
Access Control in Publish/Subscribe Systems

Jean Bacon David M. Eyers Jatinder Singh
Computer Laboratory

University of Cambridge
Cambridge CB3 0FD, UK

{firstname.lastname}@cl.cam.ac.uk

Peter R. Pietzuch
Department of Computing

Imperial College
London SW7 2AZ, UK
prp@doc.ic.ac.uk

ABSTRACT
Two convincing paradigms have emerged for achieving scal-
ability in widely distributed systems: publish/subscribe
communication and role-based, policy-driven control of
access to the system by applications. A strength of publish/
subscribe is its many-to-many communication paradigm and
loose coupling of components, so that publishers need not
know the recipients of their data and subscribers need not
know the number and location of publishers. But some data
is sensitive, and its visibility must be controlled carefully for
personal and legal reasons. We describe the requirements of
several application domains where the event-based paradigm
is appropriate yet where security is an issue. Typical are the
large-scale systems required by government and public bod-
ies for domains such as healthcare, police, transport and
environmental monitoring.

We discuss how a publish/subscribe service can be se-
cured; firstly by specifying and enforcing access control pol-
icy at the service API, and secondly by enforcing the se-
curity and privacy aspects of these policies within the ser-
vice network itself. Finally, we describe an alternative to
whole-message encryption, appropriate for highly sensitive
and long-lived data destined for specific domains with var-
ied requirements. We outline our investigations and findings
from several research projects in these areas.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems—Distributed applications

General Terms
publish/subscribe, role based access control, security, en-
cryption

1. INTRODUCTION
Our work is concerned with how to support and manage

information security within and between large-scale, inde-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

pendent, widely distributed application domains. Informa-
tion security has well-known facets: availability, integrity
and confidentiality. Access control most directly targets con-
fidentiality, which is the main focus of this paper.

Achieving security in large, heterogeneous distributed sys-
tems is a challenging task because tightly-coupled access
control mechanisms often have requirements that are at odds
with the loosely-coupled nature of scalable communication
paradigms. For example, many traditional access control
mechanisms depend on knowing the precise identities of in-
formation receivers. However, group communication and dy-
namic, fine-grained information dissemination often make it
hard to provide such guarantees without sacrificing scalabil-
ity.

Two recently emerging paradigms for achieving scalabil-
ity in secure distributed systems are asynchronous, pub-
lish/subscribe communication and role-based access control
(RBAC). Publish/subscribe is a highly-decoupled distribu-
tion model, where (generally) publishers produce informa-
tion irrespective of consumers. This information may prop-
agate across domains of control (e.g. organisations) and is
delivered to subscribers according to their interests. RBAC
uses the concept of a role to introduce a level of indirec-
tion between principals and protected objects when making
access control decisions.

In this paper, we show how the paradigms of publish/
subscribe communication and RBAC can be integrated, al-
lowing us to control information dissemination, while retain-
ing the benefits of publish/subscribe communication, such as
decoupling of clients and overall system scalability. Follow-
ing this approach, we describe a secure middleware capable
of supporting fine-grained control of communication within
and between the domains of a multi-domain architecture.

We also touch on our research into interaction control.
Whereas access control tends to focus on binary accept/deny
permissions, interaction control facilitates more subtle mod-
ification of data in transit within a distributed publish/
subscribe system. For example, event delivery in health-
care systems might apply transformations that collect data
values into buckets: useful information is transmitted with-
out the data being quite so sensitive. This approach may be
more appropriate for highly sensitive, long-lived data.

The paper is structured as follows. Section 2 provides the
required background by introducing our models of a widely-
distributed system, in terms of domains, publish/subscribe
communication and access control. Section 3 describes pro-
totype implementation of publish/subscribe middleware and
role-based access control systems that follow the models pre-

sented. We also survey existing efforts in integrating access
control and publish/subscribe. Section 4 introduces how
RBAC and publish/subscribe can be integrated. Section 5
presents our multi-domain architecture in more detail, cov-
ering how system-wide unique names are ensured, how event
types are managed, and how policies are expressed and ad-
ministered. We also discuss two aspects of transmission con-
trol in the broker network overlay: the encryption required
to ensure that untrusted brokers do not see sensitive data;
and the control at domain boundaries of the flow of sensi-
tive data out of a domain. Section 6 describes our ongoing
work into interaction control. This includes integration of
database systems into publish/subscribe systems to facili-
tate expressive, dynamic filtering. Section 7 describes appli-
cation scenarios from the policing and healthcare domains.
Section 8 summarises and concludes.

2. BACKGROUND
In this section, we introduce the concepts of domains, pub-

lish/subscribe and role-based access control. These provide
the basis for our work in securing a publish/subscribe service
in a multi-domain environment.

2.1 Domain Architecture
In our model of a large-scale distributed application, we

define a domain to be an independently administered unit
in which a domain manager has, or may delegate, respon-
sibility for naming and policy specification. The following
motivating scenarios have in common a dedicated communi-
cation infrastructure shared by independently administered
domains, some of which are strongly related and have sim-
ilarly named roles for principals. The bulk of the commu-
nication is likely to be within a domain but there is also a
clear need for inter-domain communication.

1. Police infrastructure: A number of county-level po-
lice domains need support for intra- and inter-domain
messages. Incident reports may be sent within and
between domains for real-time response and may also
be stored as part of an audit or record-keeping pro-
cess. Databases for court records and the licensing of
drivers of vehicles are accessible from all domains.

2. Healthcare systems: The communication infrastruc-
ture of a national health service is shared by many
independent hospitals, clinics, primary-care practices,
etc. Caring for a patient in their home involves carers
from many domains. This includes sharing informa-
tion with various care providers [25], making aspects
of patient information persistent in centralised health
record services [13] and auditing data flows, to moni-
tor compliance with procedures [24], and to investigate
anomalies.

3. Environmental monitoring: Traffic, noise, pollu-
tion, and weather conditions are monitored in a city to
provide real-time information for citizens [1]. All data
is recorded for historical analysis to aid prediction and
for use by Local Government for planning purposes.

2.2 Publish/Subscribe
Publish/subscribe [9] is emerging as an appropriate com-

munication paradigm for large-scale systems. It allows loose
coupling between mutually anonymous components and sup-
ports many-to-many communication. For consistency with

other publish/subscribe systems, we use event as synony-
mous with the term message for an item of communicated
data. An event is a data-rich occurrence, encapsulating a
particular semantic. Typically, an event instance consists
of a set of (attribute, value) pairs, conforming to a named
event type definition.

In the publish/subscribe paradigm, a principal takes the
role of a publisher and/or a subscriber. Subscribers regis-
ter their interest in receiving an event through a subscrip-
tion. Publishers produce events without any dependence
on subscribers. Principals connect to the publish/subscribe
middleware to communicate. This occurs through an event
broker, which routes, typically in cooperation with other bro-
kers, events from publishers to subscribers. An event is de-
livered to a subscriber if it matches a subscription. This
process is termed notification.

Publish/subscribe systems are classified as type/topic or
content/attribute-based [9]. Topic-based publish/subscribe
involves the use of an event channel dedicated to a par-
ticular named topic/type. Producers publish events to the
appropriate channel, while subscribers express their inter-
est in receiving messages of a certain type. Content-based
publish/subscribe considers message content: a subscriber
defines their interest in receiving particular events based on
the type and attribute values of the event instance.

Large-scale, publish/subscribe messaging systems often
comprise a network of brokers that provide a communica-
tion service and lightweight clients, that use the service to
advertise, subscribe to and publish messages [6, 5]. A bro-
ker network can have a static topology (e.g. Siena [6] and
Gryphon [20]) or a dynamic topology (e.g. Scribe [7] and
Hermes [18]). Our approach for securing publish/subscribe
applies to both cases. A static topology enables the sys-
tem administrator to build trusted domains and in that way
improve the efficiency of routing by avoiding unnecessary
encryptions (see Section 5.7), which is more difficult with a
dynamic topology. On the other hand, a dynamic topology
allows the broker network to dynamically re-balance itself
when brokers join or leave the network either in a controlled
fashion or as a result of a network or node failure. Bro-
ker networks are subject to failures of nodes and links, and
brokers may join and leave dynamically. Thus, a communi-
cation service must be robust under these conditions, fault-
tolerant and dynamically reconfigurable. For this reason the
message brokers may exploit an overlay network [19], since
peer-to-peer naming and protocols provide the necessary ro-
bustness.

2.3 Role-based Access Control
Role-Based Access Control (RBAC) [23] is an established

technique for simplifying scalable security administration by
introducing roles as an indirection between principals (i.e.
users and their agents) and privileges. Privileges, such as
the right to use a service or to access an object managed by
a service, are assigned to roles. Separately, principals are
associated with roles. This separates the administration of
people, and their association with roles, from the control of
privileges for the use of services (including service-managed
data). The motivation is that users join, leave and change
roles in an organisation frequently, and the policy of services
is independent of such changes. Service developers need only
be concerned with specifying access policy in terms of roles,
and not with individual users.

Here we focus on securing access to the communication
service using RBAC. Authentication into roles must be se-
curely enforced to control the use of all protected services
and access to the data they manage [2]. Domain managers,
or their delegates, specify communication policy in terms
of message types and roles; that is, which roles may cre-
ate, advertise, send and receive which types of message.
Inter-domain communication is achieved through negotiated
agreements, expressed as access control policy, on which
roles of one domain may receive (which attributes of) which
types of message of another.

The notion of role is ideally suited to a multicast commu-
nication style. For example, the Cambridge police domain
may define a role officer-on-duty and message topics such as
burglary, traffic-accident with associated attributes. Officers
on duty can subscribe to receive notifications of incidents for
which they should take responsibility. RBAC causes prin-
cipals to be anonymous whereas parametrised RBAC gives
the option of anonymity or identification, for example officer-
on-duty (station-ID, police-ID). The use of parametrised roles
can also help to avoid an explosion in the number of roles
required when RBAC is used in large systems.

For the communication service, RBAC policy indicates
the visibility (to roles, intra- and inter-domain) of speci-
fied attributes of message types. The fact that advertise-
ment is required before messages can be published, and
that both are RBAC-controlled, prevents the spam that per-
vades email communication between humans. Without such
control denial-of-service through publication or subscription
flooding could degrade large-scale inter-software communi-
cation in the same way that it consumes resources in email
management. With our approach, a spammer could only be
an authorised, authenticated member of a role and therefore
could be held accountable.

2.4 Secure Communication
If the network and message brokers could be guaranteed

100% secure and trustworthy, then RBAC would achieve
precisely the visibility specified by policy. It is already stan-
dard practice to protect confidential data on the wire by
means of encryption, since the network is vulnerable to lis-
teners. In addition, we observe that the brokers are not
likely to be trusted universally with all data. Our experi-
ments have investigated fine-grained security, where message
attributes are encrypted selectively, with key management
transparent to the client level. Encryption overhead per se
does not need to be justified, and our evaluation indicates
that our approach can often incur less overhead than using
whole-message encryption.

3. PROTOTYPE SYSTEMS
Although our approach is generally applicable, our design

and implementation are based on specific prototypes, Her-
mes publish/subscribe and OASIS RBAC. This section pro-
vides a brief overview of these prototype implementations,
describing the features specific to them.

3.1 Hermes Publish/Subscribe
Hermes [19, 18] is an architecture for distributed, content-

based publish/subscribe with an integrated programming
model. It consists of two kinds of component: event bro-
kers and event clients, the latter being publishers and sub-
scribers. Event clients publish, or subscribe to, events in

the system. An event client has to maintain a connection to
a local event broker, which then becomes publisher-hosting,
subscriber-hosting, or both. We assume that clients fully
trust this broker. A local broker is usually either part of
the same domain as the client, or it is owned by a service
provider trusted by the client. An event broker without con-
nected clients is called an intermediate broker.

Event brokers form the application-level overlay network
that performs event propagation by means of a content-
based routing algorithm. Most publish/subscribe systems,
including Hermes, optimise content-based routing of events
with a subscription coverage relation, which states which
subscriptions are subsumed by others [6]. This allows bro-
kers to reduce the number of events sent through the system
by enabling them to filter non-matching events as close as
possible to the publisher; these filters become increasingly
specific as events approach subscribers.

Hermes supports strong event typing : every published
event (or publication) in Hermes is an instance of an event
type. An event type has an event type owner, an event type
name and a list of typed event attributes so that, at run-
time, publications and subscriptions can be type-checked by
the system. Subscribers express their interest in the form
of subscriptions that specify the desired event type and a
conjunction of (content-based) filter expressions over the at-
tributes of this event type. Hermes event types are organised
into inheritance hierarchies, but our work does not depend
on this. We show later how inheritance can be used within
domains when it is available.

Each event type defined within a domain is registered by
its owner via a local event broker. This causes encryption
status and keys to be set up within the domain and a ren-
dezvous node to be selected for peer-to-peer routing. Before
a publisher can publish an event instance, it must submit an
advertisement to its local event broker, indicating the event
type that it wishes to publish. A Hermes publication con-
sists of an event type identifier and a set of attribute value
pairs. The type identifier is the SHA-1 hash of the name of
the event type. It is used to route the publication through
the event broker network. It conveniently hides the type of
the publication, i.e. brokers are prevented from seeing which
events are flowing through them unless they are aware of the
specific event type name and identifier.

The rendezvous node for an event type is selected by hash-
ing the type name to a broker identifier—an operation that
is supported by the peer-to-peer routing substrate [22]. Ad-
vertisements and subscriptions are routed towards the ren-
dezvous node, and brokers along the path set up filtering
state for them.

For reliability reasons, rendezvous nodes are replicated for
each event type. In Hermes, a rendezvous node keeps an au-
thoritative copy of the event type definition, which is cached
at other brokers throughout the system for type-checking
advertisements, subscriptions, and publications. In our cur-
rent work, authoritative, domain-specific type information is
stored within the originating domain and rendezvous nodes
hold a copy.

3.2 OASIS Role-Based Access Control
The Open Architecture for Secure Interworking Services

(OASIS) [3, 4], provides a comprehensive rule-based means
to check that users can only acquire the privileges that au-
thorise them to use services by activating appropriate roles.

A role activation policy comprises a set of rules, where a role
activation rule for a role r takes the form

r1, .., rn, a1, .., am, e1, .., el ` r

where ri are prerequisite roles, ai are appointment cer-
tificates (most often persistent credentials) and ei are envi-
ronmental constraints. The latter allow restrictions to be
imposed on when and where roles can be activated (and
privileges exercised), for example at restricted times or from
restricted computers. Any predicate that must remain true
for the principal to remain active in the role is tagged as a
role membership condition. Such predicates are monitored,
and their violation triggers revocation of the role and related
privileges from the principal.

An authorisation rule for some privilege p takes the form

r, e1, .., el ` p

An authorisation policy comprises a set of such rules. OA-
SIS has no negative rules, and satisfying any one rule indi-
cates success.

OASIS roles and rules are parametrised. This allows fine-
grained policy requirements to be expressed and enforced,
such as exclusion of individuals and relationships between
principals, for example treating-doctor(doctor-ID, patient-ID).
Without parametrisation it becomes necessary to define an
unmanageably large number of roles for an organisation of
any significant size.

3.3 Related Work
Securing publish/subscribe systems using access control

is an active research area. Wang et al. [29] propose a num-
ber of considerations for publish/subscribe access control.
Miklós [12] provides semantics defining a security ordering
based on event attribute values. Scoping [10] uses grouping
structures to control the visibility of occurrences within the
infrastructure.

Some work empowers principals with control over the in-
formation they produce. Symmetric publish/subscribe [27]
allows publishers to couple constraints with their publica-
tions. Events are matched by computing the intersection of
the publication and subscription constraints. Oprychal et
al. [14] define event owners, who conditionally license other
principals with event privileges. Their approach gives con-
trol to publishers, who can be defined to own the event in-
stances they produce.

Wun and Jacobsen [30] define a distributed post-matching
policy model, enabling a broker to perform actions after
a particular content-based matching operation. Although
generic, they provide examples as to how such a model could
be used for security aspects. A similar approach underlies
our work on interaction control [26].

4. ACCESS CONTROL POLICY FOR PUB-
LISH/SUBSCRIBE CLIENTS

In OASIS RBAC, the authorisation policy for any service
specifies how it can be used in terms of roles and environ-
mental constraints. Here, we use OASIS to protect the pub-
lish/subscribe service in this way at a local broker. This
implements security at the publish/subscribe network edge.
The service’s methods include the following:

define(message-type)
advertise(message-type)
publish(message-type, attribute-values)
subscribe(message-type, filter-expression-on-attributes)

OASIS policy indicates, for each method, the role creden-
tials, each with associated environmental constraints, that
authorise invocation. OASIS role parameters can be used
to limit privileges to particular message types. The define
method is used to register a message type with the service
and specify its security requirements at the granularity of
attributes. On advertise, publish and subscribe, these require-
ments are enforced. We can therefore support secure pub-
lish/subscribe within a domain in which roles are named,
activated and administered.

A domain-structured OASIS system is engineered with a
per-domain, secure OASIS server, as described in [3], and
a per-domain policy store containing all the role activation
and service-specific authorisation policies. This avoids the
need for small services to perform authentication and secure
role activation. The domain’s OASIS server carries out all
per-domain role activation and monitors the role member-
ship rule conditions while the roles are active. This optimi-
sation concentrates role dependency maintenance within a
single server and provides a single, per-domain, secure ser-
vice for managing inter-domain authorisation policy specifi-
cation and enforcement.

5. LARGE-SCALE BROKER NETWORKS
In this section we consider broker networks of sufficient

scale that the brokers cannot all be trusted unconditionally.
We present a scalable, multi-domain mechanism for nam-
ing and defining event types. In order to support efficient
routing, but without releasing sensitive information, we in-
troduce attribute encryption to allow some event data to
remain opaque to some brokers. Decoupling the encryption
from the whole event requires secure associations between
type names and encryption keys. The secure event types
presented in the previous section are used to make these
secure associations. This work was originally presented by
Pesonen et al. in [15, 16, 17].

There are several levels of access control. At the first
level, participants are vetted as they try to join the publish/
subscribe network. Unauthorised event brokers will not be
permitted to join. Note that in terms of link-level security,
all the connections between brokers use Transport Layer Se-
curity (TLS) [8] in order to prevent unauthorised access to
data within lower layers of the network stack.

Clients must connect to local event brokers in order to
access the publish/subscribe system’s services. Thus the
clients cannot directly interfere with publish/subscribe be-
haviour. The brokers are able to touch all events that pass
through them. Brokers can examine the level of traffic and
names of attributes that exist in an event (when attribute-
level encryption is used). It may be possible to obfuscate
event streams (e.g. by inserting dummy events) in order to
make traffic analysis more difficult

5.1 Management of Event Names and Policies
When constructing policy-secured, multi-domain publish/

subscribe systems, a mechanism is needed through which
to agree on the naming of event types. We assume that
domains are allocated unique names within the system as

Name tuple:

(
1 Type issuer’s public key
2 User-friendly name
3 Version number

Body:

(
4 Attributes

Digital signature:

(
5 Delegation certificates
6 Digital signature

Figure 1: Contents of a secure event type definition

a whole and that roles are named and managed within a
domain. Each domain provides a management interface
through which role activation policies and service authori-
sation policies can be specified and maintained.

A group of domains may have a parent domain from which
an initial set of role names and policies is obtained. For
example, county police domains may agree to use a nation-
ally defined set of police roles; health service domains may
start from an initial national role-set. The domain manage-
ment interface allows local additions and updates, for exam-
ple when government changes national policy. Parametrised
roles allow domain-specific parameters, for example sergeant(
domain-ID, police-ID). This allows relationships to be cap-
tured as well as avoiding excessive numbers of roles in large-
scale systems.

In an evolution from the single-domain Hermes publish/
subscribe system, we introduce a format of event type defi-
nitions that binds the type name and definition together in
a secure manner. Public key cryptography is used to guar-
antee the authenticity and integrity of this type informa-
tion. Thus we protect the system against forged or tampered
event type definitions. We reduce the chance of accidental
name collisions, and provide a unique handle through which
policy can refer to the names of types and attributes.

We require that all participating brokers in the publish/
subscribe system have a key-pair. We can thus require that
event-type issuers incorporate this public key into the type
name. This facilitates an event naming scope for each par-
ticular type issuer. Since event type names include a public
key, it is intuitive that the event type definitions should be
signed by the corresponding private key. This binds the
type definition to the type name, and facilitates verification
of event type integrity and issuer authenticity.

The six items that make up a secure event type definition
are shown in Figure 1. Items 1–3 identify the name of the
type. The Attributes item 4 indicates the core event type
definition, and items 5 and 6 contain a digital signature of
the event type.

Adding a public key to the type name eliminates event
name conflicts. While this is desirable, a user-friendly name
is also maintained. The user-friendly name is able to encode
useful aspects, such as hierarchical naming. This enables
administrative grouping of type definitions across multiple
event type owners. Orthogonal to both of those concerns
is type evolution, hence the provision of a version number.
Releasing a new version of an event type definition will not
conflict with previous instances still in use within the pub-
lish/subscribe system. Indeed, to avoid race conditions for
version numbers when multiple type managers are releasing
updated event definitions, a UUID scheme is used for ver-

sion numbers. UUIDs are 128-bit values that are coupled
with a practically collision free generation algorithm.

Item 4 in the event type definition describes the event
type structure. Each attribute definition itself consists of
a user-friendly name, a unique identifier (UUID), and an
attribute type identifier. The set of types supported de-
pends on the subscription filter language used. Friendly
names for attributes are intended to be used by clients of
the publish/subscribe system, whereas the UUID is used by
intermediate brokers during distributed event routing. The
friendly names only need to be unique within the context of
one particular version of an event type definition. When a
publisher-hosting broker receives an event to route, it looks
up the friendly names used by its client using the publisher’s
event type definition. This allows the UUID fields to be
correctly populated. The reverse of this process occurs at
subscriber-hosting brokers. The UUIDs allow multiple ver-
sions of an event type to exist within the publish/subscribe
system at a point in time.

The digital signature of an event type provides a guaran-
tee of the authenticity and integrity of the type definition.
The signature is calculated over all the type definition items
except the signature itself: items 1–4 in Figure 1. It thus
binds the type definition and the name tuple.

The delegation certificates (item 5) facilitate Internet-scale
management of event types. Since key-pairs are involved in
signing event types, without delegation certificates the type
owner would need to re-sign all updates to the type. Dele-
gation certificates facilitate a digitally-signed path of trust
from the original event type owner to type managers: par-
ties that are allowed to update event types on their behalf.
The delivery of delegation certificates to type managers can
be performed out-of-band. The delegation certificates also
provide the means to specify fine-grained access rights. Our
prototype implementations have typically supported rights
such as addAttribute, removeAttribute, editAttributeName and
editAttributeType.

5.2 Capabilities for Publish/Subscribe Access
Control

This section presents the set of capabilities required to
support multi-domain, distributed, publish/subscribe access
control. Each domain will contain a number of publish/
subscribe clients, and an access control manager. The ac-
cess control manager grants privileges to brokers and clients
within that domain according to the domain’s access control
policy. In order to bootstrap the overall network infrastruc-
ture, one of the domains is designated as the coordinating
domain. The coordinating domain invites other domains
into the shared publish/subscribe system.

There are two main reasons that domains may wish to
join the shared infrastructure: either to facilitate applica-
tions that communicate across domains, or to increase the
reliability and coverage of the broker network. Mutually dis-
trusting domains will only cooperate to achieve these ends
if they trust that access control policy will be enforced.

There are four main aspects that need to be controlled:

1. Nodes (i.e. brokers and clients) joining and leaving.

2. Event type and topic definition.

3. Event type and topic modifications.

4. Event clients accessing the publish/subscribe API.

In all four cases the capabilities are rooted at an appropri-
ate resource owner. In the case of the first two, the resource
owner is the coordinating domain. In the latter two, the
resource owner is the event type or topic owner.

5.3 Delegating Authority
In our model, resource owners grant delegation certificates

to the access control manager of the target domain. The
delegation certificate authorises the access control manager
to perform further intra-domain delegations as appropriate.
Clearly the intra-domain policy can be as complex as the
access control manager wishes to support.

The separation of inter- and intra-domain concerns means
that resource owners have to trust access control managers
within a domain to behave appropriately. The resource
owner has no control over the certificates issued to domain
members by a domain’s access control manager. However,
since the access control manager can have all its authority
revoked by a resource owner, it is unlikely that the inter-
and intra-domain management separation will prove prob-
lematic.

A client requesting an action will present the capability
it received from its domain’s access control manager, and
the chain of delegation certificates linking the access control
manager to the resource owner. Thus the access control
manager’s key-pair is the link between the capability and
delegation certificate chains. Any verifier of a client request
will satisfy itself that all the certificates in the chain are
satisfactory.

Next we describe the access control actions that can be
requested. The authorities that are described below can be
aggregated into single certificates if the issuer has sufficient
authorisation. So a coordinating domain could issue a cer-
tificate granting connect and install rights to a particular
access control manager (action: connect | install). The au-
thorities can also contain wild-cards. For example, action: *
enables all possible actions. Of course the resource owner
can only grant authority to their own resources.

Broker network access
The most fundamental access control decisions in the system
relate to nodes joining the broker network. Authority is
rooted at the coordinating domain: the owner of the shared
publish/subscribe system. The access right is binary. The
authority also indicates the name of the shared publish/
subscribe network:

network: TestNetwork1
action: connect

Mutual checking should be done between both parties at
connection time.

Introducing new types/topics
As mentioned previously, the authority to install new types
or topics into the shared publish/subscribe system is also
granted by the coordinating domain. As for the case of
broker network access, the access right is binary, and the
name of a particular shared publish/subscribe network is
given:

network: TestNetwork1
action: install

Extending types/topics
Extending types and topics is a concern for event type own-
ers. Any given type extension authority must come from the
owner of the type being inherited from. The granted author-
ities are coarse, providing a binary answer as to whether
inheritance of a particular type is permitted. Using wild-
cards in the type name can significantly reduce the number
of certificates required:

type: Test*
action: extend

The extended type’s definition must include the delegation
certificate that grants authority for the original event type
to be extended.

Accessing the publish/subscribe API
Finally, clients accessing the publish/subscribe API need to
be controlled. Any publication will be related to a particular
event type (topic), and thus the topic owner is the resource
owner of the API. The topic owner will issue delegation cer-
tificates to appropriate access control managers.

The access rights for the publish/subscribe API can be
controlled in a fine-grained manner. Authorities can choose
to grant clients access to a wide range of types with corre-
sponding attributes for publication and subscription. How-
ever, the authorities can also choose to issue rights over a
particular type, and can limit the specific actions that can
be taken:

type: TestType1
action: subscribe | publish
attributes: Attr1 & Attr2 = 500

In the above example, the authority has placed a restriction
on event content: at publication time the publisher-hosting
broker will implicitly force the attribute value to 500 (but
accept the client request). Similarly the subscriber-hosting
broker will silently add the above filter on Attr2 to the sub-
scription.

5.4 Credential Propagation
A client will present its credentials to its local broker when

using the publish/subscribe system API. The local broker
can then assess whether the client is authorised to take the
requested action. Since routing events in a wide-area pub-
lish/subscribe system may involve multiple inter-broker mes-
sage hops, the client’s credentials need to be passed through
the publish/subscribe network alongside the event data to
enable intermediate brokers to verify access rights. For this,
the client’s credentials, and a timestamp (to preclude replay
attacks), are signed by the client.

We assume that brokers trust each other when propagat-
ing the client’s credentials. Brokers are permitted to strike a
balance between verification and speed. Comparative para-
noia will dictate the need to verify a larger proportion of the
events that pass through a broker.

As in many scalable peer-to-peer infrastructures, soft-state
is used within the network. Rather than maintaining con-
nectivity in order to signal revocation of particular privi-
leges, soft-state will simply time-out privileges if they are
not refreshed periodically.

We extend the above capability-based access control mech-
anism into one that controls access to encryption keys using

the same certificate structures. A publisher who is autho-
rised to publish events of a given event type will also be
deemed authorised to access the encryption keys used to
protect events of that type.

5.5 Encrypting Event Content
To enforce access control within a large broker network, we

control access to particular encryption keys. Because clients
have to trust their local broker, the event content encryption
can be managed without involving the clients: encryption
tasks are delegated to brokers. This lowers the number of
nodes that need to have access to particular encryption keys.
We also change the specific keys used over time in response
to changes in the broker topology, and periodically in order
to reduce the use of any one key. There are three main
benefits of this approach:

1. Fewer nodes need to handle confidential encryption
keys, reducing the probability of keys being disclosed.

2. The key refresh operations involve fewer nodes, and
thus incur lower overheads.

3. Local brokers only need to perform decryption once
when delivering a given event to local subscribers.

A fundamental choice is whether to encrypt event data as
a whole, or to encrypt attribute data separately. Whole-
event encryption is simpler to implement, requires fewer
keys, causes fewer cryptographic operations, and thus is usu-
ally faster. On the other hand, attribute encryption provides
finer-grained control over event data, and may be beneficial
in cases where brokers can selectively route events based on
unencrypted attributes.

5.5.1 Whole-event encryption
The simplest approach to protecting event content is to

encrypt entire events. For routing purposes, the event type
identifier is left intact and unencrypted. In transit, events
consist of a tuple containing the type identifier, a publi-
cation timestamp, ciphertext and a message authentication
tag. Each event type in the system will have its own indi-
vidual associated encryption key.

Event brokers authorised to access the event data will be
able to acquire the current encryption key, decrypt the event,
and potentially perform content-based routing. Event bro-
kers without this authorisation will have to route the event
based on its event type alone. Potentially this will reduce
the quality of routing decisions made.

Whole-event encryption requires one encryption per pub-
lication, performed on the publisher’s local broker, one de-
cryption at each filtering intermediate broker, and finally a
decryption at each broker local to any subscribers.

5.5.2 Attribute encryption
Finer-grained control can be achieved by associating an

independent encryption key with each attribute. The en-
cryption key is indexed by the attribute’s UUID. Event type
identifiers are left intact to allow all brokers to perform some
degree of routing. Authorised brokers will be able to obtain
the keys for each attribute, and thus carry out content-based
routing over those attribute values.

When in transit, events using attribute encryption con-
tain an event type identifier, a publication timestamp, and
a set of attribute tuples. Each attribute tuple contains an

attribute identifier, some ciphertext and an authentication
tag. In our prototype implementation, the attribute identi-
fier is the SHA-1 hash of the attribute name used within the
event type definition. The hash prevents unauthorised par-
ties from learning the attributes included in a given event.

Attribute encryption usually results in higher overhead
than whole-event encryption. The initialisation of encryp-
tion algorithms tends to be computationally expensive, and
usually dominates the total encryption time for attributes
without much data. The initialisation has to be repeated for
each attribute. The evaluation presented in [15, 16] demon-
strates these performance issues.

The advantage of attribute encryption is that type own-
ers can provide clients with different levels of access to the
same event type. It also enhances the ability of interme-
diate brokers to perform content-based routing. This has
the desirable effect of reducing the number of messages sent
between brokers when content-based filtering is significant.

We can emulate attribute encryption by introducing a new
event type for each level of subscriber authorisation. Pub-
lishers can then publish multiple events that are effectively
views on a single real event. A drawback of this approach
is that it becomes difficult to manage when there are many
event attributes, or many levels of subscriber authorisation.

5.6 Encrypting Subscriptions
Since intermediate brokers are not considered universally

trustworthy in our model, subscriptions must also be en-
crypted. This enforces that only authorised brokers can
submit subscriptions to the publish/subscribe network, and
that unauthorised brokers do not gain information when es-
tablishing subscription paths.

When doing whole-event encryption, the subscription fil-
ters are also completely encrypted. Even so, the event type
identifier within the subscription is left intact so that brokers
are still able to route events based on topic, even when they
are not authorised to access the subscription filter. Unau-
thorised brokers have to assume that events with hidden
subscription filters have no filters.

In the case of attribute-based encryption, each attribute
filter is encrypted individually. Again, the attribute identi-
fiers are left intact.

5.7 Avoiding Unnecessary Encryption
If two communicating brokers have compatible levels of

authorisation, an optimisation is to avoid cryptographic op-
erations. In particular, this will be the case for communica-
tion between brokers within the same domain. To establish
the degree of compatibility, brokers examine each others’
credentials at connection time and add them to their rout-
ing tables for future reference. A publisher-hosting broker
always encrypts content, since it is computationally cheaper
to do so once for the entire event dissemination tree.

To avoid unnecessary decryption operations, a plaintext
content cache is attached to otherwise encrypted events.
The cache is filled on-demand, and discarded whenever the
event routing traverses a link between brokers that do not
have mutual trust. In general, the increased communication
cost of this cache is dominated by the computational cost of
encryption operations.

5.8 Key Management
Irrespective of the chosen approach to event encryption,

the encrypted data has a UUID. This identifier is used to
determine the key for encryption or decryption. By control-
ling access to the encryption key, we enforce access control
over the encrypted event content.

Access to encryption keys occurs within key groups of bro-
kers. Key groups are the basis of issuing and re-issuing en-
cryption keys to brokers. A key group manager is responsi-
ble for verifying that a broker is authorised to join a given
key group. Therefore the key group manager requires the
trust of the event type owner that access control will be
enforced appropriately. The key group manager may be a
member of the type owner’s domain, or some other trusted
third party. The same type of capability structure used for
managing publish/subscribe requests (see Section 5.2) is also
used for authorising membership of key groups. Although
the mechanisms for enforcing access control are different for
clients and brokers, we maintain consistency in the capabil-
ity representation.

For any client request, both the client and its local broker
must have sufficient authorisation to carry out the request.
The local broker has to check the client’s credentials against
access control policy. However, since the local broker per-
forms encryption on behalf of the publishing client, the bro-
ker will also need to be authorised to access the necessary
encryption keys.

5.8.1 Secure group communication
Decentralised, multi-domain, encrypted publish/subscribe

communication can be seen as a type of secure group com-
munication. In any secure group communication mecha-
nism, the key management system must scale well in the
number of clients. It is desirable that the communication
mechanism is effective over widely-dispersed participants,
that high rates of node churn (joining and leaving) do not
affect safety or liveness, and that all members are in close
time synchronisation.

A number of scalable key management protocols are sur-
veyed in [21]. Our prototype implementation uses the one-
way function tree (OFT) [11] protocol. The OFT protocol
uses a binary tree that places participants at the leaves of
that tree. For n participants, the algorithm scales in log2n
in processing and communication costs, and in the amount
of state stored at each participant. These results were ex-
perimentally verified in [15, 16, 17]. OFT is comparatively
simple to implement and yet performs well. The same struc-
tured overlay network used for inter-broker event communi-
cation can also be used for the OFT protocol.

5.8.2 Key refreshing
Group key management schemes tend to regenerate en-

cryption keys for two main reasons: key freshness and mem-
bership changes. Regenerating keys periodically avoids large
amounts of data being encrypted with the same key. This
reduces data exposure should a key become compromised.
Keys are also regenerated when group membership changes
to provide forward and backward secrecy: members who
have left the group cannot access new data, and members
who join cannot access old data. In our context, a broker
that is a member of a given key group must hold the corre-
sponding capability.

Even with state-of-the-art key management protocols, re-
keying is an expensive operation in terms of network traffic
and distributed coordination, and is best avoided as much

as possible. The simplest approach to ensure freshness of
capabilities is to limit their validity periods. To avoid un-
necessary key refreshes, the key manager only checks the
validity condition when members join or leave. For join-
ing members, whose capabilities were valid at the time of
the most recent key refresh, no further refresh is required.
Similarly, when a member leaves, key refresh can be held
off until the capability expires. These cases are illustrated
in Figure 2. In general, the validity of brokers’ capabilities
will be far less dynamic than those of clients of the publish/
subscribe system.

Since data may still be travelling through the publish/
subscribe network for a small period of time after key re-
freshes have occurred, old keys will need to be maintained
for that time. To address this issue, new encryption keys are
tagged with a timestamp. The timestamp allows the correct
encryption key to be used based on an event’s publication
timestamp. The key destruction delay employed depends on
the nature of the application and the size of the network.

6. INTERACTION CONTROL
The publish/subscribe access control mechanisms that are

discussed above involve binary (permit/deny) protection to
events, through restrictions and encryption. However, rather
than denying access, information can be made appropriate
for disclosure, through functions that perturb, fuzzify, sum-
marise or translate between formats. Our recent work on
interaction control provides the means for data to be mod-
ified as part of the dissemination process. This enables a
domain to exercise fine-grained control over the content of
information released. Customising data to context can pro-
tect sensitive information, by releasing to a recipient only
that data required in the circumstance.

Interaction control enables a broker to transform an event
instance either upon publication (receipt by the broker—to
render it suitable for local processing), or before notifica-
tion to a particular subscriber (to customise the informa-
tion to the recipient). Transformations may alter the val-
ues of an event instance, or convert an event into another
type to encapsulate a different semantic. Thus a broker can
degrade, enrich or produce some loosely related event in-
stances. Transformations are conditional, in that they only
apply in defined situations.

Interaction control is suited to application environments,
e.g. healthcare, where domains are responsible for the infor-
mation they handle. In situations where an event is relevant
to multiple subscribers, domain policy can tailor an event,
providing to each only that information relevant for their
task: for example, events recording a patient’s physiological
state might fuzzify information (e.g. location details) except
in emergency situations; a drug-auditor requires informa-
tion regarding prescriptions, but with patient information
removed. As transformation occurs in the middleware, pub-
lishers are not burdened with the data policy requirements
of other principals.

Interaction control is compatible with encryption schemes,
though the aim is to customise information to specific re-
quirements. While this may include attribute-level control,
it can also involve perturbation, or even the enrichment of
events. In some situations, e.g. on a battlefield, data is only
sensitive for a particular time period. However, in scenar-
ios where data remains sensitive, it may not be appropriate
to liberally distribute encrypted information, due to key-

Key refresh schedule

Broker leaving a key group

Broker joining a key group

Actual key refresh times

Time

One period

Broker’s key group
credentials are valid

Actual join time Actual leave time

One period One period

Figure 2: A key refresh schedule adjusted based on the validity periods of brokers’ capabilities

management concerns.

6.1 Implementation
We have integrated publish/subscribe messaging capabili-

ties into the PostgreSQL database engine to allow a database
instance to function as an event broker [28]. As events en-
capsulate data, often this information must be stored, if
only for auditing purposes. Databases are a common com-
ponent of enterprise infrastructure, and given their well-
established data handling capabilities, provide an obvious
point for messaging-system integration. The coupling of
publish/subscribe mechanisms with database environments
allows us to build on the relational model, query languages,
transactions and backup/auditing capabilities, while facili-
tating data persistence, communication and replication —
all under a common type interface. Databases may be sub-
scribers to facilitate replication and maintain an audit or log
of selected events. Databases may advertise the events they
are prepared to publish so that their subscribers may be no-
tified of conditions that are triggered within the database.

We have extended this implementation to include policy-
based mechanisms for interaction control [25, 26]. This
brings application-level data control policy into messaging
and storage middleware. Event restriction and transforma-
tion operations can use information about current environ-
ment, event content, publisher or subscriber details, stored
data, external functions, etc. Further, we exploit transac-
tional and auditing facilities, which is important for moni-
toring data disclosure, in addition to detecting policy errors
and anomalies.

7. MULTI-DOMAIN APPLICATIONS
In this section we describe the application of the models

presented above to real-world multi-domain environments.
These environments are similar to those we have explored
in recent research projects.

7.1 Police
Figure 3 shows a multi-domain publish/subscribe network

based on the United Kingdom Police Forces, with three par-
ticular sub-domains:

Metropolitan Police Domain. This domain contains a
set of CCTV cameras that publish information about
the movements of vehicles around the London area.
We have included Detective Smith as a subscriber in
this domain.

Congestion Charge Service Domain. The charges that
are levied on the vehicles that have passed through the
London Congestion Charge zone each day are issued
by systems within this domain. The source number-
plate recognition data comes from the cameras in the
Metropolitan Police Domain. The fact that the CCS
are only authorised to read a subset of the vehicle event
data will exercise some of the key features of the en-
forceable publish/subscribe system access control pre-
sented in this paper.

PITO Domain. The Police Information Technology Or-
ganisation (PITO) is the centre from which Police data
standards are managed. It is the event type owner in
this particular scenario.

In our example scenario, the Congestion Charge Service
would only be authorised to read the numberplate field of
vehicle sightings — the location attribute would not be de-
crypted. We thus preserve the privacy of motorists while
still allowing the CCS to do its job using the shared pub-
lish/subscribe infrastructure.

Let us assume that a Metropolitan Police Service detec-
tive is investigating a crime and she is interested in sightings
of a specific vehicle. The detective gets a court order that
authorises her to subscribe to numberplate events of the spe-
cific number plate related to her case.

7.2 Healthcare Environments
Health information is sensitive: its confidentiality pro-

tected by oath, codes of conduct and law. Health data
concerns patients; however, the users of patient data are
typically care providers. Thus, they have a responsibility to
respect the privacy of information obtained as part of the
care process.

Collaboration is central to healthcare. In modern health
environments many forms of collaboration exist — from spe-
cialist referrals to remote diagnosis to end-of-shift handovers
in a hospital ward. Therefore, while health information must
be protected for reasons of privacy, it must also be shared
to afford proper care.

Health systems must allow for definition of the circum-
stances in which it is appropriate that data be shared. This
involves the use of policy that accounts for current context,
including the identity and credentials (roles and privileges)
of the principals involved, and environmental state. Health
infrastructure tends to be controlled, providing information
on users. This information is useful for access control deci-
sions, auditing procedures and the detection of policy errors.

IB

SHB

Sub

Pub

Pub

Sub
Sub

IB

PHB

IB

IB

PHB

IB

IB

IB

IB SHB
SHB

IBIB

IB

IB

IB

IB

IB IBIB

IB
TO

IB

IB
IB

Met Domain

Congestion Control
Service Domain

PITO Domain

Detective
Smith

Camera 1

Camera 2

Billing
Office Statistics

Office

Sub Subscriber SHB Subscriber
Hosting Broker

Pub Publisher PHB Publisher
Hosting Broker

TO Type Owner IB Intermediate
Broker

KEY

Figure 3: Overview of infrastructure

7.2.1 Future healthcare — Homecare
A majority of care concerns chronic (ongoing) conditions.

With the ageing population, there is a push to manage
such conditions better, to improve quality of life, while re-
ducing the burden on health services. As such, there is a
global movement towards intermediate care services: pro-
viding care outside traditional care institutions, closer to
the home. The envisaged benefits for homecare include in-
creased freedom, mobility and quality of care for patients,
while allowing for better health resource allocation.

Homecare environments are small domains, dynamically
created for the treatment of a patient [24]. As these lie out-
side an existing domain structure, homecare environments
lend themselves to cross-organisational collaboration. For
example, there may be interactions between doctors, care
nurses, specialists, pharmacies, technical support, billing ser-
vices, etc., in addition to the range of technologies (sen-
sors) supporting monitoring services. Homecare environ-
ments are highly data driven, where particular incidents (e.g.
a sensor reading, a particular treatment action) are of rel-
evance to various principals. As such, these environments
are amenable to event-based models, where dissemination
must be controlled to ensure that (only) the correct parties
receive appropriate information.

The current focus of the National Health Service (Eng-
land) is on integrating existing health services under a com-
mon framework, where confidentiality issues arise when ac-
cessing data records. However, to support future healthcare,
infrastructure is required to support event-driven interme-
diate care services.

7.2.2 Policy-based publish/subscribe data control
As principals and domains in healthcare are known, and

the environment is controlled, it is possible to reason about
data-distribution. We have developed a model for control-
ling information dissemination in event-driven healthcare

environments [25, 26]. Our approach is based on interac-
tion control (see Section 6), allowing broker-specific policy
to define the conditions in which data is released, i.e. what
data, to whom, and under what circumstances. This func-
tionality is realised through the following two operations:

Restrictions defining the circumstances for event deliv-
ery to subscribers. Restrictions can control access to
events by permitting/denying a subscription request
through evaluation of context sensitive conditions. Re-
strictions can also act as filters to define the circum-
stances within which notification should occur. Such
filters are imposed silently so as not to reveal to the
subscriber any (potentially) sensitive data encoded in
the restriction.

Transformations customising an event to circumstance.

The above are defined using context-aware conditional
clauses, which reference the credentials of principals, sys-
tem and environmental state. It is through these condition-
als that information control policies define access privileges,
such as the rights associated with a role (e.g. doctors can
access Prescribe events for patients they treat) and the con-
tent of data received (e.g. patient monitoring data has the
location perturbed, except in situations of emergency).

Figure 4 shows the event flow for a Prescribe event as
it moves from the home environment to interested parties.
This involves transformation into a Prescription for the Phar-
macy and a Controlled Drug Auth event for the Auditor, who
requires notification but with patient specifics removed. In
this scenario, a doctor must treat the patient to which the
event instance relates, and a restriction ensures that the
auditor only receives notifications for drugs of a particular
class. For more detail of this scenario see [25] and [26].

SURGERY

HOME

Nurse

Prescribe

AUDITORPHARMACY

Doctor

Controlled_Drug_Auth

Prescribe

Event

Prescribe

{a
ll} Prescription

Subscription

Figure 4: Transformations and restrictions for a Prescribe event as it moves across domains

8. CONCLUSIONS AND OPEN ISSUES
Our system architecture comprises multiple administra-

tion domains sharing a dedicated event-broker network. We
have found this to be appropriate for many applications. We
also assume a secure server per domain that manages cre-
dentials and activates roles according to policy. With access
control functionality located in the client-hosting brokers, we
are able to enforce RBAC on the publish/subscribe clients.
In general, separating event-management functionality into
a dedicated event service makes access control easier to en-
force than in a peer-to-peer approach where the client and
event service are colocated. The latter seems inappropriate
for applications transmitting sensitive data.

We have assumed content-based routing, for efficiency of
communication, rather than broadcast or gossip-based rout-
ing. When some brokers are not trusted to see certain sen-
sitive data this style of routing can still be used, with the
modifications we describe.

Maintaining the required confidentiality of data depends
on those brokers given access to keys continuing to be trust-
worthy and reliable. For sensitive data that persists long
term this may not be a sufficient guarantee. The domain
that creates and owns the data may have legal obligations
relating to its transmission. Also, it may be that entire do-
mains have reduced requirements on the data, known to the
data source. In this case, data transformation can be used
to augment the security mechanisms that are used when do-
mains are fully trusted and have an established need for full
access to data.

Acknowledgements
We acknowledge the support of the UK Engineering and
Physical Sciences Research Council (EPSRC) via grants ED-
SAC21 (GR/T28164), CareGrid (EP/C53718X) and TIME-
EACM (EP/C547632).

9. REFERENCES
[1] Jean Bacon, Alastair Beresford, David Evans, David

Ingram, Niki Trigoni, Alexandre Guitton, and

Antonios Skordylis. Time: An Open Platform for
Capturing, Processing and Delivering
Transport-Related Data. In Proceedings of the Fifth
IEEE Consumer Communications and Networking
Conference, CCNC, pages 687–691, Las Vegas,
January 2008. IEEE Press. Session on Sensor
Networks in Intelligent Transportation Systems.

[2] Jean Bacon, David M. Eyers, Ken Moody, and Lauri
I. W. Pesonen. Securing publish/subscribe for
multi-domain systems. In Gustavo Alonso, editor,
Middleware, volume 3790 of Lecture Notes in
Computer Science, pages 1–20, Grenoble, France,
November 2005.

[3] Jean Bacon, Ken Moody, and Walt Yao. Access
control and trust in the use of widely distributed
services. In Middleware ’01, IFIP/ACM International
Conference on Distributed Systems Platforms, volume
2218 of LNCS, pages 295–310. Springer, November
2001.

[4] Jean Bacon, Ken Moody, and Walt Yao. A model of
OASIS role-based access control and its support for
active security. ACM Transactions on Information and
System Security (TISSEC), 5(4):492–540, November
2002.

[5] Guruduth Banavar, Marc Kaplan, Kelly Shaw,
Robert E. Strom, Daniel C. Sturman, and Wei Tao.
Information flow based event distribution middleware.
In Middleware Workshop at the International
Conference on Distributed Computing Systems 1999,
1999.

[6] Antonio Carzaniga, David S. Rosenblum, and
Alexander L. Wolf. Design and evaluation of a
wide-area event notification service. ACM
Transactions on Computer Systems, 19(3):332–383,
August 2001.

[7] M. Castro, P. Druschel, A. Kermarrec, and
A. Rowstron. Scribe: A large-scale and decentralized
application-level multicast infrastructure. IEEE
Journal on Selected Areas in communications (JSAC),

20(8):1489–1499, October 2002.

[8] T. Dierks and C. Allen. The tls protocol version 1.0.
RFC 2246, January 1999.

[9] Patrick Th. Eugster, Pascal A. Felber, Rachid
Guerraoui, and Anne-Marie Kermarrec. The many
faces of publish/subscribe. ACM Computing Surveys,
35(2):114–131, 2003.

[10] L. Fiege, M. Mezini, G. Muhl, and A. P. Buchmann.
Engineering event-based systems with scopes. In
European Conference on Object-Oriented
Programming (ECOOP), pages 309–333, 2002.

[11] D. A. McGrew and A. T. Sherman. Key establishment
in large dynamic groups using one-way function trees.
May 1998.

[12] Zoltán Miklós. Towards an access control mechanism
for wide-area publish/subscribe systems. In 1st
International Workshop on Distributed Event-Based
Systems (DEBS’02), ICDCS, pages 516–524. IEEE,
July 2002.

[13] Ken Moody. Coordinating policy for federated
applications. In 4th IFIP WG3 annual working
conference on Data and Application Security, pages
127–134. Kluwer, August 2000.

[14] Lukasz Opyrchal and Atul Prakash. Secure
distribution of events in content-based publish
subscribe systems. In 10th USENIX Security
Symposium, August 2001.

[15] Lauri I. W. Pesonen and Jean Bacon. Secure Event
Types in Content-Based, Multi-domain
Publish/Subscribe Systems. In SEM ’05: Proceedings
of the 5th international workshop on Software
Engineering and Middleware, pages 98–105, Lisbon,
Portugal, September 2005. ACM Press.

[16] Lauri I. W. Pesonen, David M. Eyers, and Jean
Bacon. A capabilities-based access control architecture
for multi-domain publish/subscribe systems. In
Proceedings of the Symposium on Applications and the
Internet (SAINT 2006), pages 222–228, Phoenix, AZ,
January 2006. IEEE.

[17] Lauri I. W. Pesonen, David M. Eyers, and Jean
Bacon. Encryption-Enforced Access Control in
Dynamic Multi-Domain Publish/Subscribe Networks.
In Proceedings of the International Conference on
Distributed Event-Based Systems (DEBS’07), pages
104–115. ACM Press, June 2007.

[18] Peter R. Pietzuch and Jean M. Bacon. Hermes: A
distributed event-based middleware architecture. In
1st International Workshop on Distributed
Event-Based Systems (DEBS’02), ICDCS, pages
611–618. IEEE Press, July 2002.

[19] Peter R. Pietzuch and Jean M. Bacon. Peer-to-peer
overlay broker networks in an event-based middleware.
In 2nd International Workshop on Distributed
Event-Based Systems (DEBS’03), ICDCS. ACM
SIGMOD, June 2003.

[20] Peter R. Pietzuch and Sumeer Bhola. Congestion
Control in a Reliable Scalable Message-Oriented
Middleware. In M. Endler and D. Schmidt, editors,
Proc. of the 4th Int. Conf. on Middleware (Middleware
’03), pages 202–221, Rio de Janeiro, Brazil, June 2003.
Springer.

[21] S. Rafaeli and D. Hutchison. A survey of key

management for group communication. ACM
Computing Surveys, 35(3):309–329, 2003.

[22] Antony Rowstron and Peter Druschel. Pastry:
Scalable, decentralized object location and routing for
large-scale peer-to-peer systems. In Middleware ’01,
IFIP/ACM International Conference on Distributed
Systems Platforms, pages 329–350, November 2001.

[23] Ravi Sandhu, Edward Coyne, Hal L. Feinstein, and
Charles E. Youman. Role-based access control models.
IEEE Computer, 29(2):38–47, 1996.

[24] Jatinder Singh, Jean Bacon, and Ken Moody.
Dynamic trust domains for secure, private,
technology-assisted living. In Proceedings of the the
Second International Conference on Availability,
Reliability and Security (ARES’07), pages 27–34,
Vienna, April 2007. IEEE Computer Society.

[25] Jatinder Singh, Luis Vargas, and Jean Bacon. A
Model for Controlling Data Flow in Distributed
Healthcare Environments. In Pervasive Health 2008:
Second International Conference on Pervasive
Computing Technologies for Healthcare, Tampere,
Finland, January 2008. IEEE Press.

[26] Jatinder Singh, Luis Vargas, Jean Bacon, and Ken
Moody. Policy-based information sharing in
publish/subscribe middleware. In IEEE Workshop on
Policies for Distributed Systems and Networks
(POLICY 2008), IBM Palisades, New York, June
2008. IEEE Press.

[27] Anthony Tomasic, Charles Garrod, and Kris
Popendorf. Symmetric publish/subscribe via
constraint publication. Technical Report
CMU-CS-06-129R, Carnegie Mellon University, 2006.

[28] Luis Vargas, Jean Bacon, and Ken Moody. Integrating
Databases with Publish/Subscribe. In Proceedings of
the 4th International Workshop in Distributed
Event-Based Systems (DEBS’05), pages 392–397.
IEEE Press, June 2005.

[29] C. Wang, A. Carzaniga, D. Evans, and A. Wolf.
Security issues and requirements in internet-scale
publish-subscribe systems. In Proceedings of the 35th
Annual Hawaii International Conference on System
Sciences (HICSS’02), page 303. IEEE, 2002.

[30] Alex Wun and Hans-Arno Jacobsen. A policy
management framework for content-based
publish/subscribe. In Middleware ’07, Lecture Notes
in Computer Science 4834, pages 368–388. Springer,
2007.

