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Abstract 

Horn clause logic programming can be extended to include abduction with 
integrity constraints. In the resulting extension of logic programming, 
negation by failure can be simulated by making negative conditions 
abducible and by imposing appropriate denials and disjunctions as integrity 
constraints. This gives an alternative semantics for negation by failure, 
which generalises the stable model semantics of negation by failure. 

The abductive extension of logic programming extends negation by failure 
in three ways: (1) computation can be perfonned in alternative minimal 
models, (2) positive as well as negative conditions can be made abducible, 
and (3) other integrity constraints can also be accommodated. 

* This paper was written while the first author was at Imperial College. 
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Introduction 
The tenn "abduction" was introduced by the philosopher Charles Peirce 
[1931] to refer to a particular kind of hypothetical reasoning. In the 
simplest case, it has the fonn: 

From A and A f- B 

infer B as a possible "explanation" of A. 


Abduction has been given prominence in Charniak and McDennot's [1985] 
"Introduction to Artificial Intelligence", where it has been applied to expert 
systems and story comprehension. 

Independently, several authors have developed deductive techniques to 
drive the generation of abductive hypotheses. Cox and Pietrzykowski 
[1986] construct hypotheses from the "dead ends" of linear resolution 
proofs. Finger and Genesereth [1985] generate "deductive solutions to 
design problems" using the "residue" left behind in resolution proofs. 
Poole, Goebel and Aleliunas [1987] also use linear resolution to generate 
hypotheses. All impose the restriction that hypotheses should be 
consistent with the "knowledge base". 

Abduction is a fonn of non-monotonic reasoning, because hypotheses 
which are consistent with one state of a knowledge base may become 
inconSistent when new knowledge is added. Poole [1988] argues that 
abduction is preferable to noh-monotonic logics for default reasoning. In 
this view, defaults are hypotheses fonnulated within classical logic rather 
than conclusions derived withln some fonn of non-monotonic logic. The 
similarity between abduction and default reasoning was also pointed out in 
[Kowalski, 1979]. 

In this paper we show how abduction can be integrated with logic 
programming, and we concentrate on the use of abduction to generalise 
negation by failure. 

Conditional Answers Compared with Abduction 
In the simplest case, a logic program consists of a set of Horn Clauses, 
which are used backward to_reduce goals to sub goals. The initial goal is 
solved when there are no subgollls left; 
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In Query-the-User [Sergot, 83], a subgoal can be solved by asking the 
user whether the sub goal holds and receiving an answer "yes". In more 

sophisticated versions of query-the-user, if t!i.e user doesn't know the 
answer, then the solution can be regarded as being conditional on the 
answer being "yes". 

Consider the following simple example: 

Locomotion(x fly) ~ Bird(x) & Normal-bfrd(x) 

Locomotion(x walk) ~ Ostrich(x) 

Bird(x) ~ Ostrich(x) 
Ostrich(John) 

Given the goal ~Locomotion(John y) query-the-user would 
generate an unconditional answer Locomotion(John walk) and a 
conditional answer Locomotion(John fly) if Normal-bfrd(John). 
Abduction would, in place of the conditional answer, generate the 
hypothesis Normal-bird(John) justifying the conclusion 

Locomotion(John fly). 

In the propositional case, given a query ~Q and theory T, a conditional 

answer is a clause of the form Q ~ 8 such that T F Q ~ 8 . 

Under the same conditions. abduction generates 8 such that T U 8 F Q 

Conditional answers and abductive hypotheses can be implemented by 
means of the same backward reasoning mechanism. We believe that 
abduction is more appropriate in a knowledge assimilation framework 
[Kowalski, 19791 when the theory undergoes change for other reasons. 

We restrict the hypotheses that can be generated by abduction by insisting 
that their predicate symbols should belong to a set A of predicate symbols, 
called abducible predicates. An atom is abducible if its predicate symbol 
belongs to A. Some authors consider more liberal syntactic forms for 
hypotheses. However, these can be reduced to the simpler case of 
abducible atoms, by using Poole's naming device [Poole 88]. 
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In this paper we restrict our attention funher to the generation of variable­
free hypotheses. As we shall see later, this is the analogue of restricting 
the selection of negative subgoals to variable-free literals in negation by 
failure. It is possible to liberalise this restriction. But in this case it is 

necessary to introduce skolem constants into hypotheses [Cox and 
Pietrzykowski, 1986]. 

Integrity Checking 
The generation of abductive hypotheses can be restricted by means of 

constraints. Thus when we have the theory T, the integrity 

constraints I and the abductive hypotheses 8, we insist that TU8 must 

satisfy 1. The simplest form of integrity constraint is a denial; and the 
simplest notion of constraint satisfaction is logical consistency. 

Suppose we add to our original example the denial 

~ Ostrich(x) & Normal-bird(x). 

The denial functions as an integrity constraint which causes the rejection of 
the abductive hypothesis Normal-bird(John) and of the conclusion 

Locomotion(John fly) that it justifies. 

Integrity constraints which are denials can be checked (inefficiently) by 
reasoning backward from the denials. The constraints are satisfied if there 
is no refutation. Thus, in theory at least, the addition of denials as integrity 
constraints does not necessitate any extension of the theorem-proving 
techniques used to executeiiom clause programs. 

In practice, however, it is g&'erally more efficient to check consistency 
incrementally by reasoning forward from abductive hypotheses regarded as 
updates to the theory. oSuch forward reasoning from updates is the basis 
for the Consistency Method~[Sadri & Kowalski 1988] for checking 
integrity in deductive databases. 

In this paper we shall use a restricted version of the consistency method. to 
test the consistency of abductive hypotheses. We shall see that this version 
of the method is similar in behaviour to the behaviour of ordinary negation 
by failure. 
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The Abduction Framework 
We can now state the general specification (and declarative semantics) for 

abduction: 

<T,I,A> is an abduction framework iff 
T is a Horn clause theory (without denials), 

is a set of integrity constraints, 
A is a set of predicate symbols, called abducible predicates. 

Given the abduction framework <T,I,A>, the hypothesis set .:1 is an 

abductive solution for the existentially quantified conjunction of atoms Q 
iff 

.:1 is a set of variable free abducible atoms, 

Tu.:1I=Q 

T u .:1 satisfies l. 

For integrity constraints which are denials, T u .:1 satisfies I if and only if 

T u .:1 u I is consistent. Later we will defme satisfaction for more general 

kinds of integrity constraints. 

Alternative Hypotheses 
In general there may be several alternative collections of hypotheses that 
satisfy the integrity constraints but are mutually inconsistent. This can 
happen, for example, in situations where Reiter's (1980) Default Logic 
would derive multiple conclusions holding in alternative extensions. 
Consider the following formulation of one of his examples: 

Support(x Pacifism) r Quaker(x) & Normal-quaker(x) 

Support(x Defence) r Republican(x) & Normal-republican(x) 

f- Support(x Pacifism) & Support(x Defence} 

Quaker(Nixon) 

Republican(Nixon) 


Using the following default rules: 

Conclude Normal-quaker(x) if Normal-quaker(x) is consistent 

Conclude Normal-republican(x) if Normal-republican(x) is consistent, 
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in Default Logic, it is possible both to derive the conclusion 
Support(Nixon Pacifism) and to derive the conclusion Support(Nixon 
Defence). But it is not possible to derive the conjunction of the two 
conclusions. This anomally arises because the extensions used to derive 
the two conclusions separately are mutually inconsistent. With an 
appropriate reformulation of the example, circumscription (McCarthy 
1986) avoids the anomaly at the expense of deriving the weaker conclusion 

Support(Nixon Pacifism) xor Support(Nixon Defence) 
where "xor" is exclusive "or". 

Using abduction, making Normal-republican and Normal-quaker 

abducible, in response to the query rSupport(Nixon x) we obtain two 
alternative conclusions: 

Support(Nixon Pacifism), justified by the hypothesis 
Normal-quaker(Nixon) and 

Support(Nixon Defence), justified by the hypothesis 
Normal-republican(Nixon). 

The two conclusions are incompatible with one another, but each is 
consistent on its own. Moreover, the alternative hypotheses under which 
the conclusions hold have been made explicit 

By making hypotheses explicit, abduction provides more information than 
either Default Logic or Circumscription. Thus, in this example, we might 
try to resolve the conflict between the alternative theories by gathering 
more information, perhaps' by performing a "discriminating experiment" in 
an attempt to refute one of ~e hypotheses. This contrasts with approaches 
such as prioritized circumscription, [Lifschitz. 1986] which require that a 
priority between competing hypotheses be assigned in advance. 

Both Poole and Finger-Gene~ereth show that there is a close connection 
between 'alternative hypotheses generated by abduction and alternative 
extensions in Reiter's Default Logic. The main difference is that abductive 
hypotheses are explicit and only determine partial extensions of the 
knowledge base, whereas default logic generates maximal extensions 
which are implicit. Reiter in the conclusion of his recent survey of non­
monotonic reasoning [Reiter 1987] suggests that it might be profitable to 
view default reasoning as a kind of hypothesis formulation. 
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The purpose of this paper is to show that abduction is a generalisation of 
negation by failure. In particular, we will show that the situation where 
abduction generates alternative, mutually inconsistent sets of hypotheses 
corresponds to the case where a logic program which is not locally 
stratified (Przymuszynski 1988) has several stable models (Gelfond and 

Lifschitz 1988). 

The simulation of negation by failure 
The remainder of this paper concerns the use of abduction to generalise 
negation by failure. As touched upon in the previous sections of this 
paper, abduction has many other applications. A further discussion of 

these is beyond the scope of this work. 

Consider the following variant of our earlier example. Notice that Ab1 is 
the complement of the predicate Normal-bird used earlier and that (v) 

below was expressed earlier as a denial. 
(i) 	 Locomotion(x fly) ~ Bird(x) & not Ab1 (x) 

Locomotion(x walk) ~ Ostrich(x) & not Ab2(x) 

(iii) 	 Bird(x) ~ Ostrich(x) 


Ostrich(John) 


(v) 	 Ab1 (x) ~ Ostrich(x) 
The following search space is obtained using SLDNF [Clark 1978, Lloyd 

1987] to find John's mode of locomotion: 

r Lacamotlan(Jahn y) 

r Ostrlch(Jahn) &r Blrd(Jahn) & 
nat 	 Ab2(Jahn)nat 	 Ab1(Jahn) 

r nat Ab2(Jahn)r nat Ab1(Jahn) 

t~ 	Ab'(John)Ab'(John) ~ 

l~ Ostrlch(Jahn) 
fail Cl fail 
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In the above figure (following a notation suggested by Chris Hogger), the 
box shaped enclosures depict the subsidiary search spaces for negation by 
failure. 

Using a simple transformation (to be elaborated later), we can convert a 
logic program L which uses negation by failure to a corresponding 
abduction framework <L *, I,A>. First, for every predicate symbol P in L, 
we introduce an additional, new predicate symbol P*. 

a) 	 L* is the set of all clauses obtained from L by replacing every 
occurrence of a negative condition not P(x), where X can be a 
vector of variables, by a positive condition P*(x}. (Clauses in L 
which contain no negative conditions appear in L* unchanged). 

b) I is the set of all denials of the form 

~ P*(x) & P(x} 
for all P* introduced by (a). 

c) A is the set of all P* introduced by (a). 

Notice that the integrity constraints in I express only half of a definition of 
P* as the complement of P. We will introduce integrity constraints 
corresponding to the other half later. 

Applied to the program (i)-(v) above, the transformation yields the new 
program: 

Locomotion(x fly)'~ Bird(x) & Ab1 *(x) 


Locomotion(x walk) ~ Ostrich(x) & Ab2*(x) 


Bird(x) +- Ostrich(Sc} 

Ostrich(John) 


Ab1 (x) ~ Ostrich(x) 

the integrity constraints ' 

~ Ab1*(x) & Ab1 

~ Ab2*(x) & Ab2(x) 

and the abducible predicates Ab1 * and Ab2*. Notice that Ab1* is iust the 
predicate Normal-bird used earlier. 

With the same goals as before, we now obtain the following search space: 
0 
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(- Locomo,tlon(John y) 

(-OstrICh(John) & 

Ab1*(John) 


(- Blrd(John) & 

Ab2*(John) 

(- Ab*1 (Jo hn) (-Ab2*(John) 

Ab1*(John) r1. Ab2*(John) 
I (- Ab1(John)
~ I 1(- Ab2(John) 

I (- Ostrlch(JOhn) 

consistentCJ inconsistent fail [J 

Thus we obtain the same answer as negation by failure, but with an explicit 
record of the hypothesis Ab2*. Notice too that the search space is almost 
identical to the one generated by negation by failure. There are two 
differences: First, there is an extra step involved in reasoning forward 
from the abductive hypothesis, resolving with an integrity constraint, 
before deriving the denial which is the top clause in the corresponding 
subsidiary search space for negation by failure. Second, there is an 
additional branch also generated by reasoning forward from the abductive 

hypothesis. This branch retraces in a forward direction the path originally 
generated backward from the initial goal to the abductive subgoal. 

In the restricted version of the consistency method which we use in this 
paper, these branches will not be explored. However, at the end of the 
paper we will present examples where exploring such branches is 
necessary to ensure consistency. 

Nested Negation 
The following example illustrates the need for further integrity constraints 
relating abducible predicates to their complements. It also illustrates, more 
simply than the Hanks-McDermott (1987) example, further semantic 
anomalies of Default Logic and Circumscription. Notice that our example 
has the form of a stratifled logic program: 

p t- not q 

q t- not r 
The program has two minimal models {q} and {p, r}. 
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As in Reiter's Quaker-Republican example, Default Logic derives 
alternative, mutually inconsistent conclusions, and circumscription derives 
a weak, disjunctive conclusion. In considering their more complex 
example, Hanks and McDermott argue, in effect, that only the flrst of the 
two models is intuitively correct. They do not consider negation by failure 
which computes the one, "intended" model, but not the other. ( In order to 

negation as failure to the Yale Shooting Problem, it is necessary to 

transform a sentence of the form a y bt- c to a clause of the form 

at- c & not b . It is this transformation from a clause with disjunction to 
one with negation by failure which eliminates the unintended model). 

Transforming the example into an abduction framework, we obtain the 

cl~.uses and integrity constraints: 

p t- q* 

q t- r* 

t- q* &q 

t-r*&r 

where q* are r* are abducible. 

Like Default Logic and unlike negation by failure, abduction derives two 

mutually incompatible conclusions: 
q supported by the hypothesis r* and 
p supported by the hypothesis q*. 

We can eliminate the second, "unintended" conclusion by including extra 
integrity constraints • as discussed in the following section. 

More general form'S of integrity constraints 
The preceding example illustrates the need for integrity constraints other 
than denials. Such constraints are common in the field of deductive 
databases. Eshghi [1987] also discusses the lise of such constraints in a 
abductive formulation of the plan-formation problem. He uses metalevel 
constraints of the form "p must be provable if q is provable". Reiter 
[1987) proposes a similar metalevel interpretation of constraints within a 
modal logic. Sadri and ~owalski [1988] rewrite integrity constraints as 
denials using negation by failure. Interpreting negation by failure as non­
provability gives their integrity constraints a similar metalevel character. 
Noel [1988} and Small [1988] have also proposed metalevel interpretations 
of integrity constraints. 
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In this paper, we shall consider, in addition to integrity constraints which 

are denials, only metalevel constraints which are disjunctions of the form 

Oemo(TuD. P*(t)) v Oemo(TuD. P(t))' 

where Oemo(A B) means the conclusion named B is provable from the 

theory named A and t is a variable-free term. A theory TuD. satisfies such 
a disjunctive integrity constraint if and only if at least one of P*(t) or P(t) is 

provable from TUD.. 

In practice, because P* is abducible and does not occur in the conclusion 

of any clause, the disjunctive integrity constraint in effect forces P*(t) to be 

added to D. if P(t) cannot be proved from TuD.. As we shall see below, 
the constraint is triggered during the consistency checking stage when a 
clause G of the form 

+- P*(t) & C 
is derived and the variable-free abducible atom P*(t) is selected. Activation 

of the constraint causes a subsidiary search space with top clause +-P(t) to 
be constructed. If the search space contains a refutation then P*(t) is not 

provable from T u ~ and the clause G has no successor. If the search 

space contains no refutation then P*(t) is added to D. and G has a 
successor which is C. 

Notice that, in practice, some form of finite failure will be needed to detect 

the failure of the subsidiary search space to contain a refutation. Notice too 
that funher abductions may be made during the course of generating a 
successful refutation. 

The Nested Negation Example Reconsidered 
Returning now to our propositional example 

p +- q* 

q +- r* 

+- q &q* 

+- r & r* 

augmented with additional integrity constraints 

Oemo(TuD. q) v Oemo(TuD. q*) 

Oemo(TuD. r) v Oemo(TuD. r*) 
we obtain the follOwing search space: 
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, f-- P 

f-­ q* 1q*

1f-­ q 

, f-­ r* 

If' 
0 

Inconsistent 

I fail, therefore 
assume r* 

L 
fail 

Here the innermost subsidiary search space corresponds to the application 
of the disjunctive integrity constraint for rand r*. To satisfy this constraint, 

we must show that either r or r* is provable from T u ~. Since the attempt 

to prove r fails, we must ensure that r* is provable. But r* is an abducible 

atom. The only way to make it provable is to add it to ~. But this means 
that our original assumption q* is inconsistent. Notice that except for the 

first step of the attempt to show q* is consistent, the search space is 
identical to the search space for negation by failure. This shows, 
therefore, that like negation by failure, abduction with appropriate integrity 
constraints avoids the Ha~-McDermott problem. 

In the sequel we shall assume that the abduction framework which results 

from transforming a logic program includes a potentially infinite set of 

disjunctive integrity ~nstraints having the form 

Oemo(Tv~ P*(t)) 'If Oemo(Tv.~ P(t)) 
for every- abducible predicate P* and for every variable-free term t. Where 
the context makes the intended meaning clear, we will avoid writing the 
integrity constraints explicitly. 
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Non-stratified Negation 
Abduction can deal with cases where ordinary negation by failure is 
semantically and operationally inadequate. Consider, for example, the 

non-stratified program 

p f:- not q 

q f:- not p. 
the abduction framework, we obtain the follo.wing 

search space: 

f- P 

f- q* q* 

f- q 

f- p' ! 
f- P 

~q. 

because of 
assumption q* 

consistent 

o 

Here the refutation in the innermost subsidiary search space makes use of 

the hypothesis q* which is assumed to hold unless it is inconsistent. The 

search space computes ~ = {q'} which corresponds to the stable model 
{pl. Because p and q are symmetric in this example, it is similarly possible 
to compute an alternative ~ = {p'} cmresponding to the alternative stable 
model {q}. Thus abduction is semantically well-defmed and operationally 
well behaved in this case, where negation by failure is not. 

Before defining the abduction procedure more precisely for the negation by 
failure case, consider this elaboration of the preceding example: 

1 
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r f:- P and q 
p f:- not q 

q f:- not p 
Here p and q are abductive consequences supported by incompatible 
hypotheses. As a consequence r is not an abductive consequence. This 

example shows that it is necessary to keep an explicit record of the 

hypotheses generated when solving subgoals. so that they can be checked 
for mutual consistency when solving conjoint subgoals. 

A Restricted Version of the Abduction Procedure 
We now define a restricted version of the abduction procedure, which is 
general enough to deal correctly with all of the preceding examples. The 

proof procedure is a generalisation of SLDNE 

Let T be a Horn clause theory, A a set of abducible predicates of the form 
p. (Le. distinguished by the superscript ..... ), and I a set of integrity 

constraints of the form 

f:- P*(x) & P(x) 

Demo(Tu~ P'(t)) v Demo(Tu~ P(t)). 
for all abducible predicates P' and for all terms t from the Herbrand 
universe of T. r.y.Ie call these the integrity constraints for the atom P*(t». 
Let the abducible predicates P' not occur in the conclusions of clauses of 
T. Analogously with SLDNF, let R be a safe computation rule (one that 
selects an abducible atom only if it contains no variables). Finally let ~1 be 
a set of abducible atoms satisfying the integrity constraints for these atoms. 
(Initially ~1 is empty). ' 

An abductive derivation from ) to (Gn ~n) is a sequence 

(G1 

such that, for each i. 1 So i < 0, Gi has the form f-I & I', where (without 
loss of generality) R selects I, and I' is a' (possibly empty) collection of 
atoms, and 

abdl) if I is not abducible, then 

Gi+1 = C and~i+1 = ~j 
where C is the resolvent of some 
clause in T with the clause Gj on the selected literal I; 

\ 
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abd2) 	 if I is abducible and IE ,1j, then 


Gj+ 1 = +- I' and ,1;+1 = ,1j; and 


abd3) if' is abducible, '~,1f, 


has the fonn k*, and 

there is a consistency derivation 


from ({+- k} ,1iv{k*}) to ({} ,1'), 

then Gj+ 1 = +- " and ,1j+1 = ,1', 
(where { J is the empty set). 

A refutation is an abductive derivation to a pair (0 ,1'). 

Note: 

(1) 	 Case (abd3) makes the use of the step from k* to +-k 

obtained by resolving with the denial +-k & k*, which was made 
explicit before in our earlier examples. 

(2) 	 We shall define a consistency derivation to be a finite sequence of 
pairs (Fj ,1j) where Fj is a set of clauses representing the tips of a 

search tree. Every step in the derivation involves selecting a branch 
of the search tree from which to continue the selecting a literal 
from the tip of the branch and attempting to extend the branch 
resolution or abduction. If the branch cannot be extended (i.e. the 
branch "fails"), it is removed from the search tree. The derivation 
successfully terminates when there are no branches left in the search 
space. 

Thus a consistency derivation is effectively a search space of 
abductive derivations all of whose branches finitely fail. None-the­
less, we need separate definitions for consistency derivations and 
abductive derivations because of the different ways abductive 
hypotheses are treated in the two cases. In particular, in the case of 
abductive derivations we want abductive subgoals to succeed, in the 
case of consistency derivations we want them to faiL 

Let T, A, I, Rand,11 be given as in the definition of abductive derivation. 

A consistency derivation from (F1 ,11) to (Fn ,1n) is a sequence 
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(F1 ,11), (F2,12), ... , (Fn ,1n) 

such that, for each i, 1 ~ i < n, Fj has the fonn {+- k & k'} v F'j, where 

(without loss of generality) the clause +-k&k' has been selected (to 

continue the search), R selects k, and 

con I) 	 if k is not abducible, then 


Fi+ 1 = C' v Fj' and ,1j+1 =,1j 


where C' is the set of all resolvents 
of clauses in T with the selected clause on the 

selected literal, and 0 ~ C'; 

con2) if k is abducible, k E ,1j, 


and k' is not empty, then 


= {+- k'} v Fj' and ,1j+1 = ,1j; and 


con3) 	 if k is abducible, k~,1i> and 

k has the fonn '*, then 
if there is an abductive derivation 

from (+-I ,1j) to (0 ,1') 

then Fj+ 1 =F'j and ,1j+1 = ,1'; 
otherwise, if k' is not empty, and there is no 
such derivation then 

Fj+1 = {+- k'} v Fj', and,1j+1 = dj 
It is clear from the definition that the notion of abductive derivation is a 
generalisation of SLDNF. 

Correctness' 
In general, because of the presence of disjunctive, metalevel integrity 
constraints, a theory T will not ordinarily, by itself, satisfy all of its 
integrity' constraints. These constraints can only be satisfied by generating 
additional abductive hypotheses. However, the abduction procedure can 

generate finitely many abductive hypotheses, and this, in general, is 
not adequate to satisfy the potentially infinite number of integrity 
constraints. 
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The abductive framework corresponding to the unstratified program 

r f- not r 

P f- not q 


shows another limitation of the abduction procedure. Although there is an 

abductive derivation from (f-P {}) to d'), 11' = {q*}, q* is inconsistent 

with the framework, because the clause 

r f- not r 

alone is inconsistent with the integrity constraints. Because the 

consistency derivation is a restricted form of forward reasoning from an 

abductive hypothesis, it can only hope to detect inconsistencies which 

involve the hypothesis. 

As a consequence we define the correctness of an abduction procedure to 

mean that for every abductive framework <T, I, A>, such that Tul is 

consistent, whenever there exists an abductive derivation from (f-Q { }) to 

d'), then there exists a (possibly infinite) d such that l1'~d and TUd 
satisfies all the integrity constraints. In the locally stratified case, we can 

prove the following 

Theorem: If the abduction framework corresponds to the transformation 

of a locally stratified logic program, then the restricted abduction procedure 

is correct. 

The restricted abduction procedure is also correct for a wider class of 

programs, which includes for example the framework corresponding to the 

program 

P if not q 
q if not p, 

as shown earlier. However, the proof procedure needs to be extended to 

deal correctly with other cases, as the following example shows. 
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The abduction framework corresponding to the program 

r f- not r 

rf-q 

P f- not q 

q f- not p 

has a derivation from (f-P {}) to (0 d'), d' = {q*}, but the only d such 

that Tud satisfies the integrity constraints d = {pO}, which is not a superset 

of d'. 

At the moment we do not have a general criteria to decide for what types of 

program the restricted abduction procedure is correct. We conjecture that 

an appropriate adaptation of the Consistency Method for proving integrity 

would be sufficient to guarantee correctness in general. 

The Relationship with Stable Model Semantics 
At the time of writing this paper, the stable model semantics (Gelfond and 

Lifschitz, 1988) seems to be the most general semantics for logic 

programs. It can be shown that there is a one-ta-one correspondence 

between stable models and abductive hypotheses d satisfying the integrity 

constraints for negation by failure: 

Theorem: Let L be a logic program, and let < L*, I, A > be the 

corresponding abductive framework. 

a) 	 For any stable model M of L, there is a d such that L * U d 

satisfies I, wh'ere d is defined by: 

d* E d iff d 'IE M. 

b) 	 For any d such that L *uA satisfiesl, there is a stable model 
M of L, where M is defined 

m E 	 Miff m belongs to the Herbrand base of L and 

L*u dl=m. 

Gelfond and Lifschitz regard a logic program as having a well-defined 

semantics if and only if it has a unique stable model. The abductive 
approach, on the other hand, .assigns a semantics to programs having 
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mUltiple stable models. This is possible because, whereas stable models M 
are only implicit, the corresponding hypotheses t,. are explicit 

Conclusion 
In this paper we have concentrated on a special case of abduction 
corresponding to negation by failure. We have shown that, in this special 
case, the semantics of abduction corresponds to, and generalises, the stable 
model semantics. We have also defined a restricted version of the 
abduction procedure, which closely resembles, and generalises, SLDNF. 
We have shown that the restricted procedure is correct for a class that 
includes locally stratified programs, and we have conjectured that the 
procedure can be made correct in general by adapting the Consistency 
Method for proving database integrity to the problem of proving the 
consistency of abductive hypotheses. In a related paper [Kowalski and 
Sadri, 1989] we have investigated similar problems from the opposite 

of view, showing that in certain cases abduction with integrity 
checking can be replaced by negation by failure. 
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