
Abduction Compared with

Negation by Failure

K. Eshghi *

Hewlett Packard Laboratories,

Filton Road, Stoke Gifford, Bristol BS12 6QZ

R. A. Kowalski

Department of Computing,

Imperial College of Science and Technology

180 Queens Gate, London SW7 2BZ

Abstract

Horn clause logic programming can be extended to include abduction with
integrity constraints. In the resulting extension of logic programming,
negation by failure can be simulated by making negative conditions
abducible and by imposing appropriate denials and disjunctions as integrity
constraints. This gives an alternative semantics for negation by failure,
which generalises the stable model semantics of negation by failure.

The abductive extension of logic programming extends negation by failure
in three ways: (1) computation can be perfonned in alternative minimal
models, (2) positive as well as negative conditions can be made abducible,
and (3) other integrity constraints can also be accommodated.

* This paper was written while the first author was at Imperial College.

235

Introduction
The tenn "abduction" was introduced by the philosopher Charles Peirce
[1931] to refer to a particular kind of hypothetical reasoning. In the
simplest case, it has the fonn:

From A and A f- B

infer B as a possible "explanation" of A.

Abduction has been given prominence in Charniak and McDennot's [1985]
"Introduction to Artificial Intelligence", where it has been applied to expert
systems and story comprehension.

Independently, several authors have developed deductive techniques to
drive the generation of abductive hypotheses. Cox and Pietrzykowski
[1986] construct hypotheses from the "dead ends" of linear resolution
proofs. Finger and Genesereth [1985] generate "deductive solutions to
design problems" using the "residue" left behind in resolution proofs.
Poole, Goebel and Aleliunas [1987] also use linear resolution to generate
hypotheses. All impose the restriction that hypotheses should be
consistent with the "knowledge base".

Abduction is a fonn of non-monotonic reasoning, because hypotheses
which are consistent with one state of a knowledge base may become
inconSistent when new knowledge is added. Poole [1988] argues that
abduction is preferable to noh-monotonic logics for default reasoning. In
this view, defaults are hypotheses fonnulated within classical logic rather
than conclusions derived withln some fonn of non-monotonic logic. The
similarity between abduction and default reasoning was also pointed out in
[Kowalski, 1979].

In this paper we show how abduction can be integrated with logic
programming, and we concentrate on the use of abduction to generalise
negation by failure.

Conditional Answers Compared with Abduction
In the simplest case, a logic program consists of a set of Horn Clauses,
which are used backward to_reduce goals to sub goals. The initial goal is
solved when there are no subgollls left;

236

In Query-the-User [Sergot, 83], a subgoal can be solved by asking the
user whether the sub goal holds and receiving an answer "yes". In more

sophisticated versions of query-the-user, if t!i.e user doesn't know the
answer, then the solution can be regarded as being conditional on the
answer being "yes".

Consider the following simple example:

Locomotion(x fly) ~ Bird(x) & Normal-bfrd(x)

Locomotion(x walk) ~ Ostrich(x)

Bird(x) ~ Ostrich(x)
Ostrich(John)

Given the goal ~Locomotion(John y) query-the-user would
generate an unconditional answer Locomotion(John walk) and a
conditional answer Locomotion(John fly) if Normal-bfrd(John).
Abduction would, in place of the conditional answer, generate the
hypothesis Normal-bird(John) justifying the conclusion

Locomotion(John fly).

In the propositional case, given a query ~Q and theory T, a conditional

answer is a clause of the form Q ~ 8 such that T F Q ~ 8 .

Under the same conditions. abduction generates 8 such that T U 8 F Q

Conditional answers and abductive hypotheses can be implemented by
means of the same backward reasoning mechanism. We believe that
abduction is more appropriate in a knowledge assimilation framework
[Kowalski, 19791 when the theory undergoes change for other reasons.

We restrict the hypotheses that can be generated by abduction by insisting
that their predicate symbols should belong to a set A of predicate symbols,
called abducible predicates. An atom is abducible if its predicate symbol
belongs to A. Some authors consider more liberal syntactic forms for
hypotheses. However, these can be reduced to the simpler case of
abducible atoms, by using Poole's naming device [Poole 88].

237

In this paper we restrict our attention funher to the generation of variable­
free hypotheses. As we shall see later, this is the analogue of restricting
the selection of negative subgoals to variable-free literals in negation by
failure. It is possible to liberalise this restriction. But in this case it is

necessary to introduce skolem constants into hypotheses [Cox and
Pietrzykowski, 1986].

Integrity Checking
The generation of abductive hypotheses can be restricted by means of

constraints. Thus when we have the theory T, the integrity

constraints I and the abductive hypotheses 8, we insist that TU8 must

satisfy 1. The simplest form of integrity constraint is a denial; and the
simplest notion of constraint satisfaction is logical consistency.

Suppose we add to our original example the denial

~ Ostrich(x) & Normal-bird(x).

The denial functions as an integrity constraint which causes the rejection of
the abductive hypothesis Normal-bird(John) and of the conclusion

Locomotion(John fly) that it justifies.

Integrity constraints which are denials can be checked (inefficiently) by
reasoning backward from the denials. The constraints are satisfied if there
is no refutation. Thus, in theory at least, the addition of denials as integrity
constraints does not necessitate any extension of the theorem-proving
techniques used to executeiiom clause programs.

In practice, however, it is g&'erally more efficient to check consistency
incrementally by reasoning forward from abductive hypotheses regarded as
updates to the theory. oSuch forward reasoning from updates is the basis
for the Consistency Method~[Sadri & Kowalski 1988] for checking
integrity in deductive databases.

In this paper we shall use a restricted version of the consistency method. to
test the consistency of abductive hypotheses. We shall see that this version
of the method is similar in behaviour to the behaviour of ordinary negation
by failure.

238

The Abduction Framework
We can now state the general specification (and declarative semantics) for

abduction:

<T,I,A> is an abduction framework iff
T is a Horn clause theory (without denials),

is a set of integrity constraints,
A is a set of predicate symbols, called abducible predicates.

Given the abduction framework <T,I,A>, the hypothesis set .:1 is an

abductive solution for the existentially quantified conjunction of atoms Q
iff

.:1 is a set of variable free abducible atoms,

Tu.:1I=Q

T u .:1 satisfies l.

For integrity constraints which are denials, T u .:1 satisfies I if and only if

T u .:1 u I is consistent. Later we will defme satisfaction for more general

kinds of integrity constraints.

Alternative Hypotheses
In general there may be several alternative collections of hypotheses that
satisfy the integrity constraints but are mutually inconsistent. This can
happen, for example, in situations where Reiter's (1980) Default Logic
would derive multiple conclusions holding in alternative extensions.
Consider the following formulation of one of his examples:

Support(x Pacifism) r Quaker(x) & Normal-quaker(x)

Support(x Defence) r Republican(x) & Normal-republican(x)

f- Support(x Pacifism) & Support(x Defence}

Quaker(Nixon)

Republican(Nixon)

Using the following default rules:

Conclude Normal-quaker(x) if Normal-quaker(x) is consistent

Conclude Normal-republican(x) if Normal-republican(x) is consistent,

239

in Default Logic, it is possible both to derive the conclusion
Support(Nixon Pacifism) and to derive the conclusion Support(Nixon
Defence). But it is not possible to derive the conjunction of the two
conclusions. This anomally arises because the extensions used to derive
the two conclusions separately are mutually inconsistent. With an
appropriate reformulation of the example, circumscription (McCarthy
1986) avoids the anomaly at the expense of deriving the weaker conclusion

Support(Nixon Pacifism) xor Support(Nixon Defence)
where "xor" is exclusive "or".

Using abduction, making Normal-republican and Normal-quaker

abducible, in response to the query rSupport(Nixon x) we obtain two
alternative conclusions:

Support(Nixon Pacifism), justified by the hypothesis
Normal-quaker(Nixon) and

Support(Nixon Defence), justified by the hypothesis
Normal-republican(Nixon).

The two conclusions are incompatible with one another, but each is
consistent on its own. Moreover, the alternative hypotheses under which
the conclusions hold have been made explicit

By making hypotheses explicit, abduction provides more information than
either Default Logic or Circumscription. Thus, in this example, we might
try to resolve the conflict between the alternative theories by gathering
more information, perhaps' by performing a "discriminating experiment" in
an attempt to refute one of ~e hypotheses. This contrasts with approaches
such as prioritized circumscription, [Lifschitz. 1986] which require that a
priority between competing hypotheses be assigned in advance.

Both Poole and Finger-Gene~ereth show that there is a close connection
between 'alternative hypotheses generated by abduction and alternative
extensions in Reiter's Default Logic. The main difference is that abductive
hypotheses are explicit and only determine partial extensions of the
knowledge base, whereas default logic generates maximal extensions
which are implicit. Reiter in the conclusion of his recent survey of non­
monotonic reasoning [Reiter 1987] suggests that it might be profitable to
view default reasoning as a kind of hypothesis formulation.

240

The purpose of this paper is to show that abduction is a generalisation of
negation by failure. In particular, we will show that the situation where
abduction generates alternative, mutually inconsistent sets of hypotheses
corresponds to the case where a logic program which is not locally
stratified (Przymuszynski 1988) has several stable models (Gelfond and

Lifschitz 1988).

The simulation of negation by failure
The remainder of this paper concerns the use of abduction to generalise
negation by failure. As touched upon in the previous sections of this
paper, abduction has many other applications. A further discussion of

these is beyond the scope of this work.

Consider the following variant of our earlier example. Notice that Ab1 is
the complement of the predicate Normal-bird used earlier and that (v)

below was expressed earlier as a denial.
(i) 	 Locomotion(x fly) ~ Bird(x) & not Ab1 (x)

Locomotion(x walk) ~ Ostrich(x) & not Ab2(x)

(iii) 	 Bird(x) ~ Ostrich(x)

Ostrich(John)

(v) 	 Ab1 (x) ~ Ostrich(x)
The following search space is obtained using SLDNF [Clark 1978, Lloyd

1987] to find John's mode of locomotion:

r Lacamotlan(Jahn y)

r Ostrlch(Jahn) &r Blrd(Jahn) &
nat 	 Ab2(Jahn)nat 	 Ab1(Jahn)

r nat Ab2(Jahn)r nat Ab1(Jahn)

t~ 	Ab'(John)Ab'(John) ~

l~ Ostrlch(Jahn)
fail Cl fail

241

In the above figure (following a notation suggested by Chris Hogger), the
box shaped enclosures depict the subsidiary search spaces for negation by
failure.

Using a simple transformation (to be elaborated later), we can convert a
logic program L which uses negation by failure to a corresponding
abduction framework <L *, I,A>. First, for every predicate symbol P in L,
we introduce an additional, new predicate symbol P*.

a) 	 L* is the set of all clauses obtained from L by replacing every
occurrence of a negative condition not P(x), where X can be a
vector of variables, by a positive condition P*(x}. (Clauses in L
which contain no negative conditions appear in L* unchanged).

b) I is the set of all denials of the form

~ P*(x) & P(x}
for all P* introduced by (a).

c) A is the set of all P* introduced by (a).

Notice that the integrity constraints in I express only half of a definition of
P* as the complement of P. We will introduce integrity constraints
corresponding to the other half later.

Applied to the program (i)-(v) above, the transformation yields the new
program:

Locomotion(x fly)'~ Bird(x) & Ab1 *(x)

Locomotion(x walk) ~ Ostrich(x) & Ab2*(x)

Bird(x) +- Ostrich(Sc}

Ostrich(John)

Ab1 (x) ~ Ostrich(x)

the integrity constraints '

~ Ab1*(x) & Ab1

~ Ab2*(x) & Ab2(x)

and the abducible predicates Ab1 * and Ab2*. Notice that Ab1* is iust the
predicate Normal-bird used earlier.

With the same goals as before, we now obtain the following search space:
0

242

(- Locomo,tlon(John y)

(-OstrICh(John) &

Ab1*(John)

(- Blrd(John) &

Ab2*(John)

(- Ab*1 (Jo hn) (-Ab2*(John)

Ab1*(John) r1. Ab2*(John)
I (- Ab1(John)
~ I 1(- Ab2(John)

I (- Ostrlch(JOhn)

consistentCJ inconsistent fail [J

Thus we obtain the same answer as negation by failure, but with an explicit
record of the hypothesis Ab2*. Notice too that the search space is almost
identical to the one generated by negation by failure. There are two
differences: First, there is an extra step involved in reasoning forward
from the abductive hypothesis, resolving with an integrity constraint,
before deriving the denial which is the top clause in the corresponding
subsidiary search space for negation by failure. Second, there is an
additional branch also generated by reasoning forward from the abductive

hypothesis. This branch retraces in a forward direction the path originally
generated backward from the initial goal to the abductive subgoal.

In the restricted version of the consistency method which we use in this
paper, these branches will not be explored. However, at the end of the
paper we will present examples where exploring such branches is
necessary to ensure consistency.

Nested Negation
The following example illustrates the need for further integrity constraints
relating abducible predicates to their complements. It also illustrates, more
simply than the Hanks-McDermott (1987) example, further semantic
anomalies of Default Logic and Circumscription. Notice that our example
has the form of a stratifled logic program:

p t- not q

q t- not r
The program has two minimal models {q} and {p, r}.

243

As in Reiter's Quaker-Republican example, Default Logic derives
alternative, mutually inconsistent conclusions, and circumscription derives
a weak, disjunctive conclusion. In considering their more complex
example, Hanks and McDermott argue, in effect, that only the flrst of the
two models is intuitively correct. They do not consider negation by failure
which computes the one, "intended" model, but not the other. (In order to

negation as failure to the Yale Shooting Problem, it is necessary to

transform a sentence of the form a y bt- c to a clause of the form

at- c & not b . It is this transformation from a clause with disjunction to
one with negation by failure which eliminates the unintended model).

Transforming the example into an abduction framework, we obtain the

cl~.uses and integrity constraints:

p t- q*

q t- r*

t- q* &q

t-r*&r

where q* are r* are abducible.

Like Default Logic and unlike negation by failure, abduction derives two

mutually incompatible conclusions:
q supported by the hypothesis r* and
p supported by the hypothesis q*.

We can eliminate the second, "unintended" conclusion by including extra
integrity constraints • as discussed in the following section.

More general form'S of integrity constraints
The preceding example illustrates the need for integrity constraints other
than denials. Such constraints are common in the field of deductive
databases. Eshghi [1987] also discusses the lise of such constraints in a
abductive formulation of the plan-formation problem. He uses metalevel
constraints of the form "p must be provable if q is provable". Reiter
[1987) proposes a similar metalevel interpretation of constraints within a
modal logic. Sadri and ~owalski [1988] rewrite integrity constraints as
denials using negation by failure. Interpreting negation by failure as non­
provability gives their integrity constraints a similar metalevel character.
Noel [1988} and Small [1988] have also proposed metalevel interpretations
of integrity constraints.

244

In this paper, we shall consider, in addition to integrity constraints which

are denials, only metalevel constraints which are disjunctions of the form

Oemo(TuD. P*(t)) v Oemo(TuD. P(t))'

where Oemo(A B) means the conclusion named B is provable from the

theory named A and t is a variable-free term. A theory TuD. satisfies such
a disjunctive integrity constraint if and only if at least one of P*(t) or P(t) is

provable from TUD..

In practice, because P* is abducible and does not occur in the conclusion

of any clause, the disjunctive integrity constraint in effect forces P*(t) to be

added to D. if P(t) cannot be proved from TuD.. As we shall see below,
the constraint is triggered during the consistency checking stage when a
clause G of the form

+- P*(t) & C
is derived and the variable-free abducible atom P*(t) is selected. Activation

of the constraint causes a subsidiary search space with top clause +-P(t) to
be constructed. If the search space contains a refutation then P*(t) is not

provable from T u ~ and the clause G has no successor. If the search

space contains no refutation then P*(t) is added to D. and G has a
successor which is C.

Notice that, in practice, some form of finite failure will be needed to detect

the failure of the subsidiary search space to contain a refutation. Notice too
that funher abductions may be made during the course of generating a
successful refutation.

The Nested Negation Example Reconsidered
Returning now to our propositional example

p +- q*

q +- r*

+- q &q*

+- r & r*

augmented with additional integrity constraints

Oemo(TuD. q) v Oemo(TuD. q*)

Oemo(TuD. r) v Oemo(TuD. r*)
we obtain the follOwing search space:

245

, f-- P

f-­ q* 1q*

1f-­ q

, f-­ r*

If'
0

Inconsistent

I fail, therefore
assume r*

L
fail

Here the innermost subsidiary search space corresponds to the application
of the disjunctive integrity constraint for rand r*. To satisfy this constraint,

we must show that either r or r* is provable from T u ~. Since the attempt

to prove r fails, we must ensure that r* is provable. But r* is an abducible

atom. The only way to make it provable is to add it to ~. But this means
that our original assumption q* is inconsistent. Notice that except for the

first step of the attempt to show q* is consistent, the search space is
identical to the search space for negation by failure. This shows,
therefore, that like negation by failure, abduction with appropriate integrity
constraints avoids the Ha~-McDermott problem.

In the sequel we shall assume that the abduction framework which results

from transforming a logic program includes a potentially infinite set of

disjunctive integrity ~nstraints having the form

Oemo(Tv~ P*(t)) 'If Oemo(Tv.~ P(t))
for every- abducible predicate P* and for every variable-free term t. Where
the context makes the intended meaning clear, we will avoid writing the
integrity constraints explicitly.

246

Non-stratified Negation
Abduction can deal with cases where ordinary negation by failure is
semantically and operationally inadequate. Consider, for example, the

non-stratified program

p f:- not q

q f:- not p.
the abduction framework, we obtain the follo.wing

search space:

f- P

f- q* q*

f- q

f- p' !
f- P

~q.

because of
assumption q*

consistent

o

Here the refutation in the innermost subsidiary search space makes use of

the hypothesis q* which is assumed to hold unless it is inconsistent. The

search space computes ~ = {q'} which corresponds to the stable model
{pl. Because p and q are symmetric in this example, it is similarly possible
to compute an alternative ~ = {p'} cmresponding to the alternative stable
model {q}. Thus abduction is semantically well-defmed and operationally
well behaved in this case, where negation by failure is not.

Before defining the abduction procedure more precisely for the negation by
failure case, consider this elaboration of the preceding example:

1

247

r f:- P and q
p f:- not q

q f:- not p
Here p and q are abductive consequences supported by incompatible
hypotheses. As a consequence r is not an abductive consequence. This

example shows that it is necessary to keep an explicit record of the

hypotheses generated when solving subgoals. so that they can be checked
for mutual consistency when solving conjoint subgoals.

A Restricted Version of the Abduction Procedure
We now define a restricted version of the abduction procedure, which is
general enough to deal correctly with all of the preceding examples. The

proof procedure is a generalisation of SLDNE

Let T be a Horn clause theory, A a set of abducible predicates of the form
p. (Le. distinguished by the superscript), and I a set of integrity

constraints of the form

f:- P*(x) & P(x)

Demo(Tu~ P'(t)) v Demo(Tu~ P(t)).
for all abducible predicates P' and for all terms t from the Herbrand
universe of T. r.y.Ie call these the integrity constraints for the atom P*(t».
Let the abducible predicates P' not occur in the conclusions of clauses of
T. Analogously with SLDNF, let R be a safe computation rule (one that
selects an abducible atom only if it contains no variables). Finally let ~1 be
a set of abducible atoms satisfying the integrity constraints for these atoms.
(Initially ~1 is empty). '

An abductive derivation from) to (Gn ~n) is a sequence

(G1

such that, for each i. 1 So i < 0, Gi has the form f-I & I', where (without
loss of generality) R selects I, and I' is a' (possibly empty) collection of
atoms, and

abdl) if I is not abducible, then

Gi+1 = C and~i+1 = ~j
where C is the resolvent of some
clause in T with the clause Gj on the selected literal I;

\

248

abd2) 	 if I is abducible and IE ,1j, then

Gj+ 1 = +- I' and ,1;+1 = ,1j; and

abd3) if' is abducible, '~,1f,

has the fonn k*, and

there is a consistency derivation

from ({+- k} ,1iv{k*}) to ({} ,1'),

then Gj+ 1 = +- " and ,1j+1 = ,1',
(where { J is the empty set).

A refutation is an abductive derivation to a pair (0 ,1').

Note:

(1) 	 Case (abd3) makes the use of the step from k* to +-k

obtained by resolving with the denial +-k & k*, which was made
explicit before in our earlier examples.

(2) 	 We shall define a consistency derivation to be a finite sequence of
pairs (Fj ,1j) where Fj is a set of clauses representing the tips of a

search tree. Every step in the derivation involves selecting a branch
of the search tree from which to continue the selecting a literal
from the tip of the branch and attempting to extend the branch
resolution or abduction. If the branch cannot be extended (i.e. the
branch "fails"), it is removed from the search tree. The derivation
successfully terminates when there are no branches left in the search
space.

Thus a consistency derivation is effectively a search space of
abductive derivations all of whose branches finitely fail. None-the­
less, we need separate definitions for consistency derivations and
abductive derivations because of the different ways abductive
hypotheses are treated in the two cases. In particular, in the case of
abductive derivations we want abductive subgoals to succeed, in the
case of consistency derivations we want them to faiL

Let T, A, I, Rand,11 be given as in the definition of abductive derivation.

A consistency derivation from (F1 ,11) to (Fn ,1n) is a sequence

249

(F1 ,11), (F2,12), ... , (Fn ,1n)

such that, for each i, 1 ~ i < n, Fj has the fonn {+- k & k'} v F'j, where

(without loss of generality) the clause +-k&k' has been selected (to

continue the search), R selects k, and

con I) 	 if k is not abducible, then

Fi+ 1 = C' v Fj' and ,1j+1 =,1j

where C' is the set of all resolvents
of clauses in T with the selected clause on the

selected literal, and 0 ~ C';

con2) if k is abducible, k E ,1j,

and k' is not empty, then

= {+- k'} v Fj' and ,1j+1 = ,1j; and

con3) 	 if k is abducible, k~,1i> and

k has the fonn '*, then
if there is an abductive derivation

from (+-I ,1j) to (0 ,1')

then Fj+ 1 =F'j and ,1j+1 = ,1';
otherwise, if k' is not empty, and there is no
such derivation then

Fj+1 = {+- k'} v Fj', and,1j+1 = dj
It is clear from the definition that the notion of abductive derivation is a
generalisation of SLDNF.

Correctness'
In general, because of the presence of disjunctive, metalevel integrity
constraints, a theory T will not ordinarily, by itself, satisfy all of its
integrity' constraints. These constraints can only be satisfied by generating
additional abductive hypotheses. However, the abduction procedure can

generate finitely many abductive hypotheses, and this, in general, is
not adequate to satisfy the potentially infinite number of integrity
constraints.

250

The abductive framework corresponding to the unstratified program

r f- not r

P f- not q

shows another limitation of the abduction procedure. Although there is an

abductive derivation from (f-P {}) to d'), 11' = {q*}, q* is inconsistent

with the framework, because the clause

r f- not r

alone is inconsistent with the integrity constraints. Because the

consistency derivation is a restricted form of forward reasoning from an

abductive hypothesis, it can only hope to detect inconsistencies which

involve the hypothesis.

As a consequence we define the correctness of an abduction procedure to

mean that for every abductive framework <T, I, A>, such that Tul is

consistent, whenever there exists an abductive derivation from (f-Q { }) to

d'), then there exists a (possibly infinite) d such that l1'~d and TUd
satisfies all the integrity constraints. In the locally stratified case, we can

prove the following

Theorem: If the abduction framework corresponds to the transformation

of a locally stratified logic program, then the restricted abduction procedure

is correct.

The restricted abduction procedure is also correct for a wider class of

programs, which includes for example the framework corresponding to the

program

P if not q
q if not p,

as shown earlier. However, the proof procedure needs to be extended to

deal correctly with other cases, as the following example shows.

251

The abduction framework corresponding to the program

r f- not r

rf-q

P f- not q

q f- not p

has a derivation from (f-P {}) to (0 d'), d' = {q*}, but the only d such

that Tud satisfies the integrity constraints d = {pO}, which is not a superset

of d'.

At the moment we do not have a general criteria to decide for what types of

program the restricted abduction procedure is correct. We conjecture that

an appropriate adaptation of the Consistency Method for proving integrity

would be sufficient to guarantee correctness in general.

The Relationship with Stable Model Semantics
At the time of writing this paper, the stable model semantics (Gelfond and

Lifschitz, 1988) seems to be the most general semantics for logic

programs. It can be shown that there is a one-ta-one correspondence

between stable models and abductive hypotheses d satisfying the integrity

constraints for negation by failure:

Theorem: Let L be a logic program, and let < L*, I, A > be the

corresponding abductive framework.

a) 	 For any stable model M of L, there is a d such that L * U d

satisfies I, wh'ere d is defined by:

d* E d iff d 'IE M.

b) 	 For any d such that L *uA satisfiesl, there is a stable model
M of L, where M is defined

m E 	 Miff m belongs to the Herbrand base of L and

L*u dl=m.

Gelfond and Lifschitz regard a logic program as having a well-defined

semantics if and only if it has a unique stable model. The abductive
approach, on the other hand, .assigns a semantics to programs having

252

mUltiple stable models. This is possible because, whereas stable models M
are only implicit, the corresponding hypotheses t,. are explicit

Conclusion
In this paper we have concentrated on a special case of abduction
corresponding to negation by failure. We have shown that, in this special
case, the semantics of abduction corresponds to, and generalises, the stable
model semantics. We have also defined a restricted version of the
abduction procedure, which closely resembles, and generalises, SLDNF.
We have shown that the restricted procedure is correct for a class that
includes locally stratified programs, and we have conjectured that the
procedure can be made correct in general by adapting the Consistency
Method for proving database integrity to the problem of proving the
consistency of abductive hypotheses. In a related paper [Kowalski and
Sadri, 1989] we have investigated similar problems from the opposite

of view, showing that in certain cases abduction with integrity
checking can be replaced by negation by failure.

Acknowledgements
We are grateful to Fariba Sadri and Marek Sergot for many useful
discussions. This research was supported by the SCience and Engineering
Research Council.

References

Bowen, KA., and Kowalski, RA., [1982]: "Amalgamating Language and
Metalanguage in Logic Programming" Logic Programming (Clark, K.L., and
Tamlund, S.-A., eds). Academic Press, pp 153-172.

Charniak, E., and McDermott, D., [1985]: "Introduction to Artificial
Intelligence" Addison-Wesley Publishing Company.

Oark, KL., [1978): "Negation as failure". Logic and Data Bases (Gallaire, H.,
and Minker, J., eds.) Plenium Press, pp. 293-322.

Cox, P.T., and Pietrzykowski, T., [1986]: "Causes for events: their computation
and applications". Proc. CADE-86, O.H. Siekmann, ed.) Spinger-Verlag,
lecture notes in computer science, pp 608-621.

Eshghi, K., [1988]: "Abductive Planning with event calculus", Proc. Fifth
International Logic Programming Conference, MIT Press.

253

Finger, J.J., and Genesereth, M.R, [1985]: "RESIDUE: A deductive approach to
design synthesis. STAN-CS-85-1035, Stanford University.

Gelfond, M., and Lifschitz, V. [1988J:- The Stable Model Semantics for Logic
Programming. In Proceedings of the Fifth International Logic Programming
Conference and Symposium. (R Kowalski and K Bowen, eds.) MIT Press,
Cambridge, Mass. pp. 1070-1080.

Hanks, S. and McDermott, D., [1987]: "Default reasoning, non monotonic logics,
and the frame problem", AI Journal.

Kowalski, R.A., [19791: "Logic for Problem Solving", Elsevier North Holland,
New York.

Kowalski, RA. and Sadri, F. {1989j: "Logic programming without integrity
constraints", Department of Computing, Imperial College.

Lifschitz, V., [1986]: "Pointwise Circumscription", AAAI 1986.

Lloyd, J.W., [1987J "Foundations of Logic Programming", Second Edition,
Springer-Verlag.

McCarthy, J., [1986]: "Applications of circumscription to formal ising common
sense knowledge". Artificial Intelligence, Vol. 28, No.1, pp. 89-116.

Noel, P.,[1988] :"Semantic constraints in first order theories: a definition and
its application", Phd. Thesis, Unveristy of Manchester

Peirce, e.S., [1931]: "Collected papers of Charles Sanders Peirce". Vol. 2, 1931­
1958 (e. Hartshorn et ai, eds.) Harvard University Press

Poole, D. L., Goebel, RG., and AIeliunas [1987]: 'Theorist: A logical reasoning
system for defaults and diagnOSis. In N. Cercone and G. McCalla, eds. The
Knowledge Fronteer: Es~ys in the Representation of Knowledge, Spinger-
Verlag, pp. 331-352. .

Poole, D.L. [1988}: "A logi&1 framework for default reasoning". AI Journal,
August 88.

Przymusinski, T.e.,A1988]:- "On the Declarative Semantics of Deductive
Databases and Logic Programs", In Foundations orDeductive Databases and
Logic Programming (J. Minker, ed.) Morgan Kaufman, Los AItos, Ca. pp. 193­
216.

Reiter, R, [1980]: "A logic for default reasoning" Artificial Intelligence, Vol.
13, pp. 81-132.

Reiter, R,[1987]: "Nonmonotonic reasoning", Annual Review of Computer
Science, 1987

254 1
Reiter, R., [1988): "On integrity constraints" To appear in Theoretical aspects
of reasoning about knowledge II, Asilomar, Ca. March 6-9,1988.

Sadri, F., and Kowalski, R.A., (1988): "A theorem-proving approach to
database integrity". In Foundations of Deductive Databases and Logic
Programming <J. Minker, ed.) Morgan Kaufmann, Los Altos, Ca., pp. 313-362.

Sergot, M.J. [1983): "A query-the-user facility for logic programming"
Integrated Interactive Computer Systems (P. Degano and Sandewell, E., eds.)
North Holland Press, pp. 27-41. '

Small, c., [1988) "Guarded default databases: An approach to the control of
incomplete information". Birkbeck College, University of London.

'­

