
10

Search Strategies for
Theorem-Proving

Robert Kowalski
Metamathematics Unit
University of Edinburgh

We will define the notions of abstract theorem-proving graph, abstract
theorem-proving problem g and search strategy E for g. These concepts
generalize the usual tree (or graph) searching problem and admit Hart,
Nilsson and Raphael (1968) and Pohl (1969) theories of heuristic search.
In particular the admissibility and optimality theorems of Hart, Nilsson and
Raphael generalize for the classes 0 and 0" of diagonal search strategies for
abstract theorem-proving problems. In addition the subclass au of 0 is
shown to be optimal for 2. Implementation of diagonal search is treated in
some detail for theorem-proving by resolution rules (Robinson 1965).

SEARCH STRATEGIES, COMPLETENESS AND
EFFICIENCY

Completeness and efficiency of proof procedures can be studied only in the
context of search strategies. A system T of inference rules and axioms can
be complete or incomplete for a given class of intended interpretations.
Similarly a search strategy E for T may or may not be complete for obtaining
proofs constructible in T — independently of the completeness of T. A proof
procedure (T, E) consists of a system of inference rules and axioms T together
with a search strategy E for T. The procedure (T, E) can be complete in
several distinct senses depending upon the completeness of T and E. These
distinct notions of completeness are often confused and this confusion
results in confused discussion regarding the value of complete versus heuristic
methods in automatic theorem-proving.
The situation is no better with regard to discussions of efficiency. Proposals

have been put forward both for increasing the strength of inference systems
and for restricting the application of inference rules. Thus, for instance, co-
order logic is a strong inference system, whereas set-of-support resolution
(Wos, Carson and Robinson 1965) is a restricted inference rule. However it
is only proof procedures (T, E) which can be efficient for proving theorems.

181

MECHANIZED REASONING

A system of inference rules and axioms T is potentially efficient only if it
admits a search strategy E which yields an efficient proof procedure (T, E).
On the other hand, a search strategy E can be efficient for obtaining proofs
constructible within T regardless of the efficiency of the resulting proof
procedure (T, E), i.e., E may do a best possible job for an impossible T.

It is interesting that certain inference-related rules can be defined only in
the context of search strategies. Deletion of subsumed clauses is an important
example. The completeness of a deletion strategy for a proof procedure
(T, E) is relative to the completeness of (T, E) and might be better termed
'compatibility with (T, E)'. Our own proof for the compatibility of deleting
subsumed clauses (Kowalski and Hayes 1969) fails because no regard is
taken of this relativity to search strategies. The compatibility with given
(T, E) of deleting subsumed clauses has been proved for the case where E
is a level saturation search, T is ordinary binary resolution (Robinson 1965)
or Am-clash resolution (Sibert 1969) and deletion is done only after each level
is saturated. Compatibility of the usual deletion rule for most complete T
and for arbitrary E is proved in Kowalski (1970) where counterexamples are
also exhibited for the compatibility and efficiency of alternative rules for
deleting subsumed clauses. The compatibility with given (T, E) of deleting
tautologies is a much simpler matter — but first proved explicitly for arbitrary
E and most resolution systems T in Kowalski (1970).

Despite the importance of search strategies, most research in automatic
theorem-proving has concentrated on developing new inference systems which
are either more powerful or more restricted than ones already existing. The
Unit Preference strategy of Wos, Carson and Robinson (1964) seems to be
the basic search strategy employed by most computer programs which
implement resolution rules in proof procedures. Slagle's Fewest Components
strategy (see Sandewall 1969), Green's (1969a) partitioning of clauses into
active and passive clauses, and Burstall's (1968) indexing scheme seem to be
the only other reported proposals for improving search strategies.

THEOREM-PROVING GRAPHS

It is disconcerting that none of the research in tree searching techniques has
yielded improved search strategies for theorem-proving. We wholly agree
with Sandewall's (1967) assessment that searching for paths in trees is not
general enough to represent the searches needed in automatic theorem-
proving. A similar situation exists with respect to and/or trees where search-
ing for subtrees cannot be represented helpfully by searching for paths in
other trees. The notion of theorem-proving graph, defined below, is intended
to extend the usual notion of tree (or graph) and to apply to the theorem-
proving problem without encompassing the notion of and/or tree.
In the theorem-proving problem we begin with an initial non-empty set of

sentences So and with a set of inference rules I'. If 9 e r and S is a set of
sentences then 9 (5) is another set of sentences. 9 (S) = 0 if 9 is not applicable

182

KOWALSKI

to S. In particular 9(S) =0 if S is not finite. In applications to resolution
systems, So is a set of clauses and r consists of a single resolution rule or of
a factoring rule and a separate rule for resolving factors. If 9 is binary
resolution of factors then 9(S) =S' 00 if S contains two factors which
resolve or one factor which resolves with itself and each C' e S' is a resolvent
of the clauses in S. If 9 is the operation of unifying literals in a single clause
then 9(S) = S' 00 if S is a singleton, S= {C}, and each C' e S' is a factor of
C.
Given an initial set of sentences So and a set of inference rules F let S* be

the set of all sentences which can be derived from So by iterated application
of the rules in F. Then each 9 e r is a function 9: 2s*--,2s* defined on subsets
of S* taking subsets of S* as values. Each sentence Ce S* can be assigned a
level: if Ce So then the level of C is zero, otherwise Ce 9(S) for some
9 e rand for some SS* and the level of C is one greater than the maximum
of the levels of the sentences D e S. If Si is the set of all sentences of level i
then S* = t.) Sp Since a sentence Ce S* may have several distinct derivations,

04i

the level of C need not be unique. Since 9(S) 00 only if S is finite, the set of
sentences which occur in a given derivation of a sentence Ce S* is always
finite. The theorem-proving problem for a triple (So, r, F), F S*, is that
of generating by means of a search strategy E some C* e F by iterated
application of the rules in r beginning with the sentences in So. For certain
applications it may be required to derive a sentence C* e F having minimum
level in F or, more generally, having minimum cost in F, where cost is
determined by some 'costing function' defined on the sentences in S*. The
tree (or graph) searching problem (Doran and Michie 1966, Sandewall
1969) can be interpreted as a theorem-proving problem (So, r, F) where
each operator o e F has the property that 9(S) =0 whenever S is not a
singleton.
A triple (So, r, F) determines a directed graph whose nodes are single

sentences Ce S*. C' is an immediate successor of C (i.e., C' is connected
to C by an arc directed from C to C') if for some Sg S* and 9 e r, Ce S
and C' e 9(5). The situation is similar to that which exists for ordinary
graph searching problems as distinguished from tree searching problems.
Searching in a directed graph for a path from a node a to a node b can be
interpreted as searching in a directed labelled tree for a path from a node
ni, with label c(ni) =a, to a node n2, with label c(n2) = b. The tree search
interpretation of graph searching has the property of representing a single
node c in a graph as distinct nodes ni, nk in a tree when the node c can
be generated in k different ways as the end node of k different paths from the
initial node a. This property of the tree search representation is one which we
find useful when extended to deal with the more general theorem-proving
problem. In particular the extended tree search representation associates
distinct nodes with distinct derivations. This 1 — 1 correspondence between
nodes and derivations allows the number of nodes generated by a search

183

MECHANIZED REASONING

strategy E in the course of obtaining a terminal node to be treated as a
measure of the efficiency of E for the given problem.
We define the notion of an abstract theorem-proving graph ('abstract

graph' or simply 'graph') (G, s). The extended tree representation of an
interpreted theorem-proving graph (So, F) can be obtained from (G, s) by
labelling the nodes n e G by use of a labelling function c: G-+S*, and by
interpreting each application of the function s to a subset G as an
application of a function 9 e r to the subset {c(n)in e G'}. An abstract
theorem-proving graph is a pair (G, s) where G is a set of nodes, s: 2G--)2G
is a successor function defined on subsets of G taking subsets of G as values.
G and s satisfy the following conditions:

(1) s(0) =0.
(2) s(G') &ø implies that G' is finite.
(3) G' 0G" implies that s(G')ns(G") =0.
(4) Let 9'0= {n E Gin s(G') for any G' G} ,

let .9'k +1= In e Gin e s(G') for some G' G' (1,9'1,00).
i4k

Then

(a) 99000,
(b) G= u

041

(C) j=0 for i0j.

The graph (G, s) reduces to an ordinary tree if s(G') ø implies that G' is a
singleton. For this case condition (3) states that distinct nodes have distinct
sets of successors. More generally, (3) states that distinct sets of nodes have
distinct sets of successors. It is precisely this condition which ensures that
the graphs (G, s) extend the ordinary tree representation of search spaces.
Condition (4) states that (G, s) is a levelled acyclic directed graph. In other
words each n e G can be assigned a unique level i where n e.9', and n Yj for
all j0 i. If (So, r) is an interpretation of (G, s) with labelling function c:
G-S* then Si= {c(n)in e .9',) is just the set of labelled nodes of level i. Con-
dition (3) guarantees that for each CE S* and for each distinct derivation of
C from So there is a distinct node n e G such that C= c(n). There is no restric-
tion that 9"0 or So be finite. The case where 990 is infinite allows us to deal with
axiom schemes in theorem-proving and more generally with potentially
infinite sets of initial nodes .9'o.
The successor function s of (G, s) determines a partial ordering of the nodes

in G: n' is an immediate successor of n (and n an immediate ancestor of n') if
n' E s(G') and n e G' for some G' G. A node n' is a successor of n (and n an
ancestor of n'), written n' > n, if n' is an immediate successor of n or if n' is a
successor of an immediate successor of n. We write n...cni if n <ni or n=n'.
The definition of (G, s) guarantees that for all n e G the set {n' in' <n) is
finite, although the set {n'ini>n} may be infinite. Notice that in the
theorem-proving interpretation of graphs (G, s), a derivation of a sentence

184

level 0

level 1

level 2

level 3

Figure 1

KOWALSKI

c(n) consists of all the sentences c(n') where n' <n. Each such derivation
contains only finitely many sentences c(n').

Figure 1 illustrates a graph (G, s) where nodes are represented as points
and where points n and n' are connected by a directed line from n to n' if n'
is an immediate successor of n. In general it is convenient to picture graphs
as directed downward, so that n lies above n' if n' is a successor of n. To
determine in figure 1 if n e s(G') it suffices to verify that G' is the set of all
nodes connected to n by an arc directed to n. Thus, for example,

s(ni, n2) = {776},
s(n2, n6) = {179},
s(n3,174)= {n7,178} ,
s(n7)= nil),
s(n2) =s(n3) = s(n8) =s(ni, 172, 176) =0.

If the graph of figure 1 is interpreted as a resolution graph by a labelling
function c: G--■S* then the two clauses c(n7) and c(178) must be all the re-
solvents of the pair c(n3), c(n4). The clause c(n8) resolves with none of the
clauses c(n I), 1 14. The clauses c(nio) and c(nil) are either factors of
c(n7) or are obtained from c(n7) by resolving c(n7) with itself. If C=c(n6) =
c(n7)=c(7714) then C has three derivations, two of level one and one of level
three. Derivations are not necessarily represented by derivation trees. For
instance the derivation of c(1713) consists of the clauses c(ni), c(n2), c(n3),
c(n4), c(n6), c(n7), c(n9), c(nn), c(n13). The clause c(n2) is used twice in
the derivation of c(n13) but is represented by only one node in G.
An abstract theorem-proving problem with non-negative costs ('abstract

problem with costs' or simply ̀ problem') is a tuple g= (G, s F, g) where
G, the set of terminal nodes for g (or solution nodes), and g: G-0111,

the costing function of g, (R, the set of real numbers) are such that

(1) n e .9" implies that s(G') =0 whenever n e
(2) (a) g(n)>0 for all n e G,

(b) if n e s(ni, nk) (we write s(ni, nk) instead of
s({ni, nk})) then g(n)> max g(ni).

1.4i4k

185

MECHANIZED REASONING

A solution to the problem g is obtained by constructing an algorithm E
which generates from go a node n e F. Each node n e F is assigned a cost
and it is often required to solve g by generating a node n e F having minimal
cost in F. If g(n) =0 for all n e G then in effect we have a problem without
costs. Alternatively g(n) may be taken to be the level of n, the number of
nodes n' ...5n or any other value which satisfies (3) above. In applications to
resolution theory g(n) is usually taken to be the level of the clause c(n).
For n e .990 we do not require that g(n)= 0. This freedom allows us to assign
different costs to distinct nodes in .9'0 and is especially useful when is
infinite. The set F may be empty in which case the problem has no
solution. In resolution applications when F= {n e Glc(n) =0} then F is
empty if the set So= {c(n)In e boo} is satisfiable. The general problem
g= (G, s, F, g) reduces to the ordinary tree searching problem when (G, s)
is a tree.

SEARCH STRATEGIES FOR ABSTRACT THEOREM-
PROVING PROBLEMS

A search strategy E for g is a function I: 2G-+20 which generates subsets
of G from other subsets of G. Given such a function E for .9 we define the
sets Et of nodes already generated by E before the (i+ 1)th stage and 2t of
nodes which are candidates for generation by E at the (i+ 1)th stage:

E0= 20=—V0, (1)
Ei+1=EivE(Ei),

Ei+1=({nInes(G'), G'..g.Et+04)—E1. (2)

We require that E satisfy

(3)

The set of nodes E(Et), chosen from the set of candidates is the set of
nodes newly generated byE at the (i+ 1)th stage. (It is easy to verify thatE in2t=
for all i> 0.) The function E should be interpreted as selecting subsets G'

of Et and generating nodes n e s(G') which have not been previously
generated. The definitions above only partially formalize the intuitive notion
of search strategy for P. In particular the search strategies E are never allowed
to display any redundancy, i.e., generate the same node twice. This restriction
is not essential because given any concrete, possibly redundant, algorithm for
generating nodes in G there corresponds a unique search strategy E which,
except for redundancies, generates the same nodes in the same order.

Notice that E(Et) may contain more than one node — as is common with
resolution strategies which simultaneously generate several resolvents of a
single clash or several factors of a single clause. Notice too that nodes in .990
can be generated at any stage. We do not require that E(E1) contain a node
n e F when Zing' Om If 0 is an ordinary tree search problem then the
definition of search strategy for g' provides a formal notion which applies
to the usual strategies employed in searching for nodes in trees.

186

KOWALSKI

A search strategy E for g= (G, s, F, g) is complete for g if for all n e G
there exists an j>0 such that n e Ei. It is possible to define completeness in
this way since we do not insist that E generates no additional nodes after
generating a first node n* e F. We say that E terminates at stage 1>0 if
Fr,_1=ø and either (1) Fra, or (2) EI=E1-1. In the first case I
terminates with a solution and without a solution in the second case.
In the terminology of Hart, Nilsson and Raphael (1968), a search strategy

E is said to be admissible for g if E is complete for g and terminates with a
solution having least cost in .9" if FOE!, i.e., n* e .9" rat,
implies that g(n*).<..g(n) for all n e F. In resolution applications admissible
search strategies are of special interest for robot control and automatic
program writing (Green 1969b) where minimal cost solutions are related to
simplest strategies and most efficient programs. More generally intuition
suggests that, in the absence of special information about the location of
non-minimal solutions, admissible search strategies will tend to be more
efficient than non-admissible strategies for finding arbitrary solutions. An
important step towards formalizing this intuition has already been made in
the optimality theorems of Hart, Nilsson and Raphael (1968).
We define the notion of a search strategy E for a problem g= (G, s, F, g)

being compatible with a merit ordering defined on the nodes of G. For the
moment we require only that be reflexive and defined for all pairs of nodes
in G. We write ni-<n2 (ni has better merit than n2) when ni--<n2 and not
n2--<ni. We write fllfl2 (ni and 112 have equal merit) if ni--<n2 and n2-- n1•
A search strategy E for g is compatible_ with a merit ordering if for all
i< 0,
(1) 2,0 implies that E(E1) 4),
(2) n e E(E) implies that tv<\n' for all n' e

In other words E always generates, from a non-empty set 21, at least one
node n e 2,, and no node n' e 21 which is not generated by E has better merit
than any node n e 2, which is generated by E. Since a node n may have better
merit than an ancestor n' <n, E need not generate nodes in order of merit.
Distinct strategies E and E' for the same g compatible with the same merit
ordering differ only with regard to tie breaking rules for choosing which
nodes to generate from a set of candidates having equal merit. If is the
trivial ordering, for all n, n' e G, then is a merit ordering for G and
any search strategy E for g is compatible with If z is the ordering by
levels, n--<11' if and only if 71 e .991, n' e ..Ve and then any search strategy
for g compatible with is a level saturation (or breadth first) strategy for
g. If is the ordering by costs, n--<n' if and only if g(n).<..g(n'), then E
compatible with r-<, is a cost saturation strategy for g. If is the inverse
ordering by levels, n--<n' if and only if n e s, n' e .99i, and 1. > i', then E
compatible with is a depth first strategy for g.
Lemma 1 states the fundamental properties of search strategies E com-

patible with merit orderings: (a) any node n2 e G is generated by E before

187

MECHANIZED REASONING

any node ni which has worse merit than n2 and than all the ancestors of n2,
(b) if n is generated before n2 then nz or some ancestor of n2 has worse or
equal merit to n.

Lemma 1

Let g= (G, s, g) be a problem, a merit ordering for G and E a search
strategy for g compatible with

(a) If ni e Ei and n2 e G are such that n-<ni for all n <n2 then n2 e Ei
(b) If ni e Ei and n2 e E(E1) then ni--<n for some n ‘. n2.

Proof. (a) Let ni be generated at the (j+ 1)th stage, i.e., ni e E(E), ni ; and
j< i. If n2 0 E1 then for some n <n2, n ; and n e 2./. But n-Gni and therefore
E is not compatible with since it generates ni instead of n at the (j+ 1)th
stage. Therefore n2 e EJ and n2 e E1_1 since j<
(b) Suppose n-<ni for all n<n2. Then by (a), n2 e and therefore

712 E(Ei)•
A merit ordering for G is 3-finite if for all n E G the set {n' e Gin'

is finite (compare Hart, Nilsson and Raphael 1968). The importance of
3-finite merit orderings is a consequence of Theorem 1: any search strategy
compatible with a 3-finite merit ordering is complete. Any merit ordering
for a finite set G is 3-finite. Ordering by levels is 3-finite if go is finite and
s(G') is finite for all G'g_ G, under the same conditions inverse ordering by
levels is not 3-finite if G is infinite (by Konig's Lemma).

Theorem 1

If g= (G, s, g) is a problem, !-<, a 3-finite merit ordering for G and E a
search strategy for g compatible with then E is complete for g.

Proof. Let n* e G be given. We need to show that n* e ; for some j>0.
If G is finite then G= u Ei since 2i implies that E(E1) s&ø and since

i> o
E(E1)nE1=0.

Otherwise if G is infinite let n' <n* be a node such that nn' for all n < n*.
Since is 6-finite, since 2,0o implies that E(Ei) o and since E(;) G21
it follows that for some j> 0 and for some ni e ;, n'-<ni, and therefore
n-Gni for all n<n* and by Lemma 1(a), n* e Ej.

HEURISTIC FUNCTIONS AND DIAGONAL SEARCH

There is special interest in merit orderings which can be expressed in terms
of the cost function g of g= (G, s, g) and of an additional heuristic
function h (Hart, Nilsson and Raphael 1968, Nilsson 1968, Pohl 1969).
A heuristic function h for g is a function h: G-+R such that h(n) >0, for all
n e G. Let f(n) = g(n) + h(n) for all n e G. The intended interpretation of
the heuristic function h is that f(n)=g(n)+h(n) is an estimate of the cost
g(n*) of a terminal node n* e .9", such that n <n*, i.e., h(n) is an estimate of

188

KOWALSKI

g(n*)—g(n). If it is desired that E be admissible then h(n) is intended to
estimate the minimum value of g(n*) — g(n) for n* e •F such that
n<n*.
Suppose, for example, that we know of a given problem e= (Go, so, .9-o,

go) that if it has a solution then its minimum cost is k. Suppose for simplicity
that no n e Go has cost go(n) greater than k. Given only this information
then an appropriate definition of a heuristic function ho for go is ho(n) =
k—go(n) for all n GO.
Suppose that a given problem gi = (G1, S, 51, gi) is interpreted as a

resolution problem by a labelling function c: GI—)S*. Suppose that the in-
ference rules I' consist of a factoring operation for unifying two literals in a
clause and of a separate resolution rule for resolving at most two factors.
Let gi (n) be the level of n and .9-1= {n1 c(n) =0} For n e Gi let 1(c(n)) be
the length of c(n) (number of literals in c(n)). The heuristic function h1 for
gl is defined by letting hi(n) be the expected length of c(n):

' (1) for n e hi(n)=1(c(n)),
(2) for c(n) a resolvent of c(ni) and c(n2), hi(n) =1(c(ni)) + 1(c(n2)) —2,
(3) for c(n) a factor of c(ns) (the result of unifying two literals in c(n'))

h(n) =1(c(n')) —1.

To the extent that merging does not occur (i.e., so long as hi (n)=1(c(n))),
ht(n) is a lower bound on the value of g(n*) —gi(n) for c(n*) =0 when
c(n) occurs in a derivation of la
The costing function g and heuristic-function h allow us to define two

important classes of search strategies for g. Given g= (G, s, F, g) and h
a heuristic function for g. Let the merit orderings d and for G be
defined for all ni, 712 e G, by

(1) ni r<d 72 if and only if f(ni) f(n2),
(2) ni r-<\ n2 if and only if f(ni) -...1(n2) and h(ni) ‘..h (n2) when f(ni)=

A search strategy E for g is a diagonal search strategy for g and h (written
E e 2(9, h)) if and only if E is compatible with the merit ordering -41.
E is an upwards diagonal search strategy for g and h (E e Ou (9, h)) if and
only if E is compatible with the merit ordering dU Notice that 91u(91, h)
2(9, h) and that 91u(, h) =21(91', h) if h(n) =0 for all /I e G.

Except for minor differences, the search strategies E e 2(9, h) coincide
with those investigated in Hart, Nilsson and Raphael (1968) for the case of
ordinary tree search. The search strategies E e 21u(9, h) differ from those in
g(g, h) by generating, from among candidate nodes which have equal merit
for d, those nodes whose cost is estimated to be closest to the cost of a
solution node. In the case of the problem go and heuristic function ho,
defined above, fo(n)=go(n)+ho(n)=k for all n e Go. All nodes in G have
equal merit for search strategies E e 2(90,110). For E e 24(90, ho) nodes

189

MECHANIZED REASONING

which have cost closer to k have better merit than nodes which have smaller
cost. In case g0(n) is the level of n for all n e Go then E e gu(go, ho) is a
depth-first search strategy, which intuitively seems the most efficient search
strategy for go, given only the information that a minimal solution of go
must have level k. Concrete search algorithms for E e gu (gi, hi) are discussed
in the next section.

Figure 2

The terminology, diagonal and upwards diagonal search, is suggested by
representing nodes n e Gas occupying positions in the plane with coordinates
(h(n), g(n)), where h increases rightwards away from the origin and g
increases downwards away from the origin (see figure 2). E e (9, h)
attempts to generate nodes on consecutive diagonals in order of increasing
distance from the origin (0, 0). In addition if E e Ou(g, h) then E attempts
to generate nodes, lying on a given diagonal d, upwards in order of increasing
h. If -'<d or are 3-finite then each diagonal contains only finitely many
nodes n e G and for every diagonal d there are only finitely many diagonals
which contain nodes n e G and which are closer than d to (0, 0).

190

KOWALSKI

Figure 3 illustrates Lemma 1 and Theorem 1 for a problem g and for a
search strategy E E 21u(91J, h) where dU is assumed to be 6-finite. The node
n* e .9" has minimum cost in .9" and n' <n* is a node having worst merit
in the set consisting of n* and all ancestors of n*. The node n E G has better
merit than n* and n"<n has worst merit in the set consisting of n and all
ancestors of n. Dots represent nodes, lying on diagonals, generated by E
before the generation of n*. The small circles represent nodes generated by
E after the generation of n*. The diagonal d contains the node n'. By Lemma 1,
E generates n* before generating nodes having worse merit than n', i.e.,
before generating nodes lying above n' on d and before generating nodes lying
on diagonals to the right of d.

(0,0)

• • S •

• • •

• • •

• • •

• • • •

•

• •

• • •

• •

• •

•

• •

• 11

• •

•

• •

•

• •

•

•

•

Figure 3

•

• •

• • • n'<n*

•

11":511

d •

•

The heuristic function h satisfies no conditions other than h(n*)=h(n**)
=0 and those imposed by the 6-finiteness of E may fail to be admissible
because some n** e F having worse merit than n* will be generated before
n* if n** and all ancestors of n" have better merit than n'. The node n e G
will not be generated before n* if n'' lies to the right of d or above n' on d.

191

MECHANIZED REASONING

UPWARDS DIAGONAL SEARCH STRATEGIES FOR
RESOLUTION

The algorithm E* defined below approximates an upwards diagonal search
strategy for the resolution problem gi and heuristic function h1. The same
algorithm E* when applied to the resolution problem g2 and heuristic
function h2 defined below is a pure upwards diagonal search strategy for
g2 and /12. The admissibility and optimality theorems of the next section
apply to E* for g2 and h2 and to I* for gi and h1, except when merging
occurs in A search strategy which differs inessentially from E* has been
implemented in Pop-2 by Miss Isobel Smith for a problem and heuristic
function similar to gi and h1.
The definition and identification of the problem g2 was motivated by a

suggestion of Mr Donald Kuehner. g2= (G2, 52, F2, g2) differs from gi by
interpreting clauses c(n) as lists of literals and by explicitly exhibiting and
assigning cost to the operation (treated as a special case of factoring) of
identifying two copies of the same literal within a clause. The length 1(c(n))
of c(n) is defined as the number of literals in the clause c(n), counting
duplications. g2(n) and h2(n) are still defined respectively as the level of n
and expected length of c(n) . h2(n)=1(c(n)) for all n e G2 and h2(n) is
always a lower bound on the value of g2(n*)—g2(n) when n<n* and

Throughout the remainder of this section, g = (G, s, F, g) and h are
either gi and h1 or g2 and h2. The definition of E* for .9 and h is the same for
both of these cases except for the details remarked upon at the end of this
section.

Clauses c(n) are stored upon the generation of n in cells A(i, j) of a
two-dimensional array A. c(n) is stored in A(1, J) if 1(c(n))=i and g(n)=j.
Although it is natural to represent cells A(i, j) as lists of clauses, we write
c(n) e A (i , j) if c(n) is stored in A (i, j) when n is generated. The merit of a
node n e G is defined to be the cell A(h(n), g(n)). The cell A(i, j) is said to
be better than A(i', j') (written A(i, j')) if

(1) i+j<i' +j' or
(2) i+j= -Ft and i <

Thus a node n e G has better upwards diagonal merit than a node n' e G if and
only if the merit of n is better than the merit of n', equivalently if and
only if A(h(n), g(n))-<A(h(n'), g(n')). Notice that for g2 and h2, n e G2
has merit A(i, j) if and only if c(n) E A(1, j). For .91 and hi, if n e GI has
merit A(i, j) then c(n) e A(i' , j) where i' = 1(c (n)) h(n) =1. E*, on the
whole, attempts to generate nodes of merit A(i, j) before attempting to
generate nodes of worse merit AV , j')>- A(1, j). A node of merit A(i, j) is
generated either

(0) by inserting into A(4 0), when j=0, a clause c(n) where 1(c(n)) =1
and g(n) =0,

192

KOWALSKI

(1) by unifying two literals within a clause c(n)€ A(i+1, j —1) or
(2) by resolving a factor c(ni)E A(ii,j1) with a factor c(n2)e A(i2J2)

where n1 may be identical to n2 and where
1=11+12-2 and
j= max (j1,j2) + 1.

E* employs two subalgorithms for generating nodes n e G. The principal
subalgorithm, Fill(i, j), generates in all possible ways, from nodes already
generated, nodes n of merit A(i, j) which have worse merit than all their
ancestors. Fill(i, j) terminates when all such nodes have been generated.
Fill (i' , f), where A(i' , j') is the next cell after A (i,j), begins when Fill(i, j)
terminates. E* begins by invoking Fill(0, 0).
Whenever a node no is generated by Fill(4j) the second subalgorithm

Recurse(c(no)) interrupts Fill(i, j) and generates in all possible ways, from
nodes already generated, nodes n which are immediate successors of no and
which are of merit A (lb ji) better than A(4 j). In general whenever a node
n is generated, either directly by Fill(i, j) or by some call of Recurse(c(n'))
which is local to Fill(i, j), Recurse(c(n)) generates, from nodes already
generated, immediate successors of n which are of better merit than A(i, j).
Notice that if n is generated by Recurse(c(n')) during Fill(i, j) then n has
better merit than some ancestor of merit A(i, j). Notice too that the depth
of recursion involved in Recurse(c(n')) is bounded by the sum i+j.

REMARKS

(1) If .9 and h are g2 and h2 and if c(no) is generated directly by Fill(!, j)
then c(no) e A(i, j) and the only immediate successors of no which are of
better merit than A(i, j) are nodes ni e A(i —1, j +1) . Any such ni generated
by Recurse(c(no)) is obtained either by factoring c(no) or by resolving
c(no) with a unit clause c(n) of level g(n)..<.j. More generally if no is generated
by Recurse during Fill(i, j) and if c(no)e A(io,jo) then it is easy to verify
that io+jo= i+j and any immediate successor of no of better merit than
A(4 j) is of merit A(10-1, j0+1).
(2) If' and h are gi and h1 then E* may fail to do upwards diagonal search
because of merging, i.e., nodes may be generated by Recurse which have
worse merit than other candidates for generation. Suppose that no is generated
by Fill(i, j) and that c(no) e AV ,j) where i' <i. Suppose that ni and n2 of
merit A(i' —1, j +1) are generated by Recurse(c(no)), nt before n2. Suppose
that n3 of merit A(i' —1, j+2)-<A(i, j) is generated by Recurse(c (n1)).
Then 272 has better merit than n3 but n3 is generated before n2 since Recurse
(c(ni)) must terminate before Recursec(no)) generates n2.
(3) For both gt, h1 and g2, h2, E* has the desirable property of attempting
to resolve every unit clause c(no) with all previously generated units c(ni)
as soon as c(no) is generated. If no is generated during Fill(i, j) and if
c(no) e A(1, jo) and c(ni) e A (1,k) then A(0, max (j 0, ji) + 1)-<A (I, j) and
an attempt will be made to resolve c(no) with c(ni) during Recurse(c(no)).

0 193

MECHANIZED REASONING

(4) Suppose that Fill(I, j) has just begun, then E* has not yet generated any
nodes of merit worse than AO,]). Thus if n has merit A(1, j) then either
j=0 and g(n) =0 or c(n) is a resolvent of factors c(ni) and c(n2) and both
ni and n2 are of merit better than A(1, j). In order to generate all such nodes
n it suffices to attempt to resolve all clauses c(ni) with clauses c(n2) where

e A(1, k), c2e A(1-1-1-2,j-1)
1. i+ 1

for 1 and 1 < i is even or 1 < l< if i is odd.

(5) The details for generating nodes during Recurse(c(n)) have already been
discussed for 9°2 and h2 in remark (1). For gi and h1 these details are more
complicated. Suppose that n has been generated during Fill(i*, j*) and that
c(n) e A(1, j). The following procedure will generate, without redundancy,
from nodes generated before n, immediate successors of n which are of better
merit than A(i*,j*):

(a) First resolve c(n) with clauses in AV ,j') where j— 1 <j' < i* +j* — 1+2,
in order of decreasing]', and for given j', where 1 < < i* +j* —1+ 1 in
arbitrary order but preferably in order of increasing i'.
(b) Next generate factors of c(n) by attempting to unify, in all possible
ways, two literals in c(n).
(c) Finally resolve c(n) with clauses in A (i' , f) where 1 i* +j* — —

j+1; 0 j' 4.j in arbitrary order but preferably in order of increasing i'.

ADMISSIBILITY AND OPTIMALITY OF g AND 22'
Let g = (G, s, F, g) be an abstract theorem-proving problem. For n e G let

H(n)= {g(n*)— g(n)In* e F, nn*},

h* (n)=inf H(n) when H(n) 0,
h* (n) = oo when H(n) = 0.

Then when n<n* , for some n* e F, h* (n) is the greatest lower bound on the
additional cost over g(n) of g(n*). The heuristic function his intended to be
an estimate of h*. The only property of co needed below is that k< co for all
real numbers k. Since we do not allow h(n) = oo , it is often impossible to
construct a heuristic function h which gives a perfect estimate of h*. In
particular it is impossible to incorporate into a definition of h any information
that a node n is not an ancestor of a node n* e F. However such heuristic
information can be applied to a problem g by defining a new problem g'
which differs from g by containing no such nodes n. Alternatively it is possible
to allow h(n)= oo in which case several complexities need to be introduced in
preceding definitions (e.g., in the definition of 3-finiteness).
A heuristic function h for g satisfies the lower bound condition for g if

h(n) <h* (n) for all n e G,

i.e., if h(n) <g(n*)—g(n) whenever n* e F and n<n* . Thus the lower
bound condition constrains in effect only the value of h(n) when n is an

194

KOWALSKI

ancestor of some solution node. Recall that h2 satisfies the lower bound
condition for g2 while h1 does the same for gi except for merging.
Lemma 2 states certain fundamental properties of heuristic functions h

satisfying the lower bound condition: (a) h(n*) =0 for n*e F, (b) no
ancestor of a solution node e .7 has worse diagonal merit than n*,
(c) there exists a solution node n* e F having minimum cost in .7 if diagonal
merit is 3-finite.

Lemma 2
Let g= (G, s, F, g) be an abstract theorem-proving problem and let the
heuristic function h for g satisfy the lower bound condition.

(a) If n* EF then h(n*) = h* (n*) =0 and therefore f(n*)=g(n*).
(b) If n* e .9" and nn * then f(n)<f(n*).
(c) If --<d is 6-finite then for some n* e F g(n*) g(n) for all n e
provided Fø.

Proof. (a) is obvious, since H(n*) = {0} and h* (n*) =0.
(b) If n* e .7 and n<n* then h(n)<g(n*)—g(n).
But then f(n)=g(n)+h(n) <g(n*)=f(n*).
(c) If d is 6-finite then for all n e G, the set {n' I f(n') <f(n), n' e G} is
finite. In particular for n e g the set (n1 I g(n') <g(n), n' e g} is finite and
therefore contains an element re such that g(n*) is minimal. But then
g(n*) g(n') for all n' e F.

Theorem 2
If d is 6-finite for g= (G, s, F, g) and if h satisfies the lower bound condi-
tion for .9 then E e (g, h) is admissible for g.

Proof. Assume that F4. Let n* e .9" be such that g(n*) g(n) for all
n e .7 (such an n* e .9" exists by Lemma 2(c)). By Theorem 1, E is complete
and therefore there is a stage i such that for some n,

neg-clEi and .7nEi_1=0.

Suppose that E is not admissible for g. Then g(n*) < g(n). But, by Lemma 2,
for all n' <n*, f(n1)<f(n*)=g(n*)<f(n). So f(n')<f(n) for all n' <n*.
But then n'-<n for all n'<n*. By Lemma 1(a), n* e Ei_i and therefore
FnEi_i 00, contrary to assumption.

Theorem 2 specializes to a generalization of Theorem 1 in Hart, Nilsson
and Raphael (1968) when s(G') =0 for all G' GC which are not singletons.
In particular it is not necessary to require that SP0 be finite or that g(n) be
strictly greater than g(n') whenever n' <n. Since the specialization yields a
tree representation of graph search, it is unnecessary to distinguish between
the cost g(n) and the total cost along some minimal path to n.

Figure 4 illustrates Lemma 2 and Theorem 2. g, E, n*, n', n and n" are as
in figure 3, but h satisfies the lower bound condition. By Lemma 2, n' lies
on the same diagonal d as does n*. E is admissible since any n** eF having

195

MECHANIZED REASONING

(0,0)

Figure 4

worse merit than n* lies on a diagonal to the right of d and is not generated
before n*. It is still possible for a node n e G to have better merit than n* and
not be generated before n* because n" has worse merit than n'.
To prove the appropriate extension of the Hart—Nilsson—Raphael Theorem

on the optimality of E e 3", we need to formulate an assumption equivalent
to their 'consistency assumption'. The reader familiar with Hart, Nilsson and
Raphael (1968) will easily convince himself that the following condition is
equivalent to the consistency assumption. We say that the evaluation function
f satisfies the monotonicity condition if

f(n')<f(n) for n' <n and
f(n*)=g(n*) for n* eF.

(The first condition is equivalent to

h(n) >h(n')— (g(n)—g(n')) for n' <n.)

Notice that for g2 the evaluation function f2=g2+h2 satisfies the mono-
tonicity condition whereas for .91 the function fi =gi + hi is monotonic
except for merging.

196

KOWALSKI

Figure 5 illustrates upwards diagonal search when the function f satisfies
the monotonicity condition. g, E, n* , n', n and n" are as in figures 3 and 4.
By Lemma 3, h satisfies the lower bound condition and therefore E is admis-
sible and n' lies on the same diagonal as n*. The monotonicity condition
implies that if n has better diagonal merit than n* then all ancestors of n
have better merit than n* and therefore, by Lemma I, n is generated before
n*.

Figure 5

Lemma 3

Let g = (G, s, g) be an abstract theorem-proving problem, let h be a
heuristic function for g, and let f satisfy the monotonicity condition, where
f(n)=g(n)-Fh(n), n e G. Then

(a) h satisfies the lower bound condition,
(b) if E e g(g, h), n ell and n2 e E(E1) then f(ni) <.fin2).

Proof. (a) h satisfies the lower bound condition if h(n)<g(n*)—g(n)
whenever n* .9" and n<n*.

197

MECHANIZED REASONING

But monotonicity off implies that

f(n)=g(n)+h(n) <.f(n*)=g(n*).

So h(n) <g(n*)-g(n).
(b) Suppose the contrary, namely that ni e E1, n2 E E (E1) and MO> f(n2)•
But then, since f(n') <f(n2) <f(ni) for all n' <n2, it follows that n'-<ni for
all n' <n2. By Lemma 1(a), n2 e E, contradicting the assumption that
n2 e E(Ei).
For the case of ordinary graphs, the optimality theorem (Theorem 2) of

Hart, Nilsson and Raphael (1968) compares, in effect, search strategies
E e 9(g, h) with strategies E' e 3(g), h') where h'(n)<h(n) for all n e G
and where f=g+h is monotonic. [In Hart, Nilsson and Raphael (1968) the
search strategy E' is assumed only to be ̀ no better informed' than E - we
interpret this to mean that h'(n) < h (n) and E' e 0(9, h).] If E, and Zip are
the first sets which contain nodes n* e F then Ei g uG' where G' is the set
of nodes n e Ei which have diagonal merit equal to n* eEin.F, i.e., before
termination generates all the nodes generated by E except possibly for
unlucky choices by E of nodes tied for merit with the solution node n* e El.
Theorem 3 below generalizes Theorem 2 of Hart, Nilsson and Raphael
(1968) and implies in addition that gu is an optimal subclass of 0.

It should be noted that the monotonicity condition on fin Theorem 3 can
be replaced by the lower bound condition on h with the result that may
now fail to generate nodes in the larger set G' of nodes n e Ei where some
n" <n has diagonal merit tied with the solution node n* e Ei. A special case
of this modification of Theorem 3 is illustrated by the example of figure 6,
following the proof of Theorem 3.

Theorem 3

Let g= (G, s, F, g) and let h and h' be heuristic functions for g such that

h' (n) < h(n) for n E G.

Let f(n) = g(n) + h(n) and f' (n) = g(n) + h' (n). Suppose that fis monotonic.
Given E E gu(g, h) and e 0(9, h'), suppose that

ill e FrE1, FnEi -1 = 0,
n2 e nE'r and .9" - 1= 0.

Then E G* where

G* = {nin e Ei and for some n' <ni, f(n)=f(n')=f(ni) and
h(n)<h(n')}

Proof. E' satisfies the lower bound condition since h'(n)<h(n) for all
n e G and since E satisfies the lower bound condition. Therefore both E and
E' are admissible and g(n2)=g(n2), Mt) =f(n2). Suppose that n e Ei and
that n El,. It suffices to show that n e G*.
By Lemma 1(b), n e Ei implies that n„n' for some n'<ni. But by

Lemma 3(b), since f is monotonic

198

KOWALSKI

f(n) f(ni),
f(re)f(ni),
f(n")<f(n) for all n"

But h' (nn) <h(d) implies

f' (n")<f(n"). So
f' (n") <f(n) for all n"

Also n and n2 e If, imply by Lemma 1(a) that for some le n";--an2,
i.e.,

f' (n")>f' (n2) =f(ni) . So
f(n)>f(ni) and

f(n)=f(ni).
n--Ciun' implies

f(n)<f(n') <f(ni). So
f(n)=f(n')=f(ni) and
h(n)<h(n'), i.e.,
n e G*.

Figure 6 compares nodes generated, before the generation of a given
n*E .9" , by different search strategies Ei e 3(Y, hi) for a fixed problem

(G, s, • 9", g) and for different heuristic functions hi. h1(n) is assumed to be
a greatest lower bound on the value of h* (n) when n <n* , where n* has least
cost in F. Nodes n e G are represented as points with co-ordinates (hi(n),
g(n)). The node n' has worst upwards diagonal merit in the set consisting

Figure 6

199

MECHANIZED REASONING

of n* and the ancestors of n*. The functions hi are defined by hi(n)=ihi(n)

for all n e G, 0 <i e R.
For 0 i< 1, hi satisfies the lower bound condition for .9 and Et is admis-

sible for El need not be admissible for g when i> 1. The area to the left
of the line di contains nodes generated by Ei before the generation of n*.
For 0 < i< 1, Et generates all the nodes generated by El. For i> 1, Ei generates
all the nodes left of di which have been generated by Ei. No E i is more efficient

than El, if i> 1. Some Ei may generate fewer nodes than i, if i> 1, but this
possibility becomes more remote as i increases. However even for large i, Ei

may be more efficient than El for generating solution nodes of arbitrary cost.
A more thorough analysis of relationships similar to those discussed here has
been made by Ira Pohl (1969, 1970).

Acknowledgements

The author wishes to acknowledge helpful discussions with Dr Bernard Meltzer, Dr Ira
Pohl, Miss Isobel Smith, Mr Pat Hayes and Mr Donald Kuehner. Special thanks are
due to Miss Isobel Smith for implementing diagonal search for resolution problems and
to Dr Nils Nilsson and Mr Donald Kuehner for suggestions made for improving an
earlier draft of this paper.
This research was supported by an IBM fellowship and grant from Imperial College,

and more recently by the Science Research Council.

REFERENCES

Burstall, R.M. (1968) A scheme for indexing and retrieving clauses for a resolution
theorem-prover. Memorandum MIP—R-45. University of Edinburgh: Department of
Machine Intelligence and Perception.

Doran, J. & Michie, D. (1966) Experiments with the graph traverser program.
Proceedings of the Royal Society (A), 294, 235-59.

Green, C. (1969a) Theorem-proving by resolution as a basis for question—answering
systems. Machine Intelligence 4, pp. 183-205 (eds Meltzer, B. & Michie, D.).
Edinburgh: Edinburgh University Press.

Green, C. (1969b) The application of theorem-proving to question—answering systems
Ph.D. thesis. Stanford University.

Hart, P.E., Nilsson, N.J. & Raphael, B. (1968) A formal basis for the heuristic
determination of minimum cost paths. IEEE Trans. on Sys. Sci. and Cybernetics,
July 1968.

Kowalski, R. & Hayes, P.J. (1969) Semantic trees in automatic theorem-proving.
Machine Intelligence 4, pp. 87-101 (eds Meltzer, B. & Michie, D.). Edinburgh:
Edinburgh University Press.

Kowalski, R. (1970) Studies in the completeness and efficiency of theorem-proving by
resolution. Ph.D. thesis. University of Edinburgh.

Nilsson, N.J. (1968) Searching problem-solving and game-playing trees for minimal cost
solutions. IFIPS Congress preprints, H125—H130.

Pohl, I. (1969) Bi-directional and heuristic search in path problems. Ph.D. thesis.
Stanford University.

Pohl, I. (1970) First results on the effect of error in heuristic search. Machine Intelligence
5, pp. 219-36 (eds Meltzer, B. & Michie, D.). Edinburgh: Edinburgh University Press

Robinson, J.A. (1965) A machine-oriented logic based on the resolution principle.
J. Ass. comput. Mach., 12, 23-41.

200

KOWALSKI

Robinson, J.A. (1967) A review of automatic theorem-proving. Annual symposia inapplied mathematics XIX. Providence, Rhode Island: American MathematicalSociety.
Sandewall, E. (1969) Concepts and methods for heuristic search. Proc. of the Inter-national Joint Conference on Artificial Intelligence, pp. 199-218 (eds. Walker, D. E. &Norton, L. N.).
Sibert, E.E. (1969) A machine-oriented logic incorporating the equality relation.Machine Intelligence 4, pp .103-33 (eds Meltzer, B. & Michie, D.). Edinburgh:Edinburgh University Press.
Wos, L.T., Carson, D. F. & Robinson, G. A. (1964) The unit preference strategy intheorem-proving. AFIPS. 25, 615-21, Fall, J. C. C. Washington, D.C.: Spartan Books.Wos, L.T., Carson, D.F. & Robinson, G.A. (1965) Efficiency and completeness of theset-of-support strategy in theorem-proving. J. Ass. comput. Mach., 12, 536-41.

201

