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Microprocessor Trends → Distributed Computation
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Memory Energy Costs for Memory Access

40nm, 8-core processor with an 8MB last-level cache†

†M. Horowitz, ComputingâĂŹs Energy Problem (and what we can do about it), ISSCC 2014

Fast and Energy Efficient Distributed Computation:
Decompose problem in small “sub-spaces”
Avoid communication
Use more FP operations

3 / 18



Memory Energy Costs for Memory Access

40nm, 8-core processor with an 8MB last-level cache†

†M. Horowitz, ComputingâĂŹs Energy Problem (and what we can do about it), ISSCC 2014

Fast and Energy Efficient Distributed Computation:
Decompose problem in small “sub-spaces”
Avoid communication
Use more FP operations

3 / 18



Multi-level/resolution Algorithms

min
v∈Rn

f(v)

Quadratic Approximation Coarse Approximation
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Multi-level/resolution Algorithms

Q(v, vk) = v(xk) + 〈∇vk, v − vk〉+ 1
2αk
〈v − vk,∇2fk(v − vk)〉

Quadratic Approximation

Coarse Approximation

4 / 18



Multi-level/resolution Algorithms

Use a low resolution problem with favorable characteristics

Quadratic Approximation Coarse Approximation

4 / 18



V. Hovhannisyan, P.P, and S. Zafeiriou. MAGMA: Multi-level accelerated gradient mirror
descent algorithm for large-scale convex composite minimization, SIAM J. on Imag. Sci.,
2016.
P.P. A Multilevel Proximal Gradient Algorithm for Large Scale Optimization, SIAM
Journal on Scientific Computing, Vol. 39, Issue 5, Nov. 2017.
V. Hovhannisyan,Y. Panagakis,P.P, S. Zafeiriou Fast Multilevel Algorithms for Compressive
Principle Component Pursuit. SIAM Journal on Imaging Sciences 2019.



Distributed Optimization Algorithms

v? ∈ arg min
v∈Rn

f(v1, v1, . . . , vn)

Coordinate methods: Processor (i) updates coordinate i

vi ← vi + di

Duality methods: Copy model, enforce consensus via penalties.

Properties:
(A/As)ynchronous variants.
Slow (sub-linear)
Not optimized for communication/energy
Sensitive to parameter choice (duality methods)
Randomized variants (e.g. SGD) are hard to parallelize
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Neural Networks & Dynamical Systems

Y = F (X)

Supervised Learning: Learn F given {Yi, Xi}Mi=1:
Additive approximation: Fφ(X) =

∑K
i=1 ciφ(X) (e.g. SVMs)

Approximation by composition: Fu(X) = FLw (. . . F 1
u (F 0

u (X)))
(Neural Networks) e.g.

Fu(X) = tanh(A>X + b), U = [A, b]

min
U(t)

n∑
i=1

l(Xi(T ), Yi(T )) +
T∑
t=0

r(U(t))

Xi(t+ 1) = F (Xi(t), U(t), t), Xi(0) = x0,i
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The Dynamical Systems View

min
W (t)

n∑
i=1

l(Xi(T ), Yi(T )) +
∫ T

0
r(W (t))dt

dXi(t)
dt

= F (Xi(t),W (t), t), Xi(0) = x0,i

The discretized system may not be stable:
Solutions diverge to infinity/zero (exploding/vanishing gradients)
Small perturbations can fool the classifier (adversarial attacks)

Benefits:
Train with less data & hyper-parameters
Rigorous mathematical framework to understand generalization

E.Haber, L.Ruthotto Stable Architectures for Deep Neural Networks. Inverse
Problems, 2017
Li, Q., Chen, L., Tai, C., & Weinan, E. Maximum principle based algorithms for
deep learning. JMLR, 2017.
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Neural Networks & Dynamical Systems
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Neural Networks & Dynamical Systems
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Serial-in-Time Optimization

Algorithm 1: Forward(δ,Xs, t0, t1, {U(t)}t=t1t=t0)
1 t← t0, X(t) = Xs

2 while(t ≤ t1) do
3 X(t+ δ) = f δt (X(t), U(t)), t← t+ δ
4 return X(t), t0 ≤ t ≤ t1
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Serial-in-Time Optimization

Algorithm 2: Backward(δ, Pe, t0, t1, {U(t), X(t)}t=t1t=t0)
1 t← t1, P (t1) = Pe
2 while(t ≥ t0) do
3 P (t− δ) = −〈∇xf δt (X(t), U(t), P (t)〉, t← t− δ
4 return P (t), t0 ≤ t ≤ t1
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Serial-in-Time Optimization

Algorithm 3: Serial-in-time Update Control

1 Let Xk(0) be a random sample from [X].
2 Xk(t) =Forward(δ,Xk(0), 0, Tδ, Uk(t)), 0 ≤ t ≤ Tδ
3 P k(Tδ) = ∇xΦ(Xk(Tδ))

4 P k(t)=Backward(δ, P k(T ), 0, T, Uk(t)), 0 ≤ t ≤ Tδ
5 Update control for 0 ≤ t ≤ Tδ − 1

Uk+1(t) = A(Uk(t), Xk(t), P k(t+ δ)). (1)
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Global Prediction Phase: Predict Initial Conditions
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Local Correction Phase

Algorithm 4: Parallel-in-Time Optimization
1 Global Prediction: Compute {U0

t , P
0
t , X

0
t ]}Tt=0.

Processor A Processor B
Backward solve:
P̂ ks = L[Ik]
Backward(δ, P̂ ks , 0, s, Uk)
Update:
Uk+1
t = A(Xk

t , P̂
k
t )

Forward solve:
Forward(δ,Xk

0 , 0, s, Ukt )
Synchronization: Send Xk

s to
Processor B.

Forward solve:
Forward(δ,Xk

s , s, Tδ, U
k
t )

Backward solve:
P kTδ = ∇x(Xk

Tδ
)

Backward(P kTδ , Tδ, s, U
k) Update:

Uk+1
t = A(Xk

t , P
k
t )

Synchronization: Send P ks to
Processor A.
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Local Correction Phase

Ik: observed state/co-state pairs
Global prediction phase: I0 = {(Xi(s), P i(s)), i = 0, . . . ,H − 1}.

min
A,B

L[Ik] =
∑

(Xi(s),P i(s))∈I0

‖AXi(s) +B − Pi(Xi(s))‖2.

P̂ (s) ≈ A?X(s) +B?
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Convergence Analysis

Theorem
Step-size satisfies the following conditions,

∞∑
k=1

ηk =∞,
∞∑
k=1

η2
k <∞.

Approximation error in co-state:

‖P̂ δ(t)− P δ(t)‖ ≤ εpη‖P̂ δ(t)‖.

Then, limM→∞
1
HM

E
(∑M

k=1 ηk‖∇J(Uk)‖2
)

= 0, where HM =
∑M
k=1 ηk.
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Improved Stability with Global Prediction Phase

Figure: Mean Square Errors of regression step
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Results – Ellipse Model

Figure: Speed-up for the Ellipse dataset over SGD.
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Results – MNIST Model

Figure: Speed-up for the MNIST dataset over SGD.
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Conclusions

P.P, C. Muir. Predict Globally, Correct Locally: Parallel-in-Time
Optimal Control of Neural Networks,
https://arxiv.org/pdf/1902.02542v1.pdf
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