined on appropriate domains:

L(f ) = −∇VT
∇f +

σ 2

2
Hess(f ),

Γ (f ) =
1
2

(L(fg) − fL(g) − gL(f )) ,

Γ2(f ) =
1
2

(L(Γ (f , f )) − 2Γ (L(f ), f )) .

he Bakry–Emery criterion consists of verifying,

2(f ) ⪰ ρΓ (f , f ),

or any smooth f , which is equivalent to (26) for the dynamics in
25).

In addition, point 3. in Theorem 26 also implies a convergence
n W2, i.e.

2(νt , ν∞) ≤

√
K
2
e−ρt .

and by Pinsker’s inequality we also have convergence in total
variation with same rate:

∥νt − ν∞∥TV ≤

√
K
2
e−ρt ,

where we denote ∥ν∥TV = sup|ϕ|<1 |ν(ϕ)|, for any ν-measurable
function ϕ.

B.2. Empirical risk bounds for Proposition 23

The main purpose of this section is to provide so called empir-
cal risk bounds for EηN∞

(W)−W(z∗). We will base our derivation
n Proposition 3.4 in [42] and specifically focus on certain aspects
f the particle system with invariant distribution

N
∞
(dz) =

1
ZN exp

(
−

2
σ 2W(z)

)
dz.

We will define the differential entropy for a probability measure
η ∈ P2(Rd) as H(η) = −

∫
log
(

dη
dz

)
(z)η(dz). From the definition

of H we have for ηN
∞

EηN∞
W =

σ 2

2

(
H(ηN

∞
) − log ZN) .

In what follows we will provide upper bounds for H(ηN
∞
) and

lower bounds for log ZN to reach an empirical risk bound.

Lemma 28. Let η ∈ P2(Rd) and let Σ denote the covariance matrix
of η. Then H(η) ≤

d
2 (log 2π + 1) +

1
2 log detΣ .

Proof. Consider the Kullback Leibler divergence between η and
a Gaussian distribution with the same mean and variance µ, Σ:

H(η|N (µ, Σ)) = −H(η) − E [logφ(z; µ, Σ)] ,
η
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here

η [logφ(z; µ, Σ)] = −
d
2
log 2π −

1
2
log det (Σ)

−
1
2
Eη[(z − µ)T Σ−1 (z − µ)].

traightforward manipulations show

η[(z − µ)T Σ−1 (z − µ)] = Eη[zTΣ−1z] − µTΣ−1µ

= Tr[Σ−1Σ] + µTΣ−1µ − µTΣ−1µ

= d

and hence

H(η|N (µ, Σ)) = −H(η) +
d
2
log 2π +

1
2
log det (Σ) +

d
2
.

iven H(η|N (µ, Σ)) ≥ 0 we get the required result. □

orollary 29. Let ηN
∞

∈ P2(RdN ) and ΣN denote the covariance
atrix of ηN

∞
. Then for the particle system it holds that

H(ηN
∞
) ≤

dN
2

(log 2π + 1) +
1
2
log det

(
ΣN) .

Next we provide a lower bound for log ZN .

roposition 30. Let Assumptions 1, 2 hold w.r.t the Euclidean norm.
e have that ∇W is LN -Lipschitz and as a result

og ZN
≥ −

2
σ 2W

∗
+

1
2
log
(

σ 2

2LN

)
+

dN
2

log 2π.

roof. The first claim is trivial and one has LN =
L
µ

+∥L∥ where
L∥ is any matrix norm on L. Smoothness of ∇W implies the

following quadratic upper bounds:

W(z) ≤ W(z∗) +
LN
2

z − z∗
2 .

Then we have,

log ZN
= −

2
σ 2W(z∗) + log

∫
exp

(
−

2
σ 2

(
W(z) − W(z∗)

))
dz

≥ −
2
σ 2W(z∗) + log

∫
exp

(
−

LN
σ 2

z − z∗
2) dz

= −
2
σ 2W(z∗) +

1
2
log
(

σ 2

2LN

)
+

dN
2

log 2π,

here in the last step we used the Gaussian integral

exp
(
−

1
2z

TAz + bT z
)
dz =

√
(2π)dN

det A exp
( 1
2b

TA−1b
)
with A =

2LN
σ2 IdN and b = Az∗. □

emark 31. When non-Euclidean norms are used LN =
L
µ
K+∥L∥,

ith K arising from norm equivalence.
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