
LOGIC FOR PROBLEM SOLVING

Robert Kowalski
Imperial College London

12 October 2014

PREFACE

It has been fascinating to reflect and comment on the way the topics addressed
in this book have developed over the past 40 years or so, since the first version of
the book appeared as lecture notes in 1974. Many of the developments have had
an impact, not only in computing, but also more widely in such fields as math-
ematical, philosophical and informal logic. But just as interesting (and perhaps
more important) some of these developments have taken different directions from
the ones that I anticipated at the time.

I have organised my comments, chapter by chapter, at the end of the book,
leaving the 1979 text intact. This should make it easier to compare the state
of the subject in 1979 with the subsequent developments that I refer to in my
commentary.

Although the main purpose of the commentary is to look back over the past
40 years or so, I hope that these reflections will also help to point the way to
future directions of work. In particular, I remain confident that the logic-based
approach to knowledge representation and problem solving that is the topic of this
book will continue to contribute to the improvement of both computer and human
intelligence for a considerable time into the future.

SUMMARY

When I was writing this book, I was clear about the problem-solving interpretation
of Horn clauses, and I knew that Horn clauses needed to be extended. However, I
did not know what extensions would be most important. In particular, I was torn
between the extension of Horn clauses given by the full clausal form of first-order
logic, and the extension given by logic programs with negative conditions. It has
turned out that the latter extension has been much more widely accepted.

2 Robert Kowalski Imperial College London 12 October 2014

Semantics of Logic Programs

In Chapter 11, I explored two different kinds of semantics for negative conditions of
logic programs - the object-level semantics (also called the completion semantics)
in which logic programs are definitions in if-and-only-if form, and the meta-level
semantics in which negative conditions are interpreted as meaning that the cor-
responding positive condition cannot be shown. Over the years, the meta-level
semantics has overshadowed the object-level one.

These days, the meta-level semantics is more commonly understood in model-
theoretic terms: In the simplest case, a logic program with negative conditions is
understood as determining a canonical model, and solving a goal is understood
as finding an instance of the goal that is true in the model. However, in Answer
Set Programming, a program can have many such models. The program itself
represents the goal, and different models represent different solutions of the goal.

This shift over time, from the completion semantics (in which solving a goal is
interpreted as proving a theorem in first-order logic) to the (meta-level) model-
theoretic semantics, is part of a wider shift in logic-based computing: from theorem-
proving to model-generation. This shift is also associated with a better under-
standing of the relationship between logic programs and integrity constraints and
with a greater appreciation of integrity constraints.

Goals as Integrity Constraints

When I was writing the book, I considered integrity constraints as supporting
the development and maintenance of logic programs, along the lines suggested in
Chapter 9. But back then, the semantics of integrity constraints was even more
confused than the semantics of logic programs with negative conditions.

Today, I believe that the relationship between logic programs and integrity con-
straints is like the relationship between an agent’s beliefs and the agent’s goals.
If logic programs represent the beliefs of an intelligent agent, then integrity con-
straints, in the form of sentences of full first-order logic, represent the agent’s
goals. In a similar way to that in which an agent’s beliefs support the agent in
maintaining and achieving its goals, logic programs support integrity constraints,
by helping to generate models in which the integrity constraints are true.

I was struggling to understand the relationship between goals and beliefs when
I was writing Chapter 13. Moreover, I did not appreciate then the importance of
actions in generating new information that, together with existing beliefs, can help
to make an agent’s goals true. The information systems of Chapter 13 are open
to assimilate changes in the world, but they are passive, accepting those changes
without having the power to generate changes of their own.

In recent years, the notion of an intelligent agent that can both assimilate
information and generate actions has become the dominant paradigm in artificial
intelligence. It has also become the inspiration for much of my own work, in which
the task of an intelligent agent is to generate actions, to make the agent’s goals
true in the model determined by the agent’s beliefs about the world.

Logic for Problem Solving 3

CHAPTER 1

Although the focus of the book is on understanding logical inference in problem
solving terms, I wanted to emphasize the declarative nature of logic by devoting
the first two chapters to the topics of semantics and knowledge representation.
None the less, despite my good intentions, I fear that my treatment of semantics
in this chapter was inadequate.

The Importance of Model-theoretic Semantics

It is misleading to say, as I do on page 1, that “logic is not concerned with the
truth, falsity or acceptability of individual sentences”. On the contrary, logic
is concerned, for example, with the fact that there is no interpretation I that
makes the sentence p and not p true. More generally, given a sentence s and
an interpretation I, logic is concerned with checking whether I is a model of s,
namely an interpretation that makes s true. Given a set of sentences S, logic is
also concerned both with determining whether S is satisfied by an interpretation
I, and in generating interpretations I that are models of S.

Over the last 45 years or so, much of my own research has been concerned with
attempting to find the right balance between semantics and inference. Most of the
time, my research has been dominated by a syntactic view, which elevates infer-
ence over semantics. The most extreme manifestation of this view was the paper
“Logic without Model Theory” [Kowalski, 1995]. Since then, having argued the
case against model theory and having considered the arguments and the counter-
arguments, I have modified my position, embracing a form of model theory that
can be regarded as reconciling the syntactic and semantic views. The most recent
example of this conversion is the paper “Reactive Computing as Model Genera-
tion” [Kowalski and Sadri, 2014]. I will document some of the reasons for this
change in some of my commentary on the later chapters of this book.

The version of model theory that I now advocate is equivalent to the one pre-
sented on pages 14 and 15, but with a different emphasis on satisfiability and
truth, rather than on inconsistency. The new version still has a somewhat syn-
tactic character in its restriction of interpretations to Herbrand interpretations,
which are sets of variable-free (also called ground) atomic sentences. But it is
firmly committed to the notion of truth, building on the definition of truth for
ground atomic sentences: A ground atom A is true in a Herbrand interpretation
I if (and only if) A ∈ I.

Restricting interpretations to Herbrand interpretations I does away with any
mystery about the nature of the individuals and relationships that belong to I.
An individual belongs to a Herbrand interpretation I of a set of sentences S if
and only if it belongs to the “universe of discourse” (also called the Herbrand
universe), which is the set of all the ground terms that can be constructed from
the language of S. If that universe is too small for some purpose, then it can be
enlarged by including in the language extra constants that do not occur explicitly

4 Robert Kowalski Imperial College London 12 October 2014

in S. Thus a ground term t of the language is interpreted as the individual t in I.
A predicate symbol P of the language is interpreted as the relation that is the set
of all tuples (t1, . . . tn) such that P (t1, . . . tn) ∈ I.

Semantic Trees

Rereading this chapter, I am surprised that I did not present the semantic tree
model generation and proof procedure. It takes only a few lines, and it was the
topic of my first publication [Kowalski and Hayes, 1968], building on [Robinson,
1968]. More importantly, it is one of the simplest proof procedures for the clausal
form of logic imaginable.

Given a set of clauses S and an enumeration A1, . . . An, . . . of all the (possibly
infinitely many) ground atoms of the language of S (also called the Herbrand
base of S), the method explores a binary tree representing the set of all Herbrand
interpretations of S:

The root node has no label. Given a partial branch, from the root
node to a node N , assigning truth values to the atoms A1, . . . An, if
An is not the last atom in the enumeration, then the node N has two
children. One child has a label that assigns true to An+1, and the other
child has a label that assigns false to An+1.

The semantic tree procedure generates the tree, starting at the root
node, terminating a branch at a failure node N if the assignment of
truth values to the atoms A1, . . . An along the branch from the root to
N falsifies some clause C in S. (It does so by checking whether there
exists a substitution σ such that all the positive atoms A in Cσ are
assigned false and all the atoms A of the negative literals not A in Cσ
are assigned true.)

The semantic tree procedure is a sound and complete refutation procedure: If a
set of clauses has no model, then the procedure terminates in a finite number of
steps with a finite subtree all of whose leaf nodes are failure nodes.

The semantic tree procedure is also a sound and complete model generation
procedure: If a set of clauses has a model, then the procedure will generate the
Herbrand model M containing all the ground atomic sentences that are true in
the model. If M is finite, then the procedure will generate M in a finite number
of steps.

We will see later, in the commentary of Chapter 7, that the semantic tree method
can be used to provide a simple proof of the completeness of the resolution rule
of inference. Moreover, as [Baumgartner, 2000] points out, the method is closely
related to the Davis-Putnam-Logemann-Loveland [1962] (DPLL) algorithm used in
SAT solvers, to check whether a set of sentences in propositional logic is satisfiable.
Due in large part to the development of efficient SAT solvers since the mid-1990s,
they have become a core technology in computer science, with applications in

Logic for Problem Solving 5

such areas as combinatorial optimization, the automation of electronic design,
and hardware and software verification.

CHAPTER 2

Since the publication of the book, the use of clausal logic as a declarative repre-
sentation language has expanded greatly, especially in the fields of databases and
artificial intelligence.

Logic and Databases

In 1979, there was hardly any overlap between these two fields, the big exception
being the workshop on logic and databases organised by Minker, Gallaire and
Nicholas in 1977. But most of the workshop’s participants were researchers in
artificial intelligence, keen to apply the advances in logic developed for artificial
intelligence to database applications. There was little contact with researchers
working in mainstream database theory.

One of the concerns of the database community at the time was that relational
databases do not support the definition of recursive relations, such as the ancestor
relation:

Ancestor(x, y)← Parent(x, y)
Ancestor(x, y)← Ancestor(x, z), Ancestor(z, y)

(missing from my family relationships example in Chapter 1, but mentioned later in
Chapters 7 and 10). Aho and Ullman [1979] proposed to remedy this deficiency of
relational databases by extending the relational algebra with fixed point operators.
But researchers working in artificial intelligence and logic programming did not see
the need for fixed point operators, and were content to write down such definitions
in the obvious way presented here. Harel [1980] published a harsh review of the
logic and databases workshop proceedings [Gallaire and Minker, 1978], criticising
it for claiming that first-order logic could be used to define recursive relations in
such a simple way.

It took years to reconcile these two different intuitions about what it means
to define a relation, and it is too early in my commentary to go into the issues
here. Suffice it to say, for the moment, that the problem is touched upon in the
1979 book on page 31, and that I will discuss these issues in my commentary on
Chapter 11.

Despite this early tussle with the database community, the field of deductive
databases, represented by the papers in the 1978 workshop proceedings, prospered
in the 1980s. Much of this work was concerned with developing semantics and
proof procedures for integrity checking, to which I also contributed [Sadri and
Kowalski, 1988]. However, during the same period, there emerged a new Datalog
community, influenced by logic programming and deductive databases, but with
its roots firmly in the database field.

6 Robert Kowalski Imperial College London 12 October 2014

The distinguishing feature of Datalog is that it restricts deductive databases
to clauses that do not contain function symbols. This restriction means that the
Herbrand universe and Herbrand base of a Datalog program are always finite, and
query evaluation can be implemented in a way that always terminates.

The deductive database and Datalog fields also tended to view the semantics
of databases in different terms. In the field of deductive databases, a database
is viewed as a theory, and query evaluation is viewed as deriving answers that
are theorems, which are logically implied by the database. However, in Datalog,
influenced by relational database theory, a database represented in logical form is
viewed as defining a Herbrand interpretation, and query evaluation is viewed as
determining the truth value of the query. We will see later that these two views are
equivalent for Horn clause databases and for queries that are existentially quanti-
fied conjunctions of atomic formulae [van Emden and Kowalski, 1976]. However,
they differ for more general queries, and this is related to the two conflicting no-
tions of definition mentioned above.

Deductive databases and Datalog went into decline in the 1990s and early 2000s,
but Datalog experienced a revival in the mid 2000s “with a wide range of new
applications, including data integration, declarative networking, program analysis,
information extraction, network monitoring, security, optimizations, and cloud
computing” [Green et al, 2013].

In both deductive databases and Datalog, databases are defined by logic pro-
grams, which in Chapter 5 are identified with sets of Horn clauses. But these days
- and for many years now - (normal) logic programs are understood more generally
as referring to sets of sentences (also called clauses), which have the same form as
Horn clauses, but which can also have negative conditions:

A0 ← A1, ..., An, not B1, ..., not Bm where n ≥ 0 and m ≥ 0.

Keith Clark [1978] started working on negation in logic programming around 1976,
when I was about half way through writing the book. As a result, I did not deal
with normal logic programs in the 1979 book until Chapter 11. In my commentary,
I will discuss the effect that using normal logic programs would have had on the
earlier chapters of the book.

Legislation as Logic Programs

I introduce the term logic program in Chapter 5 in the context of the procedural
interpretation of Horn clauses. However, in both deductive databases and Datalog,
logic programs have a purely declarative flavour. This declarative reading of logic
programs is also shared with its application to the representation of law, which
came into prominence with the representation of the British Nationality Act as a
logic program [Sergot et al, 1986]. Although many readers will already be familiar
with this application, for those who are not, it is easiest to explain it by means of
some examples. Here is the very first sentence of the British Nationality Act of
1981:

Logic for Problem Solving 7

1.-(1) A person born in the United Kingdom after commencement shall
be a British citizen if at the time of the birth his father or mother is -

(a) a British citizen; or
(b) settled in the United Kingdom.

The sentence is very close to its logical representation as one sentence in the
standard form of logic, but four sentences written as Horn clauses.

The example is not entirely typical, because most legislation has the structure
of rules and exceptions. Here is a simplified example:

A person can be deprived of British citizenship, if the person received
that citizenship through naturalisation, and the application for nat-
uralisation was fraudulent. A person cannot be deprived of British
citizenship, if the deprivation would make the person stateless.

The literal translation into clausal form produces two clauses, say:

CanDeprive(x)← Naturalised(x), F raudulent(x)
← CanDeprive(x),WouldBeStateless(x)

However, in the situation exemplified by Naturalised(John), Fraudulent(John),
WouldBeStateless(John), this literal translation leads to inconsistency.

Obviously, the literal translation does not do justice to the law’s intention,
because the inconsistency is not intended. Here is a better translation of the
intended meaning into ordinary clausal form:

CanDeprive(x), Exception(x)← Naturalised(x), F raudulent(x)
Exception(x)←WouldBeStateless(x)
← CanDeprive(x), Exception(x)

The better translation introduces a new predicate Exception(x) expressing that
the person x is an exception to the rule. The third clause expresses, in effect, that
a person cannot be deprived of citizenship if the person is an exception.

It is even more natural to translate the two sentences into normal logic pro-
gramming form:

CanDeprive(x)← Naturalised(x), F raudulent(x), not Exception(x)
Exception(x)←WouldBeStateless(x)

Logic and the World Wide Web

Deductive databases, Datalog and the representation of law illustrate how logic
programming has developed as a declarative representation language since the
publication of this book. One other area, discussed in this chapter, that has also
developed significantly is the use of binary relations in knowledge representation,
especially in the context of the World Wide Web.

8 Robert Kowalski Imperial College London 12 October 2014

The basis for much of this work is the RDF (Resource Description Framework)
data model, which represents assertions about WWW resources as triples, which
encode binary relationships along with the name of the relation itself. The Web
Ontology Language (OWL), endorsed by the World Wide Web Consortium, em-
beds RDF in Description Logic [Baader, 2013], which focuses on the logic of unary
relations, which represent concepts and binary relations, which represent roles.

A good overview of the most important influences on the design of OWL from
RDF, Description Logics and frames is [Horrocks et al, 2003]. The semantic web
rule language SWRL [Horrocks et al, 2004] is a proposal to combine OWL with
rules expressed as Horn clauses.

CHAPTER 3

This is one of my favourite chapters. I particularly like its characterisation of
reasoning with Horn clauses as filling in a triangle, with the goal at the top and
the facts or assumptions at the bottom. A similar metaphor underlies the pyramid
principle [Minto, 2010], which is “a technique for working out your thinking on
any subject, so that you can present it clearly to someone else”. The fact that the
pyramid principle is designed for human use, rather than for computer implemen-
tation, supports my claim in the Preface, that “although the inference methods in
this book were originally designed for use by computers, they can also be used by
human beings”. This claim is also the topic of my second book [Kowalski, 2011].

The Relationship between Inconsistency and Logical Consequence

There is one change I would make to this Chapter, if I were writing it today. In-
stead of describing filling in the triangle as showing inconsistency, I would describe
it as showing logical consequence. The explanation in terms of inconsistency was
motivated by viewing Horn clauses as a special case of the clausal form of logic,
and by viewing top-down and bottom-up reasoning as special cases of the resolu-
tion rule. Because resolution is refutation-complete, but not deduction-complete,
to show that a goal G is a logical consequence of a set S of clauses in the general
case, it is necessary to convert the negation of G into a set G′ of clauses and show
that S ∪G′ is inconsistent.

I should have exploited the fact that refutation completeness for Horn clauses
can be translated into deduction completeness for the kind of reasoning needed
to fill in the triangle. To understand this kind of reasoning better, it is useful to
distinguish between Horn clauses that have exactly one conclusion, called definite
clauses, and Horn clauses of the form ← A1, ..., An having no conclusion at all,
called denials.

But if we ignore the arrow ← in the front of a denial, and interpret all the
variables x1, ..., xn as existentially quantified, then the denial can be interpreted
positively as expressing the goal of showing that:

Logic for Problem Solving 9

there exist x1, ..., xn
such that A1 and ... and An

This goal G is the opposite (or ”dual”) of the denial.
As a consequence of the refutation completeness of hyper-resolution (or bottom-

up reasoning), if a set S of definite clauses is inconsistent with a denial of the form
← A1, ..., An, then there exists a substitution σ and bottom-up derivations of
assertions A1σ, ..., Anσ, where all of the variables in each of the Aiσ are universally
quantified. As a consequence of the refutation completeness of linear resolution
(or top-up reasoning), there also exists a top-down derivation C1, ..., Cm, starting
from the goal C1 = G and ending with the empty conjunction of subgoals Cm = �.
Moreover, there exists a substitution σ that can be extracted from the derivation,
such that S logically implies the conjunction Gσ = A1σ &...& Anσ.

In both cases, all variables that are left in Gσ are universally quantified. There-
fore the bottom-up and top-down derivations actually show that S logically implies
Gσθ for all further substitutions θ. In other words, not only do the derivations
solve the goal G by finding values for the variables in G, but they typically find
whole classes of solutions represented by the ground instances of the variables in
Gσ.

Minimal Model Semantics

Replacing the interpretation of filling in the triangle as showing inconsistency by its
interpretation as showing logical implication would make the inference methods
presented in this chapter more natural, and the claim that these methods are
congenial for human use more convincing. However, there is one other change
that would also make this chapter more up-to-date, namely adding the model-
theoretic view of bottom-up and top-down reasoning as determining the truth
value of a goal clause G in the intended model M of a set S of definite clauses.

It is strange that I did not mention the model-theoretic view anywhere in the
book, despite the fact that Maarten van Emden and I had been working on it since
1974 [van Emden and Kowalski, 1976]. The best explanation I can think of is that
the proof-theoretic view was the core of the lecture notes for the book, completed
in March 1974, before the model-theoretic view was fully developed. Moreover,
as I mentioned in my commentary on Chapter 1, it took me a long time to fully
appreciate the model-theoretic point of view.

The connection between the model-theoretic and proof-theoretic views is given
by the minimal model theorem [van Emden and Kowalski, 1976]:

Given a set S of definite clauses, let H be the Herbrand base of S, and
let M = {A ∈ H | S ` A}, then M is a Herbrand model of S, and for
any other Herbrand model M ′ of S, M ⊆ M ′. In other words, M is
the unique minimal model of S.

Here ` can be any provability relation that is complete for deriving ground atoms
A from definite clauses S. In particular, it can be hyper-resolution [Robinson,

10 Robert Kowalski Imperial College London 12 October 2014

1965b] or SLD-resolution [Kowalski, 1974]. In fact, because of the restricted form
of S and A, the provability relation can be the special case of hyper-resolution in
which the only rule of inference is:

From C in S and ground atoms A1, ..., An, derive ground atom A0,
where A0 ← A1, ..., An is a ground instance of C.

Let S `Horn A be the provability relation corresponding to this one rule of infer-
ence. The proof of the minimal model theorem is embarrassingly simple:

To show that M = {A ∈ H | S `Horn A} is a model of S, it is necessary
to show that every clause C in S is true in M . But this is the case
if for every ground instance A0 ← A1, ..., An of C, if A1, ..., An are in
M , then A0 is also in M . But this is obviously the case, because there
exists a one step derivation of A0 from C and A1, ..., An.

To show that M is the minimal model of S, it suffices to show that,
if A ∈ M , and M ′ is a Herbrand model of S, then A ∈ M ′. But if
A ∈ M , then S `Horn A by definition. Therefore because `Horn is
complete for definite clauses S and ground atoms A, it follows that
S |= A, which means that A is true in all models of S. Therefore A is
true in M ′.

We will see in later commentaries that much of the research on the semantics of
logic programming since 1979 has been concerned with extending this minimal
model semantics of definite clauses to more general, normal logic programs.

CHAPTER 4

This chapter also has its origins in the 1974 lecture notes. But its focus on problem-
solving avoids the semantic issues of logical implication and model-theoretic truth,
which affect the earlier chapters.

As was my intention in the preceding chapters, I wanted to present a view of
logic for problem-solving that would be relevant for both human use and computer
applications. As Sherlock Holmes explained to Dr. Watson, in A Study in Scarlet :

In solving a problem of this sort, the grand thing is to be able to reason
backward. That is a very useful accomplishment, and a very easy one,
but people do not practise it much. In the everyday affairs of life it is
more useful to reason forward, and so the other comes to be neglected.
There are fifty who can reason synthetically for one who can reason
analytically.

As mentioned briefly in the introduction to Chapter 3 of the 1979 book, backward
reasoning and analytical reasoning are synonymous with top-down reasoning, while
forward and synthetic reasoning are synonymous with bottom-up reasoning.

Logic for Problem Solving 11

I confess that I have been disappointed by the apparent lack of attention that the
problem-solving interpretation has received outside computing circles. It was this
disappointment that led to my second attempt [Kowalski, 2011] with its provoca-
tive subtitle, How to be Artificially Intelligent.

Prolog and Other Implementations of Logic Programming

However, together with the procedural interpretation in Chapter 5, the problem-
solving interpretation in this chapter has been fairly well received in the world
of computing, thanks in large part to the impact of the programming language
Prolog. Indeed, if I were to rewrite this book from scratch, one of the biggest
changes I would consider would be to rewrite clauses in Prolog syntax, and to
discuss their Prolog execution.

The impact of the problem-solving and procedural interpretations of logic reached
its zenith with the Fifth Generation Computer Systems (FGCS) Project. The
FGCS Project [Moto-Oka,1982] was a ten year programme beginning in 1982,
sponsored by the Japanese Ministry of International Trade and Industry and in-
volving all the major Japanese computer manufacturers. Its objective was to
develop a new generation of computers employing massive parallelism and ori-
ented towards artificial intelligence applications. Logic programming was chosen
as the foundation for the software to fill the gap between the applications and the
hardware.

The story of the FGCS Project is long and complicated. However, it is possible
to argue that the FGCS Project was ahead of its time. One support for this
argument is the success of the AI system Watson developed at IBM [Ferrucci et
al, 2010], which competed on the quiz show Jeopardy! and defeated two former,
human winners in 2011. According to [Lally et al, 2012] most of the rule-based
question analysis components in Watson are implemented in Prolog.

In expert hands, Prolog can perform wonders. But for a beginner, its depth-first
search strategy can cause big trouble. Consider the following variant of the very
first example in Chapter 1. Here is one way of rewriting it in Prolog notation, in
which predicate symbols, function symbols and constants start with a lower case
letter, variables start with an upper case letter, :− stands for ← and every clause
ends in a full stop:

likes(bob,X) :− likes(X, bob).
likes(bob, logic).
:− likes(bob,X).

The third clause represents the goal of finding an X liked by bob.
Execution by Prolog fails to find the solution X = logic, because its use of

depth-first search generates an infinite loop: It starts by using the first clause to
reduce the goal likes(bob,X) to the subgoal likes(X, bob). It then uses the first
clause again, but this time to reduce likes(X, bob) to the subgoal likes(bob, bob).
It then repeatedly uses the first clause to reduce likes(bob, bob) to likes(bob, bob),
without getting a chance to solve the problem by using the second clause. If the

12 Robert Kowalski Imperial College London 12 October 2014

order of the two clauses is reversed, Prolog finds the solution, and if only one
solution is desired then it terminates. But if all solutions are desired, then it
encounters the infinite branch, and goes into the same infinite loop.

The problem of infinite loops is a major theme of this chapter. However, I
ignored the difficulty it causes for programs written in Prolog. It was not until the
development of XSB Prolog [Chen and Warren, 1996; Swift and Warren, 2012],
building upon the loop detection strategies of Brough and Walker [1984] and the
tabling technique of Sato and Tamaki [1986] that a sufficiently practical solution
of these problems became available.

These days, in addition to the use of tabling, there also exist other techniques for
efficiently executing logic programs and for avoiding infinite loops. They include
the model generation methods of Answer Set programming (ASP) [Brewka et al,
2011] and the bottom-up execution strategies of Datalog [Ceri et al, 1989]. How-
ever, these techniques ignore the problem-solving and procedural interpretations
of logic programs, and focus on purely declarative knowledge representation.

These days, ASP and Datalog are booming, whereas Prolog is just keeping
its head above water. In my opinion, part of the problem lies with a lack of
appreciation that, with the use of tabling to avoid most infinite loops and to
overcome other inefficiencies, it is possible to write purely declarative programs in
Prolog. I was involved in the implementation of just such a program, which has
been used by WHO and UNICEF since 2009, to implement a set of logical rules
to assist in estimating global, country by country, infant immunization coverage
[Burton et al, 2012; Kowalski and Burton, 2012].

The WHO/UNICEF program was first written in a variant of Prolog without
tabling, and was intolerably inefficient - not because of infinite loops, but because
it recomputed the same estimates over and over. Rerunning the same program in
XSB with tabling speeded up the program by a factor of about 100.

I admit that some of my collaborators found the logic-based syntax of Prolog
intimidating. But, as I tried to suggest in Chapter 2, and as many other researchers
have pointed out, logic is compatible with a variety of more user-oriented notations,
including graphical representations like semantic networks.

CHAPTER 5

Whereas Chapter 4 was concerned with top-down reasoning as a problem-solving
technique for use by humans or by computers, this chapter is concerned more
narrowly with its use for execution by computers.

Concurrent and Parallel Logic Programming

At the time I was writing the book, much of the effort in the logic program-
ming group at Imperial College was devoted to developing IC-Prolog [Clark and
McCabe, 1979; Clark et al, 1982]. IC-Prolog avoided the non-logical features of
standard Prolog, and added negation, set expressions and a rich set of control

Logic for Problem Solving 13

facilities, for example to control the order of executing subgoals (procedure calls)
depending on the pattern of their input-output parameters (i.e. their mode of
use), and to execute subgoals in parallel.

One offshoot of IC-Prolog was the Relational Language of Clark and Gregory
[1981], which was the first in a series of concurrent logic programming languages,
including Concurrent Prolog [Shapiro, 1987], Parlog [Clark and Gregory, 1986],
and Guarded Horn Clauses (GHC) [Ueda, 1986]. In these languages, a program is
a set of guarded Horn clauses of the form:

P ← G1, ... , Gn | A1, ... , Am where n ≥ 0 and m ≥ 0.

The conjunction G1, ... , Gn is the guard of the clause, and | is the commitment
operator. Declaratively, the clause is read as an ordinary Horn clause:

P if G1 and ... and Gn and A1 and ... and Am.

Procedurally, when a goal is activated, all of the procedures whose head P matches
the goal are invoked, and their guards are evaluated in parallel. If the guards of
several clauses succeed, then an arbitrary commitment is made to one of the clauses
(typically to one of the clauses whose guard first succeeds), and execution proceeds
with the remaining body of the clause. The procedure calls in the remaining body
can also be executed in parallel. Thus concurrent logic programming includes a
form of and-parallelism, or-parallelism and don’t care non-determinism.

According to [Ueda, 1999], there was a big controversy within the FGCS Project
about whether to base the software on Prolog-style logic programming, which is
closer to AI applications, or on concurrent logic programming, which is closer
to parallel computer implementations. Concurrent logic programming won the
competition early in the Project.

One of the most serious competitors to the FGCS approach was the Gigalips
Project [Lusk et al, 1990], which developed an or-parallel implementation of Pro-
log. The Project was an informal consortium involving The Swedish Institute of
Computer Science (SICS), Argonne National Laboratory and the University of
Manchester (later moved to the University of Bristol).

Neither the FGCS nor the Gigalips approaches to parallelism were widely ac-
cepted. However, in recent years, parallel execution of conventional programs over
networks of processors has produced huge gains of efficiency. Moreover, the meth-
ods used to implement these systems are reminiscent of the ones used earlier to
implement logic programs in parallel. For example, the MapReduce programming
model used in Google [Dean and Ghemawat, 2008] is similar to the use of top-down
reasoning to decompose goals into subgoals, solving the subgoals in parallel, then
collecting and combining the solutions bottom-up. I find it hard to believe that
these methods will not be applied to logic programming again in the future.

Answer Set Programming

Parallel execution of logic programs, and more generally different ways of executing
logic programs, are one of the two main topics of this chapter. The other main

14 Robert Kowalski Imperial College London 12 October 2014

topic is the ways in which the same problem can be represented and solved by
different logic programs. I gave examples of different representations of the path-
finding and list-sorting problems. I also discussed the different possibilities of
representing data in general: by means of terms or assertions; and I suggested
that the representation by assertions is more powerful in many cases.

In recent years, Answer Set Programming (ASP) has taken the idea of repre-
senting data by assertions much further. In ASP, the input data is represented by
assertions, and the output is represented by Herbrand models.

ASP exploits the fact that a normal logic program (with negative conditions) can
have several “intended” Herbrand models, and that different models can represent
different outputs for the same input. However, the basic idea of ASP also applies
to Horn clause programs, which have a unique intended minimal model given any
set of assertions as input. The Horn clause definition of Ancestor is a simple
example:

Ancestor(x, y)← Parent(x, y)
Ancestor(x, y)← Ancestor(x, z), Ancestor(z, y)

Suppose we are given as input data the assertions:

Parent(Zeus,Ares)
Parent(Hera,Ares)
Parent(Ares,Harmonia)

Then the parenthood assertions together with the ancestor assertions:

Ancestor(Zeus,Ares)
Ancestor(Hera,Ares)
Ancestor(Ares,Harmonia)
Ancestor(Zeus,Harmonia)
Ancestor(Hera,Harmonia)

constitute the unique minimal model of the input data and the definition of An-
cestor. The Ancestor assertions in the model can be regarded as the output cor-
responding to the input.

Given the same input data and the program:

Mother(x, y)← Parent(x, y), not Father(x, y)
Father(x, y)← Parent(x, y), not Mother(x, y)

instead of the Ancestor program, there are eight minimal models (or answer sets),
corresponding to the different alternatives for whether the parents Zeus, Hera and
Ares are mothers or fathers.

It is too early in the commentary to discuss the ASP semantics here. Suffice it
for now to underline that ASP treats program execution as model generation, and
not as inference. In fact, the model generation techniques used in ASP are similar
to those used in SAT solvers, and can similarly be viewed as optimizations of the
semantic tree method described in the commentary on Chapter 1.

Logic for Problem Solving 15

Transaction Logic Programming

Transaction Logic Programming [Bonner and Kifer, 1993] builds on similar ideas
of representing data by means of assertions, but uses logic programs both to define
data and to manipulate it. The data is represented in a deductive database, and the
logic programs that manipulate it do so by querying and updating the database.
Such deductive databases are clearly much higher-level than the data structures
found in conventional programming languages.

As this chapter argues and as subsequent developments have shown, logic pro-
gramming can support both terms and assertions as data structures. Transaction
Logic shows that logic programming can also support deductive databases as data
structures. However, I like to think that the Transaction Logic approach points in
the direction of the programming languages of the future.

CHAPTER 6

This is another one of my favourite chapters. Like Chapter 3, it emphasizes the
difference between reasoning top-down and reasoning bottom-up, this time in the
context of the planning problem. Of course, much progress has been made in the
area of representing and reasoning about actions since the writing of this book.
However, logic programming has continued to play a useful role in these later
developments. In particular, the Holds predicate and negation as failure have
become standard tools in the knowledge representation tool kit Using these tools,
here is how I would represent the situation calculus in logic programming form
today, but employing the notational conventions of the 1979 book:

Holds(f, result(a, s))← Poss(a, s), Initiates(a, f, s)
Holds(f, result(a, s))← Poss(a, s), Holds(f, s), not Terminates(a, f, s)

Here Initiates(a, f, s) expresses that the action a performed in state s initiates f in
the resulting state result(a, s); and terminates(a, f, s) expresses that a terminates
f . Together, the two clauses assert that a fact holds in the state resulting from an
action either if it was initiated by the action or if it held in the previous state and
was not terminated by the action. The main difference from the representation
used in the book is the explicit use of negation in the second clause.

The Event Calculus

Since the publication of the book, probably the most influential development to
which I have contributed is the event calculus [Kowalski and Sergot, 1986], which
combines some of the ideas about the representation of events in Chapter 2 with
the ideas of representing change in this chapter.

The event calculus replaces states by linearly ordered time points and uses a
predicate Happens(e, t) to express that an event e happens at a time t. An event
can be either an external event or an action. Here is a simplified version of the

16 Robert Kowalski Imperial College London 12 October 2014

event calculus, using similar predicates to those used in the situation calculus
representation above, and using an extension of logic programming form in which
conditions can be formulas of full first-order logic [Lloyd and Topor, 1984]:

Holds(f, t2)← Happens(e1, t1), Initiates(e1, f, t1), t1 < t2,
not ∃e ∃t [Happens(e, t), T erminates(e, f, t), t1 ≤ t < t2]

The single clause asserts that a fact holds at a time t2 if it was initiated by an
event taking place at an earlier time t1 and it was not terminated by an event
taking place between t1 and t2.

The Lloyd-Topor transformation converts this clause into normal logic program-
ming form by using an auxiliary predicate. For example:

Holds(f, t2)← Happens(e1, t1), Initiates(e1, f, t1), t1 < t2,
not Clipped(f, t1, t2)

Clipped(f, t1, t2)← Happens(e, t), T erminates(e, f, t), t1 ≤ t < t2

The event calculus was intended for reasoning about the consequences of given
events, catering for the possibility that several events can occur simultaneously.
It was also intended to alleviate the computational inefficiency of using the situ-
ation calculus frame axiom to determine whether a fact f holds at a time t2 by
considering all of the actions and other events e taking place between t2 and the
time t1 when f was initiated. Using the event calculus, it suffices to consider only
those (considerably fewer) events e between t1 and t2 that can terminate f .

The event calculus was not originally intended for planning applications. How-
ever Eshghi [1988] showed that planning problems can be solved by using abductive
reasoning, where:

P is a logic program consisting of the event calculus together with
clauses defining the predicates Initiates, Terminates, Poss, ≤, <,
and assertions of the form Happens(E0, 0), describing events that gen-
erate an initial state.
A is a set of ground atoms of the form Happens(E, T), describing can-
didate actions.
I is a set of integrity constraints of the form Poss(a, t)← Happens(a, t).
G is a goal clause of the form ← Holds(F1, t), . . . ,Holds(Fn, t), where
t is the time of the goal state.

To solve the planning problem, it suffices to find a set ∆ ⊆ A such that P ∪ ∆
solves G and satisfies I.

Abductive Logic Programming

The application of abduction to planning with the event calculus is a special
case of abductive logic programming (ALP) [Kakas et al, 1992; Denecker and
Kakas, 2002], which is closely related to answer set programming (ASP). The map
colouring program, commonly used to illustrate ASP, can also be used to illustrate

Logic for Problem Solving 17

ALP. Given a map with countries x represented by the predicate Country(x) and
adjacent countries x and y represented by Adjacent(x, y), the problem is to find
a colouring Red, Yellow or Green for each country, such that no two adjacent
countries have the same colour. Here is a simple representation in ALP:

P defines the predicates Country, Adjacent and =, defined by x = x.
A is a set of ground atoms of the form Colour(X,C).
I = { Colour(x,Red), Colour(x, Y ellow), Colour(x,Green)← Country(x),

c = d← Colour(x, c), Colour(x, d),
← Colour(x, c), Colour(y, c), Adjacent(x, y)}

To solve the map colouring problem, it suffices to find a set ∆ ⊆ A, such that
P ∪∆ satisfies I.

In general, an abductive framework is a triple 〈P, I,A〉, where P is a logic
program, I is a set of integrity constraints, and A is a set of ground atoms (whose
predicates are called abducible). Given 〈P, I,A〉 and a goal clause G, an abductive
solution (or explanation) of G is a subset ∆ of A, such that

P ∪∆ solves G and
P ∪∆ satisfies I.

It is conventional in introductions to ALP, to state the solution and satisfaction
requirements in such vague (or abstract) terms. This is partly because many
concrete instances of these notions are possible, and partly because it has been
difficult to decide which instances are best. The biggest difficulty has been how
to understand integrity constraint satisfaction.

Having been involved in the early debates about the semantics of integrity
constraints in the 1980s, and having contributed to proof procedures for both
integrity checking [Sadri and Kowalski, 1988] and ALP [Fung and Kowalski, 1997],
I am now convinced that solving G and satisfying I should both be understood
in the same model-theoretic terms. Moreover, there is no need to distinguish
between goals and integrity constraints, because goal clauses can be regarded as
just a special kind of integrity constraint. In the simple case where P is a Horn
clause program:

Given 〈P, I,A〉, an abductive solution is a subset ∆ of A, such that I
is true in the minimal model of P ∪∆.

With this semantics, finding an abductive solution in ALP is a model-generation
problem, similar to ASP. Moreover, it has the added attraction that, because the
definition of truth applies to any sentence of first-order logic (FOL), I can be an
arbitrary set of sentences of FOL (as in the ID-Logic of [Denecker, 2000]). It also
extends to the case where P is a more general logic program whose semantics is
defined in terms of a unique canonical model, as in the case of the perfect model
of a locally stratified program [Przymusinski, 1988], or the well-founded semantics
of an arbitrary logic program [Van Gelder et al, 1991].

18 Robert Kowalski Imperial College London 12 October 2014

From EC and ALP to LPS

Both the event calculus (EC) and ALP have been relatively well received. More-
over, they have both contributed to my recent work with Fariba Sadri on develop-
ing a Logic-based Production System language (LPS) [Kowalski and Sadri; 2009,
2011, 2012, 2014a, 2014b]. The framework was originally intended to give a log-
ical semantics to condition-action rules in production systems. But its original
goal has been greatly extended to incorporate the functionalities of many other
frameworks, including BDI agents, Golog, active databases, Transaction Logic,
and abstract state machines.

In LPS computation is viewed as performing actions and generating state tran-
sitions in order to make rules of the form:

∀x[antecedent→ ∃y[consequent1 ∨ . . . ∨ consequentn]]

true. Here antecedent and the disjuncts consequenti are temporally constrained
conjunctions of event atoms and FOL formulae referring to individual states.
The antecedent of a rule represents a complex (or composite) event, and each
consequenti represents a conditional plan of actions (or a transaction).

The framework combines such rules both with logic programs that define inten-
sional predicates, complex event predicates and complex transaction predicates,
and with an event theory that specifies the postconditions and preconditions of
events. In the model-theoretic semantics, time is represented explicitly, as in the
event calculus. However, in the computation of the model, states are updated
destructively, as in most practical programming and database languages.

CHAPTER 7

Before rereading this chapter to write this commentary, I remembered it as a
standard introduction to resolution. In fact, it is an introduction to resolution
with a focus on how non-Horn clauses extend Horn clauses. Back in those days,
I thought that it would be useful to extend logic programs from Horn clauses to
non-Horn clauses. In particular, that was the point of exercise 6. But in practice
other extensions of Horn clause programs have proved to be more useful - the
most important one being the extension to normal logic programs, with negative
conditions. This extension from Horn clauses to normal logic programs, and the
relationship with non-Horn clauses is one of the main topics of Chapter 11.

Normal Logic Programs with Negative Conditions

Chapter 11 contains several examples showing how (meta-level) reasoning with
normal logic programs, using negation as failure, can sometimes simulate (object-
level) reasoning with non-Horn clauses expressing the only-if halves of definitions.

Here is another example, showing how the non-Horn clauses T1-14 in this chap-
ter can be represented by a normal logic program:

Logic for Problem Solving 19

T1 True(x & y)← True(x), T rue(y)
T4 True(x ∨ y)← True(x)
T5 True(x ∨ y)← True(y)
T7’ True(x ⊃ y)← not True(x)
T8 True(x ⊃ y)← True(y)
T10 True(x↔ y)← True(x ⊃ y), T rue(y ⊃ x)
T13’ True(¬x)← not True(x)

The non-Horn clauses T7 and T13 are turned into the logic programming clauses
T7’ and T13’ by making one of the alternative conclusions a negative condition.
The missing clauses T2 and T3 are the only-if halves of T1; clause T6 is the only-if
half of T4 and T5; clause T9 is the only-if half of T7’ and T8; clauses T11 and
T12 are the only-if half of T10; and T14 is the only-if half of T13’.

The logic program above defines the predicate True for compound sentences of
propositional logic, given definitions of True for atomic sentences. The missing
only-if halves of the program are not needed to compute the predicate True, but
are needed to prove properties of the program. In Chapter 11, I argued that
using the non-Horn clauses expressing the only-if halves of the definition (in the
object language) is one way to prove such properties, but reasoning about the logic
program in the meta-language is another way.

Here is an informal sketch of such a meta-language argument for showing that,
for all sentences p of propositional logic, True(p ⊃ p) is a property of the logic
program above:

There are only two ways of using the program to show True(p ⊃ p),
either by using T7’ and showing not True(p) or by using T8 and show-
ing True(p). Interpreting negation as failure, the only way to show
not True(p) is by trying to show True(p) and failing. But trying to
show True(p) either succeeds or fails. If it succeeds, then using T8
shows True(p ⊃ p). If it fails, then using T7’ shows True(p ⊃ p). So
either way, True(p ⊃ p) can be shown.

The Value of Resolution

I do not mean to give the impression that reasoning with non-Horn clauses is
unnecessary in general, but rather that there are other possibilities in the case
of reasoning about properties of logic programs. Nor do I mean to suggest that
all knowledge representation problems can be reduced to representation by means
of logic programs. On the contrary, non-Horn clauses can be used to represent
integrity constraints, including the rules I mention at the end of my commentary
on Chapter 6, and resolution is useful for reasoning with such clauses.

Resolution and its refinements played an important role in the development of
logic programming [Kowalski, 2014]. One of the main reasons for this is its use of
unification (called ”matching” in the book) to avoid the potentially infinite number

20 Robert Kowalski Imperial College London 12 October 2014

of applications of the rule of universal instantiation (from ∀x p(x) derive p(t) for
any term t). Another is its avoidance of the thinning rule (from p derive p ∨ q
for any sentence q). The thinning rule is responsible for the fact that in classical
logic it is possible to derive any conclusion from an inconsistent set of sentences
(because the thinning rule can be used to derive any sentence q, equivalent to
false ∨ q from false).

Resolution is inconsistency tolerant. For example, given the inconsistent set of
sentences {p, ← p}, resolution can derive only the empty clause false. However,
the refutation completeness of resolution means that false can also be derived
from the set of clauses {p, ← p, ← q}, which shows that {p, ← p} logically
implies q. But from a pragmatic point-of-view, inspecting the resolution refutation,
it is obvious that q does not play any role in the refutation, and therefore is not
relevant to the proof of inconsistency. Such analysis of proofs of inconsistency is
an important part of knowledge assimilation, the topic of Chapter 13.

Linear resolution (or backward reasoning) is even better. Given the same set of
clauses {p, ← p, ← q}, and treating the clause ← q as a goal, linear resolution
fails to generate a refutation, and therefore to solve the goal, even though linear
resolution and its various refinements are refutation complete.

A Semantic Tree Proof of the Completeness of Resolution

Before completing the commentary on this chapter, let’s see how easy it is to
prove the refutation completeness of resolution, using the semantic tree method
described in my commentary on Chapter 1:

Assume that the set of clauses S is inconsistent, and therefore has no
models. Let A1, . . . An, . . . be an enumeration of the Herbrand base of
S. Then the generation of the corresponding semantic tree terminates
in a finite number of steps with a finite subtree T all of whose leaf nodes
are failure nodes. The proof that there exists a resolution refutation
of S is by induction on the number of nodes m in T .

If m = 1, then, because the only clause that is false at the root of T
is the empty clause, S must contain the empty clause, and proof by
resolution terminates in 0 steps.

Otherwise, there must exist a node N in T with exactly two children,
both of which are failure nodes. (If not, then T would contain an
infinite branch.) Therefore there exist clauses C1 and C2 in S that are
falsified at the two children of N . It is easy to see that the resolvent
C of the two clauses is falsified at the node N , and possibly already
falsified at some earlier node on the branch to N . Therefore, there
exists some smaller subtree T ′ of T all of whose leaves falsify some
clause in S ∪ C. By induction hypothesis, there exists a resolution
refutation of S ∪ C. Adding to this refutation the derivation of the
resolvent C of C1 and C2 produces a resolution refutation of S.

Logic for Problem Solving 21

Combining the semantic tree procedure with the addition of judiciously chosen
resolvents of the kind involved in the completeness proof is similar to adding
“lemma clauses” to SAT solvers based on the DPLL method [Marques-Silva and
Sakallah, 1999].

CHAPTER 8

Unfortunately, except for the Horn clause case [Smolka, 1982], none of the more
general completeness proofs referred to at the end of the Chapter have held up.
Moreover, Eisinger [1986] constructed an ingenious counterexample that shows
that the proof procedure is incomplete for a natural notion of fair selection of
links, which is intended to ensure that every link (or descendant of a link) will
eventually be selected.

The history of the various attempts to prove completeness and the problems
they have encountered is discussed by Siekmann and Wrightson [2002]. However,
it is still not known whether the proof procedure is complete for some other notion
of fairness, or some further restrictions on the deletion of clauses or the inheritance
of links.

Connection Graphs and the Web of Belief

In my 2011 book, I argue that connection graphs can be viewed as a concrete
realisation of the web of belief, proposed by the philosopher W. V. O. Quine
[1953], as a metaphor for the way that individual statements are connected in
scientific theories and human beliefs. Quine appealed to the web of belief to
support his argument against the analytic-synthetic distinction. Analytic truths
are supposed to be true simply by virtue of their meaning, independent of matters
of fact. Synthetic truths are true because of their correspondence with reality.

Quine argued that, if a set of beliefs is contradicted by observations, then any
belief in the web of beliefs can be revised to restore consistency. From this point of
view, there is no distinction between analytic statements and synthetic ones. The
argument not only attacks the analytic-synthetic distinction, but it also attacks the
modal distinction between necessary and possible truths, which was the original
inspiration for modal logic. Quine’s argument had a big influence on my own
views about modal logic. (Note that databases and ALP also make a similar
distinction between data, which is possibly true, and integrity constraints, which
are necessarily true. However, they make this distinction without the use of modal
logic.)

Connection Graphs and Action Networks

Connection graphs are also related to the action networks of [Maes, 1990], in which
nodes are actions, and one action node A1 is positively connected to another action
node A2 if A1 initiates one of the preconditions of A2. Action nodes have levels of

22 Robert Kowalski Imperial College London 12 October 2014

activation, which are input both from the facts that are observed in the current
situation and from the goals that are currently active. These activation levels are
propagated through the network. When the activation level of an action reaches
a given threshold, then it is executed if all its preconditions hold in the current
situation. The resulting behaviour is both situation-sensitive, goal-oriented, and
similar to that of neural networks.

Ignoring frame axioms and negative connections due to one action terminating
a precondition of another action, Maes-like action networks can be represented by
connection graphs containing clauses:

Holds(F, t+ 1)← Happens(A, t), Holds(F1, t), . . . ,Holds(Fn, t)

which represent that an action A initiates F if the preconditions F1, . . . , Fn of A all
hold. In addition, the graph contains clauses Holds(F, T) representing the facts F
that hold at the current time T , and goal clauses← Holds(F1, t), . . . ,Holds(Fn, t)
representing goals that are meant to hold at some future time t.

Representing action networks in such connection graph form suggests how ac-
tivation levels can be used in connection graphs more generally: Initial activation
levels can be associated with both current observations and current goals, can be
propagated from one clause to another, and activation levels can be used to guide
the selection of links connected to the most active clauses.

Moreover, links can be assigned weights (or utilities) that are learned by keeping
track of how often they have contributed to the solution of goals in the past (as
suggested in Chapter 13). The more often a link has contributed to a solution,
the greater its weight. The propagation of activation levels from clause to clause
can then be adjusted by the weights associated with the links connecting those
clauses. I like to think that the resulting control strategy resembles the way that
neurons are activated in connectionist models of the mind.

CHAPTER 9

To the best of my knowledge, there has been little further work on applying dif-
ference analysis to logic programs. Probably the most important work in this area
has been the identification by Apt and Bezem [1991] of acyclic logic programs,
which are guaranteed to reduce differences and terminate for a large class of goals.

The Semantics of Integrity Constraints

Much more work has taken place on goal transformation and on integrity con-
straints more generally. At the time I was writing the book, the notion of integrity
constraint for logic programs (and databases) was only just emerging and was not
well understood. In this chapter, I considered that a program or database P sat-
isfies an integrity constraint or program property I if I is consistent with P and
together with P implies no ground atoms not already implied by P .

Logic for Problem Solving 23

It would have been simpler to say that I is a logical consequence of P . But this
simpler alternative does not capture the intuition, for example, that transitivity
is a property of the ≤ relation defined by:

0 ≤ x
s(x) ≤ s(y)← x ≤ y

It is not possible to prove transitivity of ≤ in first-order logic without the only-if
half of the program and axioms of induction.

The notion of integrity constraint proposed in this chapter captures the intu-
ition, but in a round-about way. However, it fails with the simple example:

P = {R(A)}
I = {R(x)→ S(x) ∨ T (x)}

According to the proposal in this chapter, program P satisfies the integrity con-
straint I. But intuitively, this is not correct. For I to be a property of the program,
P should include or imply an additional atom, either S(A) or T (A).

As I mention in the commentary to Chapter 6, I now believe that the correct
definition of what it means for an integrity constraint to be satisfied by a program
P is that I is true in the canonical model of P . If P is a set of Horn clauses,
then the canonical model of P is the minimal model of P . In the commentary on
Chapter 11, I discuss the notion of canonical model for programs with negative
conditions.

Constraint Logic Programming

Integrity constraints have many applications, including their use for goal transfor-
mation as described in this chapter, as well as their use for constraining abductive
solutions in ALP. They are also related to the constraint satisfaction methods used
in constraint logic programming (CLP).

In both ALP and most versions of CLP, there are two kinds of predicates:
predicates defined by a logic program P , and additional predicates that can occur
in the bodies of clauses in P , but not in their heads. These additional predicates
are abducible predicates in ALP, and constraint predicates in CLP. In both cases,
given a goal G, the computational task is to generate a set (or conjunction) C of
conditions (abducible or constraint atoms) such that:

C solves the initial goal G and
C is satisfiable.

Proof procedures for CLP are similar to those for ALP. In both cases, the proof
procedure uses P to reason backwards from G, incrementally generating C and
incrementally testing C for satisfiability. In ALP, satisfiability is with respect to
integrity constraints. In CLP it is with respect to a predefined domain D, such as
the domain of real numbers with addition, multiplication, equality and inequality.

24 Robert Kowalski Imperial College London 12 October 2014

Colmerauer [1982] introduced constraints and the domain of rational trees with
equality and disequality into Prolog II, mainly to justify the lack of an “occur
check” in Prolog. The occur check is needed in the unification algorithm to ensure
that a term, such as f(X), does not unify with a subterm, such as X. The occur
check is hard to implement both correctly and efficiently, and Colmerauer showed
that unification without the occur check could be viewed as computation in the
domain of possibly infinite, rational trees. Jaffar and Lassez [1987] introduced the
CLP Scheme, in which the domain D, which defines the semantics of the constraint
predicates, can be an arbitrary model-theoretic structure, and the satisfiability
check can be an arbitrary algorithm.

Around the same time that the CLP Scheme was introduced, the CHIP sys-
tem was developed at ECRC, the European Computer Research Centre, set up by
the main European computer manufacturers in response to the Japanese FGCS
project. CHIP [Dincbas et al, 1988; van Hentenryck,1989] combined logic pro-
gramming with constraint propagation techniques developed to solve constraint
satisfaction problems (CSP) in AI.

The survey of CLP by Jaffar and Maher [1994] describes the domain constraints
of CHIP in terms of CLP Schemes. Operationally, domain constraints in CHIP
are predicates that restrict the values of variables, which are further restricted by
constraint propagation. For example, given the program and goal:

Likes(John, x)← x ∈ {Logic,Wine,Mary}
Person(x)← x ∈ {Bob, John,Mary}
← Likes(John, x), P erson(x)

backward reasoning combined with constraint propagation derives the solution
x ∈ {Mary}, i.e. x = Mary, without any search. In contrast, Prolog would
represent the two clauses of the constraint logic program as six facts, and would
use backtracking search, failing eight times and succeeding only on the ninth and
final try.

Given the similarities between proof procedures for ALP and CLP, it is tempting
to try to unify them. Such an attempt was made in [Kowalski et al, 1998], treating
integrity constraints I as approximations to relations, whether they are defined by
a logic program P or by a built-in domain D. In the model-theoretic semantics,
the integrity constraints I must be true in the canonical model defined by P ∪D.
(This characterisation exploits the fact that Herbrand interpretations lead a dual
life: D is both a model-theoretic structure and a component of the logic program
P ∪D.) In the proof procedure, integrity checking incrementally checks candidate
solutions C for satisfiability.

The unified framework includes not only ALP and CLP, but also goal trans-
formation, as discussed in this chapter. It was another strand of work that also
contributed to my more recent work with Fariba Sadri on LPS. In [Kowalski, 2006],
I also argued that using goal transformation with integrity constraints is similar to
programming with aspects in aspect-oriented programming [Kiczales et al, 1997].

Logic for Problem Solving 25

Constraint Handling Rules

The unified framework mentioned above is similar to the general-purpose language
CHR [Frühwirth; 1998, 2009], in which a constraint solver is programmed explic-
itly by means of constraint handling rules. There are two kinds of such rules:
equivalences and propagation rules. Equivalences can be used like logic programs
written in if-and-only-if form, but they can also be used to simplify conjunctions
of constraints. Propagation rules are logical implications that are used to reason
forward, like production rules - or like integrity constraints that are used to check
updates for consistency.

Here is the classic introductory CHR example, implementing a constraint solver
for partial ordering, written in the syntax of the book:

x ≤ x↔ true
x ≤ y, y ≤ x↔ x = y
x ≤ y, y ≤ z → x ≤ z
x ≤ y \ x ≤ y ↔ true

The first two rules are equivalences, which implement reflexivity and antisymme-
try, and are used as simplification rules. The third rule is a propagation rule, which
implements transitivity, adding the consequent of the rule when the antecedent is
satisfied. The fourth rule, which implements idempotency, is logically an equiv-
alence (in which \ is read as and), but operationally it combines simplification
and propagation, by removing a duplicate constraint (before the \), retaining only
one copy. Given the goal A ≤ B,C ≤ A,B ≤ C, CHR computes the solution
A = B,B = C.

The semantics of CHR is defined in terms of logical implication: Given a CHR
program P and a goal clause G, a solution of G is a conjunction of constraints C
to which no inferences can be applied, such that

P logically implies ∀[G↔ C], where
∀ represents the universal quantification of all the variables in G.

[Abdennadher and Schütz, 1998] developed an extension CHR∨ of CHR to include
disjunctions on the right hand side of rules. The resulting variant of CHR can
implement both top-down and bottom-up reasoning with Horn clauses. It can
also implement abduction with disjunctive integrity constraints, as the following
implementation of the map colouring problem shows:

Country(x)→ Colour(x,Red);Colour(x, Y ellow);Colour(x,Green)
Colour(x, c), Colour(y, c), Adjacent(x, y)↔ false
The goal clause is a conjunction of all the facts concerning the predi-
cates Country and Adjacent.

Here ; represents disjunction.
Like production systems and concurrent logic programming languages, CHR is

a committed choice language, in which all non-determinism is of the “don’t care”

26 Robert Kowalski Imperial College London 12 October 2014

variety. CHR∨ retains this feature of CHR. However, it achieves the effect of
“don’t know” non-determinism by representing disjunctions explicitly.

CHAPTER 10

Most of this chapter is a fairly orthodox treatment of the relationship between
the standard form of logic and clausal form. The last few pages touch upon the
relationship between standard form, clausal form and logic programming form. As
in Chapter 7, I discuss the representation of the only-if halves of logic programs.

As mentioned in earlier commentaries, and as I will discuss again in greater
detail in the commentary on Chapter 11, other views of logic programming and
other extensions of Horn clauses have become established in the last forty years.
The most important extension is the extension to normal logic programs, which
can have negative conditions. Closely related to this, is the extension to generalised
logic programs, which can have conditions that are arbitrary formulas of FOL.

In fact, all of the examples on page 203 are examples of this generalised logic
programming form. On page 219 in Chapter 11, I show how to transform the
definition of subset on page 204 into a normal logic program, using an auxiliary
predicate. The notion of generalised logic programs and their transformation into
normal logic programs using auxiliary predicates were defined more generally and
more formally by Lloyd and Topor [1984].

The Syntactic Form of Reactive Rules

In this chapter, I give examples where the standard form of logic is more natural
than clausal form. But I argue that “what is needed is not full unrestricted stan-
dard form but a limited extension of clausal form”. Most of the examples, like the
definition of subset, show that in many cases what we need is an extension of Horn
clause programs to generalised logic programs with conditions that are universally
quantified implications. However, I did not appreciate then that we also need a
different extension of clausal form to more naturally represent reactive rules and
other kinds of integrity constraints. In [Kowalski and Sadri, 2014], we argue that
such reactive rules are naturally represented as sentences of the form:

∀x[antecedent→ ∃y[consequent1 ∨ . . . ∨ consequentn]]

where antecedent and the disjuncts consequenti are conjunctions.
Here is a typical example in semi-formal notation (from [Kowalski and Sadri,

2012]):

[heat sensor detects high temperature at time t1 ∧
smoke detector detects smoke at time t2 ∧
|t1− t2| ≤ 60 sec ∧ max(t1, t2, t)]→
[activate sprinkler at time t3 ∧ t < t3 ≤ t+ 10 sec ∧

Logic for Problem Solving 27

send security guard at time t4 ∧ t3 < t4 ≤ t3 + 30 sec] ∨
[call fire department at time t5 ∧ t < t5 ≤ t+ 120 sec]

The antecedent of the rule recognises the likelihood of a fire when a heat sensor
detects high temperature and a smoke detector detects smoke within 60 seconds of
one another. The consequent of the rule provides two alternative ways of dealing
with the possible fire. The first is to activate the sprinkler and then send a security
guard to investigate, within 10 + 30 = 40 seconds of recognising the possible fire.
The second is to call the fire department within 120 seconds. The reactive rule can
be made true, when the antecedent is made true, in either of the two alternative
ways. Because of the timing constraints, the first alternative can be tried first,
leaving enough time to try the second alternative if the first alternative fails.

As in the case of reactive rules in general, because all variables in the antecedent
are universally quantified with scope the entire rule, and all variables in the con-
sequent are existentially quantified with scope the consequent, it is convenient to
omit the quantifiers and to let the quantification be implicit.

CHAPTER 11

At the time I was writing the book, I was familiar with the notion of explicit
definition in mathematical logic, but I did not regard it as relevant. According to
this notion, given a set S of sentences in FOL and a predicate symbol P with n
arguments, a formula F not containing the symbol P defines P if and only if:

S `FOL ∀x1, . . . , xn[P (x1, . . . , xn)↔ F (x1, . . . , xn)]

Here `FOL can represent either provability or logical implication, which are equiv-
alent in FOL.

Logic Programs as Definitions

The notion of explicit definition is not relevant for our purposes, because it excludes
recursive definitions, in which the formula F contains P . However, I did not know
then that there is an alternative notion of definition in mathematical logic that
applies to recursive relations. According to that notion, the recursive relation that
is the transitive closure of a binary relation cannot be defined in FOL. In particular,
the Horn clauses that “define” the Ancestor relation are not a definition in FOL,
because there exist (non-minimal) models in which the Ancestor relation is not
the transitive closure of the Parent relation.

In the book, I used the term definition informally, having in mind the notion in
[van Emden and Kowalski, 1976], according to which, given a set S of sentences
in FOL and a predicate symbol P in S, the relation corresponding to P “defined”
by S is represented by the set of all ground atoms P (t1, . . . , tn) such that:

S `FOL P (t1, . . . , tn).

28 Robert Kowalski Imperial College London 12 October 2014

For definite clause programs S, this is equivalent to S `Horn P (t1, . . . , tn), where
S `Horn A means that A is derivable from S using only the one rule of inference:

From C in S and ground atoms A1, ..., An, derive A0, where A0 ←
A1, ..., An is a ground instance of C.

The more general notion of definition, S `FOL P (t1, . . . , tn), works perfectly when
S is a definite clause program, but not when S is a normal logic program with
negation. For example, for S = {P (A) ← not P (B)}, provability understood
as `FOL gives the empty relation, rather than the intuitively correct relation
represented by {P (A)}.

To obtain the intuitive result for normal logic programs, we need to augment
S with the only-if halves of definitions. In this example, if we interpret only-
if and not in the object language, we obtain the augmented set of sentences
S∗ = {P (x)↔ x = A ∧ not P (B)} ∪ CET , where CET is the “Clark Equality
Theory”, containing such axioms of equality as x = x and not B = A. The desired
relation {P (A)} is the set of all the ground atoms P (t) such that S∗ `FOL P (t).

Stable Model Semantics

We can also obtain the same intuitively correct result, if we interpret a negative
ground literal not Q as an assertion in the meta-language stating that Q cannot
be shown using `Horn. For this purpose, we need to augment S with a set of
correct and complete “auto-epistemic” assertions ∆ about what cannot be shown,
treating ∆ as a set of ground atoms, and therefore treating S ∪ ∆ as a definite
clause program. With this interpretation, the relation corresponding to a predicate
symbol P defined by S is represented by the set of all ground atoms P (t1, . . . , tn)
such that:

S ∪∆ `Horn P (t1, . . . , tn) where ∆ = {not Q | S ∪∆ 0Horn Q}.

It is easy to see that this meta-level interpretation of the relations defined by
a normal logic program is equivalent to the stable model semantics of Gelfond
and Lifschitz [1987]. It is also equivalent to the interpretation of negative ground
literals as abducible predicates in ALP [Eshghi and Kowalski, 1987].

However, not every normal logic program can be understood naturally as a
definition. For example, both the object-level and meta-level interpretations of
not apply to the program:

P ← not Q
Q← not P

But they can hardly be said to interpret the program as a definition of P and Q.

Logic for Problem Solving 29

Stratified Logic Programs and the Perfect Model Semantics

The notion of “definition” in the book was applied mainly to Horn clause programs.
However, I also gave a non-Horn logic program Clear(y)← not ∃x On(x, y) defin-
ing the predicate Clear in terms of the predicate On. The definition can be un-
derstood as a simple example of a stratified logic program [van Gelder, 1989; Apt
et al, 1988]. Here is another example, consisting of a lower stratum E defining
a network of nodes, some of whose links may be broken, and a higher stratum I
defining when two nodes are connected:

E: Link(A,B) Link(A,C) Link(B,C) Broken(A,C)

I: Connected(x, y)← Link(x, y), not Broken(x, y)
Connected(x, y)← Connected(x, z), Connected(z, y)

The Horn clauses in E extensionally define the predicates in E by means of a
definite clause program consisting of ground atoms. The minimal model of E is
trivially also E. The clauses in I intensionally define the predicate Connected in
terms of the extensional predicates in E. In particular, the conditions of the first
clause in I are all defined in the lower stratum E, and they can be evaluated in the
minimal model E. This results in a set E ∪ I ′ of Horn clauses, which intuitively
define the same predicates as the original non-Horn clause program E ∪ I:

I ′: Connected(A,B) Connected(B,C)
Connected(x, y)← Connected(x, z), Connected(z, y)

The minimal model M of this set E ∪ I ′ of Horn clauses is called the perfect model
of E ∪ I, and is intuitively the natural, intended model of E ∪ I:

M : Link(A,B) Link(A,C) Link(B,C) Broken(A,C)
Connected(A,B) Connected(B,C) Connected(A,C)

(Notice that A is connected to C, even though the direct link from A to C is
broken.)

This construction of the perfect model can be generalised to the construction of
the perfect model M = M0 ∪. . .∪Mn of a stratified logic program S = S0 ∪. . .∪ Sn,
where the negative literals in clauses belonging to a higher stratum Si are all
defined in lower strata Sj where j < i:

M0 is the minimal model of the Horn clause program S0.
Mi+1 is the minimal model of the Horn clause program S′i+1 ∪ Mi,
where S′i+1 is obtained by using Mi to evaluate the conditions in Si+1

that are already defined in S0 ∪ . . . ∪ Si.

Przymusinski [1988] extended the perfect model construction from stratified pro-
grams to locally stratified programs S, by treating distinct atoms in the program
ground(S) as though they were distinct predicates. Here is a simple example of a
locally stratified program E defining the predicate Even:

30 Robert Kowalski Imperial College London 12 October 2014

E: Even(0) Even(s(x))← not Even(x)

The program ground(E) can be partitioned into a countably infinite number of
strata ground(E) = ∪i<ω E i where:

E0: Even(0)

Ei+1: Even(si+1(0))← not Even(si(0))

The perfect model of E is the limit ∪i<ωMi = {Even(0),Even(s(s(0))), . . .} where:

M0 is the minimal model of the Horn clause program E0.
Mi+1 is the minimal model of the Horn clause program E′i+1 ∪ Mi,
where E′i+1 is obtained from Ei+1 by using Mi to evaluate the negative
condition not Even(si(0)).

The Well-founded Semantics

The perfect model semantics formalises the intuitive notion of inductive (or recur-
sive) definition in many cases. However, [Denecker et al., 2001] argue that it was
only a step in the development of the well-founded semantics of [Van Gelder et
al., 1991], which “provides a more general and more robust formalization of the
principle of iterated inductive definition that applies beyond the stratified case.”

The well-founded semantics can be viewed as a generalisation of the perfect
model semantics in which the stratification is determined dynamically, and the
submodels Mi are three-valued models represented by sets of ground literals. A
ground atom A is true in Mi if A ∈ Mi, false if not A ∈ Mi, and undefined if
neither A ∈ Mi nor not A ∈ Mi. Every normal logic program, whether it is
stratified or not, and whether it has a natural interpretation as a definition or not,
has a unique well-founded model.

For example, the program {P ← not Q, Q ← not P}, which has two stable
models {P} and {Q} and no perfect models, has the unique well-founded model
M = ∅, in which P and Q are both undefined.

For another example, consider the following program Ev, which intuitively de-
fines the same predicate Even as the program E above:

Ev: Even(0) Even(y)← Successor(x, y), not Even(x) Successor(x, s(x))

This program does not have a perfect model, because ground(Ev) contains clauses,
such as Even(0) ← Successor(0, 0), not Even(0), that cannot be stratified. How-
ever, it does have a well-founded model M = ∪i<ωMi, which is two-valued:

M0 = ∅
M1 = {Even(0), Successor(0, s(0)), . . . , Successor(si−1(0), si(0)), . . .} ∪

{not Successor(sj(0), si(0)) | j 6= i− 1}
Mi+1 = Mi ∪ {Even(si(0))} if i > 0 is even.
Mi+1 = Mi ∪ {not Even(si(0))} if i > 0 is odd.

Logic for Problem Solving 31

As in the case of a stratified or locally stratified program, a positive atom A is in
Mi+1 if and only if it can be derived from the Horn clauses obtained by evaluating
the conditions in ground(Ev) that are already true in Mi. However, a negative
ground literal not A is in Mi+1 if and only if every clause in ground(Ev) of the
form A← body contains in its body a condition that is false in Mi.

In general, the well-founded model of a normal logic program S is the smallest
three-valued interpretation M such that:

A ∈ M if A can be derived from the Horn clauses obtained by evalu-
ating the conditions of clauses in ground(S) that are true in M .

not A ∈M if every clause in ground(S) of the form A← body contains
in its body a condition that is false in M .

The well-founded model can be generated bottom-up, starting with the empty
model ∅ and repeatedly adding positive and negative atoms until the above condi-
tion holds. It can also be queried top-down using tabling [Chen and Warren, 1996].

As we have seen in this commentary, the object-level interpretation of “only-if”
and the corresponding interpretation of logic programs as standing for object-level
definitions in ”if-and-only-if” form has largely been superseded by model-theoretic
interpretations of logic programs. Moreover, the positive atoms in these models
are all generated by Horn clause derivations. These Horn clause derivations give
the resulting models a syntactic core, which makes these model-theoretic semantics
meta-level in nature.

I have speculated elsewhere [Kowalski, 2014] on the relationship between the
object-level and meta-level/model-theoretic interpretations and suggested that
their relationship is similar that that between first-order axioms of arithmetic
and the standard model of arithmetic.

CHAPTER 12

When I was writing this chapter, I was aware of a much simpler Horn clause
definition of Horn clause provability, which I did not mention because I did not
understand its logic.

Ambivalent Combination of Object Language and Meta-language

The definition:

Demo(p & q)← Demo(p), Demo(q)
Demo(p) ← Demo(p← q), Demo(q)

is a notational variant of clauses T1 and T9 in Chapter 7, defining the truth pred-
icate for propositional logic. Here the infix function symbol & names conjunction

32 Robert Kowalski Imperial College London 12 October 2014

and the infix function symbol ← “ambivalently” names the implication symbol
←. (The symbol ← is not ambiguous, because the context makes its intended
interpretation clear.)

With this representation of the proof predicate, it suffices to represent the prob-
lem of the fallible Greek simply by the additional clauses:

← Demo(Fallible(x) & Greek(x))
Demo(Fallible(x)← Human(x))
Demo(Human(Turing))
Demo(Human(Socrates))
Demo(Greek(Socrates))

Notice that, in first-order logic, Fallible, Greek and Human are function symbols,
and not predicate symbols. However, it is possible to combine these clauses with
additional clauses, in which the same symbols are used ambivalently as predicate
symbols - for example, by adding such clauses as:

Fallible(x)← Human(x)
Human(Turing)
Human(Socrates)
Greek(Socrates)
Greek(Aristotle)

The resulting ambivalent amalgamation of object-language and meta-language re-
sembles a modal logic, in which the Demo predicate behaves like a modal operator
representing belief. In this example, the combined set of clauses represents a sit-
uation in which Aristotle is Greek, but is not known or believed to be Greek.

I have investigated different representations of the wise man puzzle, using such
an amalgamation of object language and meta-language, in which the Demo pred-
icate represents an agent’s beliefs. The representation in [Kowalski and Kim, 1991]
uses an explicit naming convention like the one presented in this chapter, whereas
the representation in [Kowalski, 2011] uses the kind of ambivalent syntax, which
resembles modal logic, illustrated in the example above. The ambivalent syntax
is much simpler and more natural.

The ambivalent syntax has also been used for practical applications, since the
earliest days of Prolog. However, a common problem with the logic of many of
these applications is that they often use a meta-predicate V ar(t), to test whether
a term t is a variable. This predicate holds, as intended, when t truly is a variable.
Logically, like any other predicate containing variables, it should continue to hold
if the variable t is later instantiated to a non-variable. But this is not the correct,
intended interpretation of the meta-predicate V ar(t).

The problem is due to the ambiguity of the implicit quantification of variables
in clauses such as Demo(Fallible(x) ← Human(x)). It is tempting to interpret
the clause as standing for Demo(“∀x(Fallible(x)← Human(x))”). But the status
of x in this interpretation is problematic. Is it an object-level variable, a meta-
variable that ranges over object-level variables, or a meta-constant that names

Logic for Problem Solving 33

an object-level variable? It depends in part on how the quotation marks are
implemented.

For Horn clause provability, the problem goes away if clauses with variables
are understood as standing for all their variable-free instances. In that case, x
can be understood as a meta-variable ranging over object-level terms t, and the
clause can be interpreted as standing for the sentence ∀x Demo(Fallible(x) ←
Human(x)). In this interpretation, the single meta-level sentence states there are
possibly infinitely many object level sentences of the form Fallible(t)← Human(t)
for all ground terms t. To be sensible, of course, the instantiation of the variable x
by terms t needs to be restricted to terms of the appropriate sort, as in many-sorted
logic.

The problems of the semantics of the ambivalent combination of object language
and meta-language has a complex history, which is recounted in [Costantini, 2002].
It is still not obvious to me whether all of the problems have been fully resolved.

CHAPTER 13

This chapter was my first step in the attempt to show how an intelligent agent
can use logic to guide its interactions with the world.

From Information Systems to Intelligent Agents

At the time I was working on the book, I was not fully aware of the importance
of actions in helping an agent to achieve its goals. I addressed this broader use of
logic in [Kowalski, 1988], which was a response to Carl Hewitt’s [1985] advocacy
of open systems as a challenge to logic programming. In this broader use of logic
as an agent’s language of thought, logic programs represent the agent’s beliefs and
integrity constraints represent the agent’s goals.

As I put it more generally in [Kowalski, 2011]:

In Artificial Intelligence, an agent is any entity, embedded in a real
or artificial world, that can observe the changing world and perform
actions on the world to maintain itself in a harmonious relationship
with the world. Computational logic, as used in artificial intelligence,
is the agent’s language of thought. Sentences expressed in this language
represent the agent’s beliefs about the world as it is and its goals for
the way it would like it to be. The agent uses its goals and beliefs to
control its behaviour.

In recent years, the notion of intelligent agent has become a unifying theme of
much research in AI, and showing how computational logic can be used to model
the thinking of an intelligent agent has become the driving force of most of my
own research.

One of the main challenges of AI has been to reconcile the notion of a delib-
erative agent, which uses its beliefs to achieve its goals, with the contrary notion

34 Robert Kowalski Imperial College London 12 October 2014

of a reactive agent, which acts “instinctively” in response to situations that arise
in its environment. In [Kowalski, 1995], I argued that computational logic can
reconcile and combine the characteristics of both deliberative and reactive agents.
In [Kowalski and Sadri; 1996, 1999, 2009], we used abductive logic programming
to develop in greater detail an agent model in which beliefs are represented by
logic programs, goals are represented by integrity constraints, and actions are
represented by abducible predicates. We argued that this combination of logic
programs and integrity constraints can model both deliberative and reactive be-
haviour. More recently, we developed LPS [Kowalski and Sadri; 2011, 2012, 2014a,
2014b], as a scaled down version of the agent model, using destructive change of
state for practical database and programming applications.

Abduction

In this chapter, I also explored the use of abduction to generate hypotheses, and
to reason by means of defaults. The use of abduction for default reasoning was
developed in greater detail in Theorist [Poole et al, 1987; Poole, 1988]. In Theorist,
abduction extends a first-order clausal theory T with assumptions ∆ from a set
of candidate hypotheses A, restricted by a set of first-order constraints I. The
implementation of Theorist used a combination of backward reasoning from G
to generate candidate ∆, and a refutation procedure to show that T ∪ ∆ ∪ I is
not inconsistent (similar to negation as failure). Theorist was one of the main
inspirations of abductive logic programming [Eshghi and Kowalski, 1989].

Argumentation

Building on Phan Minh Dung [1991], [Kakas et al, 1992] showed that the abductive
proof procedure in [Eshghi and Kowalski, 1989] could be given an argumentation
interpretation, in which, given a logic program P and set of negative literals ∆, a
derivation P ∪∆ `Horn G is interpreted as an argument for G supported by the
assumptions ∆. With this interpretation, argument1 for G attacks argument2 if
not G is in the set of assumptions ∆ supporting argument2 . A set of arguments
Args is admissible, if for every argument1 that attacks an argument2 ∈ Args
there is an argument3 ∈ Args that attacks argument1. In other words, a set of
arguments Args is admissible if it can counter-attack every attack.

Dung [1993, 1995] generalized this interpretation and developed an abstract
argumentation theory, which has had a wide-ranging impact. [Bondarenko et al,
1997] developed a more concrete assumption-based version of Dung’s abstract the-
ory, and showed that it could be used to reconstruct not only most logic program-
ming semantics, but also most semantics developed for non-monotonic reasoning.

Inductive Logic Programming

Another important development, related to the topic of this chapter, is inductive
logic programming (ILP), which is concerned with generating inductive generali-

Logic for Problem Solving 35

sations of examples. ILP was introduced by Muggleton [1991] building upon the
inverse unification of [Plotkin, 1970]. Given a background theory B represented as
a logic program, a set E+ of positive examples, and a set E− of negative examples,
the inductive task in ILP is to generate a set of hypotheses H represented by a
logic program such that:

H ∪B covers E+ and
H ∪B does not cover any of the negative examples in E−.

Informally speaking, H solves the inductive task if H explains all the positive
examples, without “implying” any of the negative examples.

There is an obvious parallel here with the definition of abduction, with H being
the parallel of abductive assumptions, E+ the parallel of the goal to be solved, and
E− the parallel of integrity constraints to be satisfied. A number of frameworks
have been developed (e.g. [Ade and Denecker, 1995; Flach and Kakas, 2000;
Lamma et al, 1999]), combining ILP and ALP, and exploiting this parallelism.

As in the case of the vague (or abstract) specification of the abductive task, the
abstract notion of “covering” also admits several different concrete instances.

In recent years, the field of ILP has been extended to incorporate the representa-
tion of probability. The recent survey of ILP [Muggleton et al, 2012] suggests that
this extension of ILP can function as a foundation for much of AI, both helping to
understand existing research and to serve as a vision for the future. To this exten-
sion of ILP with probability, I would add its embedding in the dynamic setting of
an intelligent agent interacting with the world, observing changes and performing
actions to satisfy its goals. I like to believe that the use of probabilistic ILP in
such a setting, to generalise observations and to learn new beliefs together with
their probabilities and their utilities, will play a central role in the future, both to
develop more intelligent artificial agents and to build better cognitive models of
human agents.

ACKNOWLEDGEMENTS

Many thanks to Maarten van Emden, Thom Frühwirth and Fariba Sadri for their
helpful comments. Special thanks to Thom for inviting me to republish the book
with this commentary, and for his efforts in converting the book into its present
form.

NEW REFERENCES

Ade, H. and Denecker, M. (1995). AILP: Abductive Inductive Logic Programming.
IJCAI, 1201-1209.

Abdennadher, S. and Schütz, H. (1998). CHR∨: A Flexible Query Language.
In T. Andreasen, H. Christiansen, and H.L. Larsen, editors, FQAS ’98: Proc. 3rd

36 Robert Kowalski Imperial College London 12 October 2014

Intl. Conf. on Flexible Query Answering Systems, Volume 1495 of Lecture Notes
in Artificial Intelligence, 1-14, Springer-Verlag.

Apt, K. R, and Bezem, M. (1991). Acyclic Programs. New Generation Com-
puting, 9(3-4), 335-363.

Apt, K. R, Blair, H. and Walker, A. (1988). Towards a Theory of Declarative
Knowledge. In J. Minker (ed.), Foundations of Deductive Databases and Logic
Programming, 89-148. Morgan Kaufman, Los Altos, CA.

Baader, F. (Ed.). (2003). The Description Logic Handbook: Theory, Implemen-
tation, and Applications. Cambridge University Press.

Baumgartner, P. (2000). FDPLL - a First-order Davis-Putnam-Logeman-Loveland
Procedure. In Automated Deduction, CADE-17 200-219. Springer Berlin Heidel-
berg.

Biere, A., Heule, M., van Maaren, H. and Walsh, T. (2009). Handbook of
Satisfiability, Vol. 185 of Frontiers in Artificial Intelligence and Applications. IOS
Press.

Bondarenko, A., Dung, P. M., Kowalski, R., and Toni, F. (1997). An Abstract
Argumentation-theoretic Approach to Default Reasoning. Journal of Artificial
Intelligence, 93 (1-2), 63-101.

Bonner, A. J., and Kifer, M. (1993). Transaction Logic Programming. In
Proceedings of the International Conference on Logic Programming, 257-279.

Bowen, K. A. and Kowalski, R. (1982). Amalgamating Language and Meta-
language. In Logic Programming. (Clark and Tarnlund, eds.) Academic Press,
153-172.

Brewka, G., Eiter, T., and Truszczyski, M. (2011). Answer Set Programming
at a Glance. Communications of the ACM, 54(12), 92-103.

Brough, D. R. and Walker, A. (1984). Some Practical Properties of Logic
Programming Interpreters. In Proceedings of FGCS, 149-156.

Burton A., Kowalski, R., Gacic-Dobo M., Karimov R. and Brown, D. (2012).
A Formal Representation of the WHO and UNICEF Estimates of National Im-
munization Coverage: a Computational Logic Approach. In PLOS ONE, October
25, 2012, Online at http://dx.plos.org/10.1371/journal.pone.0047806

Ceri, S., Gottlob, G. and Tanca, L. (1989). What You Always Wanted to Know
about Datalog (and Never Dared to Ask). IEEE Transactions on Knowledge and
Data Engineering, 1(1), 146-166.

Chen, W. and Warren, D. (2012) Tabled Evaluation with Delaying for General
Logic Programs. JACM 43, 20-74.

Clark, K. L. and McCabe, F. G. (1979). The Control Facilities of IC-Prolog.
In Expert Systems in the Electronic Age (Ed. D. Michie), Edinburgh University
Press.

Clark, K. L. and Gregory, S. (1981). A Relational Language for Parallel Pro-
gramming. In Proceedings of the 1981 conference on Functional programming
languages and computer architecture, 171-178. ACM.

Clark, K. L., McCabe, F. G., and Gregory, S. (1982). IC-Prolog Language
Features. Logic programming (Eds. Clark and Tarnlund) Academic Press, 254-

Logic for Problem Solving 37

266.
Clark, K. and Gregory, S. (1986). Parlog: Parallel Programming in Logic. ACM

Transactions on Programming Languages and Systems (TOPLAS), 8(1), 1-49.
Colmerauer, A. (1982). Prolog II: Reference Manual and Theoretical Model. Groupe

D’intelligence Artificielle, Faculté Des Sciences De Luminy, Marseille.
Costantini, S. (2002). Meta-reasoning: a Survey. In Computational Logic: Logic

Programming and Beyond, 253-288. Springer Berlin Heidelberg.
Davis, M., Logemann, G., Loveland, D. (1962). A Machine Program for Theorem-

Proving. Communications of the ACM 5 (7): 394397.
Denecker, M. (2000). Extending Classical Logic with Inductive Definitions. In

Computational Logic - CL 2000 703-717. Springer Berlin Heidelberg.
Denecker, M. and Kakas, A. (2002). Abduction in Logic Programming. In

Computational Logic: Logic Programming and Beyond, 402-436. Springer Berlin
Heidelberg.

Denecker, M., Bruynooghe, M. and V. Marek. (2001). Logic Programming
Revisited: Logic Programs as Inductive Definitions. ACM Transactions on Com-
putational Logic, 2(4), 623-654.

Dincbas, M., Van Hentenryck, P., Simonis, H., Aggoun, A., Graf, T. and
Berthier, F. (1988). The Constraint Logic Programming Language CHIP. In
FGCS, 693-702.

Dung P. M. (1991). Negation as Hypothesis: an Abductive Foundation for Logic
Programming. In Proc. 8th International Conference on Logic Programming, MIT
Press.

Dung P. M. (1993). On the Acceptability of Arguments and its Fundamental
Roles in Nonmonotonic Reasoning and Logic Programming. In Proceedings of
IJCAI, 852-857, Morgan Kaufmann.

Dung, P. M. (1995). On the Acceptability of Arguments and its Fundamen-
tal Role in Nonmonotonic Reasoning, Logic Programming and N-person Games.
Artificial intelligence, 77(2), 321-357.

Eisinger, N. (1986). What You Always Wanted to Know about Clause Graph
Resolution. In 8th International Conference on Automated Deduction, 316-336.
Springer Berlin Heidelberg.

van Emden, M. and Kowalski, R. (1976). The Semantics of Predicate Logic as
a Programming Language. JACM, 23 (4), 733-742. Earlier version DCL Memo.
School of Artificial Intelligence, University of Edinburgh, 1974.

Eshghi, K. (1988). Abductive Planning with Event Calculus. In ICLP/SLP,
562-579.

Fung, T. H. and Kowalski, R. (1997). The IFF Proof Procedure for Abductive
Logic Programming. Journal of Logic Programming.

Eshghi, K. and Kowalski, R. (1989) Abduction Compared with Negation by
Failure, In Sixth International Conference on Logic Programming, (eds. G. Levi
and M. Martelli) MIT Press, 234-254.

Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A.
and Welty, C. (2010). Building Watson: An Overview of the DeepQA Project. AI

38 Robert Kowalski Imperial College London 12 October 2014

magazine, 31(3), 59-79.
Flach, P. A., and Kakas, A. C. (2000). Abductive and Inductive Reasoning:

Background and Issues. In Abduction and Induction, 1-27. Springer.
Frühwirth, T. (1998). Theory and Practice of Constraint Handling Rules. The

Journal of Logic Programming, 37(1-3), 95-138.
Frühwirth, T. (2009. Constraint Handling Rules. Cambridge University Press.
Gelfond, M. and Lifschitz, V. (1988). The Stable Model Semantics for Logic

Programming. In ICLP/SLP, 1070-1080.
Green, T. J., Huang, S. S., Loo, B. T. and Zhou, W. (2013). Datalog and

Recursive Query Processing. Foundations and Trends in Databases, 5(2), 105-195.
Harel, D. (1980). Review on Logic and Data Bases, Computing Reviews, 367-

369.
van Hentenryck, P. (1989). Constraint Satisfaction in Logic Programming.

Cambridge: MIT press.
Hewitt, C. (1985). The Challenge of Open Systems: Current Logic Program-

ming Methods may be Insufficient for Developing the Intelligent Systems of the
Future. Byte, 10(4), 223-242.

Hill, P. and Lloyd, J. (1994). The Gödel Programming Language. MIT press.
Horrocks, I., Patel-Schneider, P. F. and Van Harmelen, F. (2003). From SHIQ

and RDF to OWL: The Making of a Web Ontology Language. Web semantics:
science, services and agents on the World Wide Web, 1(1), 7-26.

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B. and Dean,
M. (2004). SWRL: A Semantic Web Rule Language Combining OWL and RuleML.
W3C Member submission, 21, 79.

Jaffar, J. and Lassez, J. L. (1987). Constraint Logic Programming. In Proceed-
ings of the 14th ACM SIGACT-SIGPLAN symposium on Principles of program-
ming languages, 111-119. ACM.

Jaffar, J. and Maher, M. J. (1994). Constraint Logic Programming: A Survey.
The Journal of Logic Programming, 19, 503-581.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.
M. and Irwin, J. (1997). Aspect-oriented Programming, Springer, Berlin Heidel-
berg.

Kakas, A., Kowalski, R. and Toni, F. (1992). Abductive Logic Programming.
Journal of Logic and Computation, 2(6), 719-770.

Kowalski, R. (1988). Logic-based Open Systems. In Representation and Rea-
soning, Jakob ph. Hoepelman (Hg.) Max Niemeyer Verlag, Tbingen, 125-134.
Also Department of Computing, Imperial College, 1985.

Kowalski, R. (1995). Logic without Model Theory. In What is a logical system?,
(ed. D. Gabbay), Oxford University Press.

Kowalski, R. (1995). Using Metalogic to Reconcile Reactive with Rational
Agents. In Meta-Logics and Logic Programming, (K. Apt and F. Turini, eds.),
MIT Press.

Kowalski, R. (2006). Computational Logic in an Object-oriented World. In
Reasoning, Action and Interaction in AI Theories and Systems, 59-82. Springer

Logic for Problem Solving 39

Berlin Heidelberg.
Kowalski, R. (2011). Computational Logic and Human Thinking: How to be

Artificially Intelligent, Cambridge University Press.
Kowalski, R. (2014). Logic Programming. To appear in Volume 9, Computa-

tional Logic, (Joerg Siekmann, editor). In the History of Logic series, edited by
Dov Gabbay and John Woods, Elsevier.

Kowalski, R. and Burton A. (2012). WUENIC A Case Study in Rule-based
Knowledge Representation and Reasoning. In Post-proceedings International Work-
shop on Juris-informatics, Springer-Verlag.

Kowalski, R. and Kim, J. S. (1991). A Metalogic Programming Approach to
Multi-agent Knowledge and Belief. Artificial intelligence and Mathematical Theory
of Computation, 231-246.

Kowalski, R. and Sadri, F. (1996). Towards a Unified Agent Architecture that
Combines Rationality with Reactivity, In Proc. International Workshop on Logic
in Databases, San Miniato, Italy, Springer- Verlag, LNCS 1154.

Kowalski, R. and Sadri, F. (1999). From Logic Programming towards Multi-
agent Systems, Annals of Mathematics and Artificial Intelligence, pages 391-419.

Kowalski, R. and Sadri, F. (2009). Integrating Logic Programming and Pro-
duction Systems in Abductive Logic Programming Agents, In Web Reasoning and
Rule Systems (eds. A. Polleres and T. Swift), Springer, LNCS 5837.

Kowalski, R. and Sadri, F. (2011). Abductive Logic Programming Agents with
Destructive Databases, Annals of Mathematics and Artificial Intelligence 62(1-2),
129-158.

Kowalski, R. and Sadri, F. (2012). A Logic-Based Framework for Reactive Sys-
tems. RuleML 2012, A. Bikakis and A. Giurca (Eds.), LNCS 7438, 1-15. Springer,
Heidelberg.

Kowalski, R. and Sadri, F. (2014a). A Logical Characterization of a Reactive
System Language. In Rules on the Web: From Theory to Applications, 22-36),
Springer International Publishing.

Kowalski, R. and Sadri, F. (2014b) Reactive Computing as Model Generation.
to appear in New Generation Computing.

Kowalski, R. and Sergot, M. (1986). A Logic-based Calculus of Events. New
Generation Computing, 4(1), 67-95.

Kowalski, R., Toni, F. and Wetzel, G. (1998). Executing Suspended Logic
Programs. Fundamenta Informatica, 34(3), 203-224.

Lally, A., Prager, J. M., McCord, M. C., Boguraev, B. K., Patwardhan, S., Fan,
J. and Chu-Carroll, J. (2012). Question analysis: How Watson reads a clue. IBM
Journal of Research and Development, 56(3.4), 2-1.

Lamma, E., Mello, P., Milano, M., and Riguzzi, F. (1999). Integrating Induction
and Abduction in Logic Programming. Information Sciences, 116(1), 25-54.

Lloyd, J. W. and Topor, R. W. (1984). Making Prolog More Expressive. The
Journal of Logic Programming, 1(3), 225-240.

Lusk, E., Butler, R., Disz, T., Olson, R., Overbeek, R., Stevens, R., Warren,
D., Calderwood, A., Szeredi, P., Brand, P., Carlsson, M., Ciepielewski, A. and

40 Robert Kowalski Imperial College London 12 October 2014

Hausman, B. (1990). The Aurora Or-parallel Prolog System. New Generation
Computing, 7(23), 243271.

Maes, P. (1990). Situated Agents Can Have Goals. Robot. Autonomous Syst.
6 (1-2), 49-70.

Manthey, R. and Bry, F. (1988). SATCHMO: a Theorem Prover Implemented
in Prolog. In 9th International Conference on Automated Deduction, 415-434.
Springer Berlin Heidelberg.

Quine, W. V. O. (1963). Two Dogmas of Empiricism. In From a Logical Point
of View, Harper and Row, 20-46.

Marques-Silva, J. and Sakallah, K. A. (1999). GRASP: A Search Algorithm for
Propositional Satisfiability. IEEE Trans. Comput., 48(5):506521.

Minto, B. (2010). The Pyramid Principle: Logic in Writing and Thinking.
Pearson Education. (An earlier version was published in 1987.)

Moto-Oka, T. (Ed.). (1982). Fifth Generation Computer Systems. Elsevier.

Muggleton, S. (1991). ”Inductive Logic Programming”. New Generation Com-
puting, 8 (4): 295318.

Muggleton, S., De Raedt, L., Poole, D., Bratko, I., Flach, P., Inoue, K. and
Srinivasan, A. (2012). ILP Turns 20. Machine Learning, 86(1), 3-23.

Plotkin, G. D. (1970). ”A Note on Inductive Generalization”. In Meltzer, B.;
Michie, D. Machine Intelligence 5, Edinburgh University Press, 153163.

Poole, D., Goebel, R. and Aleliunas, R. (1987). Theorist: A Logical Reasoning
System for Defaults and Diagnosis. In N. Cercone and G. McCalla (Eds.) The
Knowledge Frontier: Essays in the Representation of Knowledge, Springer Verlag,
New York, 331-352.

Poole, D. (1988). A Logical Framework for Default Reasoning. Artificial intel-
ligence, 36(1), 27-47.

Przymusinski, T. C. (1988). On the Declarative Semantics of Deductive Databases
and Logic Programs, In J. Minker (ed.), Foundations of Deductive Databases and
Logic Programming, Morgan Kaufmann, Los Altos, CA, 193-216.

Robinson, J. A. (1968). The Generalized Resolution Principle. Machine intel-
ligence 3, 77-93.

Sadri, F. and Kowalski, R. (1988). A Theorem-Proving Approach to Database
Integrity. In Minker, J. [ed.], Foundations of Deductive Databases and Logic Pro-
gramming, Morgan Kaufmann, 313-362.

Sergot, M., Sadri, F., Kowalski, R., Kriwaczek, F., Hammond, P., and Cory, T.
(1986). The British Nationality Act as a Logic Program, CACM, 29(5), 370-386.

Shapiro, E. Y. (1987). Concurrent Prolog: Collected Papers. MIT press.

Siekmann, J. and Wrightson, G. (2002). An Open Research Problem: Strong
Completeness of R. Kowalski’s Connection Graph Proof Procedure. In Compu-
tational Logic: Logic Programming and Beyond, 231-252. Springer Berlin Heidel-
berg.

Smolka, G. (1982). Completeness of the Connection Graph Proof Procedure for
Unit-Refutable Clause Sets. GWAI-82, 191-204. Springer Berlin Heidelberg.

Logic for Problem Solving 41

Swift, T., and Warren, D. S. (2012). XSB: Extending Prolog with Tabled Logic
Programming. Theory and Practice of Logic Programming, 12(1-2), 157-187.

Ueda, K. (1986). Guarded Horn Clauses: A Parallel Logic Programming Lan-
guage with the Concept of a Guard. ICOT Technical Report TR-208, Institute
for New Generation Computer Technology (ICOT), Tokyo. Revised version in
Programming of Future Generation Computers, Nivat, M. and Fuchi, K. (eds.),
North-Holland, Amsterdam, 441-456, 1988.

Ueda, K. (1999). Concurrent Logic/Constraint Programming: The next 10
years. In The Logic Programming Paradigm, 53-71. Springer Berlin Heidelberg.

Van Gelder, A. (1989). Negation as Failure Using Tight Derivations for General
Logic Programs, The Journal of Logic Programming, 6 (1-2), 109-133.

Van Gelder, A, Ross, K. A. and Schlipf, J. (1991). The Well-Founded Semantics
for General Logic Programs. JACM 38(3), 620-650.

