
10

And-or Graphs, Theorem-proving Graphs
and Bi-directional Search

R. Kowalski
Department of Computational Logic
University of Edinburgh

Abstract

And-or graphs and theorem-proving graphs determine the same kind of
search space and differ only in the direction of search: from axioms to goals,
in the case of theorem-proving graphs, and in the opposite direction, from
goals to axioms, in the case of and-or graphs. Bi-directional search strategies
combine both directions of search. We investigate the construction of a
single general algorithm which covers uni-directional search both for and-or
graphs and for theorem-proving graphs, bi-directional search for path-finding
problems and search for a simplest solution as well as search for any solution.
We obtain a general theory of completeness which applies to search spaces
with infinite or-branching. In the case of search for any solution, we argue
against the application of strategies designed for finding simplest solutions,
but argue for assigning a major role in guiding the search to the use of
symbol complexity (the number of symbol occurrences in a derivation).

INTRODUCTION

This paper investigates some of the search spaces and search strategies which
are applied to the representation and attempted solution of problems in
artificial intelligence. Our main objective is to demonstrate that both and-or
graphs and theorem-proving graphs determine the same kind of search
space and that the difference lies only in the direction of search — forwards
from axioms to goal in theorem-proving graphs and backwards from goal to
axioms in and-or graphs. This initial observation suggests the construction of
bi-directional algorithms which combine forward and backward searches
Within a given search space. The resulting bi-directional strategy generalises
the one studied by Pohl (1969) for path-finding problems.
We investigate the notions of exhaustiveness and completeness for search

strategies. For both of these properties it is unnecessary to insist that the

167

INFERENTIAL AND HEURISTIC SEARCH

search space contain only finitely many axioms or alternative goals or that
only finitely many inference steps apply to a fixed set of premises or to a
given conclusion. We discuss the utility of constructing search spaces which
violate such finiteness restrictions and show how these spaces can be searched
completely by employing symbol complexity to guide the search. The removal
of the finiteness restrictions makes it impossible to apply Pohl's (1969)
cardinality comparison of candidate sets in order to determine which
direction of search to choose at any given stage. The decision to choose instead
the direction which has smallest set of candidates of best merit resolves this
dilemma and can be effectively applied precisely in those circumstances
when it is possible to search the space completely in at least one of two
directions.
We distinguish between problems which require a simplest solution and

problems which require any solution. For the first kind of problem we
investigate the construction of search strategies which are guaranteed to find
simplest solutions. These strategies involve the use of heuristic functions to
estimate the additional complexity of a simplest solution containing a given
derivation. Under suitable restrictions the search strategies find simplest
solutions and do so by generating fewer intermediate derivations (both
those which are relevant and irrelevant to the eventually found solution)
than do the more straightforward complexity saturation strategies. The
heuristic search strategies cover those previously investigated by Hart-Nilsson-
Raphael (1968) for path-finding problems, by Nilsson (1968) for and-or
trees, and by Kowalski (1969) for theorem-proving graphs. In the case of
bi-directional path-finding problems, we propose a method of updating the
heuristic function so that it reflects properly the progress of search in the
opposite direction. The resulting search strategy overcomes much of the
inefficiency, noted by Pohl (1969), of the original bi-directional strategy.
Having investigated search strategies which aim to find simplest solutions,

we then argue against applying similar strategies in situations which require
finding any solution, no matter what its complexity. We argue that such
search strategies have the undesirable characteristic of examining and
generating equally meritorious potential solutions in parallel. We propose
no concrete alternative, but suggest that more appropriate search strategies
will need to employ methods for 'looking-ahead' in the search space and will
need to bear a greater resemblance to depth-first searches than do those
which belong in the family with search strategies for simplest solutions. We
argue moreover that symbol complexity should occupy a central role in
guiding the search for a solution.
The problems investigated in this paper assume a solution to the representa-

tion problem: for an initial semantically defined problem, how to obtain an
adequate syntactic formulation of the problem. In the case of theorem-
proving, the semantically defined problem might have the form of showing
that one set of sentences implies another. The original problem does not

168

KOWALSKI

specify a search space of axioms, goals and basic inference operators.
Indeed, many different search spaces can represent the same original problem,
as in the case of resolution systems where different refinements of the resolu-
tion rule determine different search spaces for a single problem of demonstrat-
ing the unsatisfiability of a given set of clauses. Viewed in this context, the
name 'theorem-proving graph', for a particular direction of search in a
particular kind of search space, can be misleading. A given theorem-proving
problem can be represented by different search spaces, not all of which need
be interpretable as theorem-proving graphs when searched from the direction
which starts with axioms and works toward • the goal.

Conversely, the abstract graph-theoretic structure of problems incorporated
in and-or graphs and in theorem-proving graphs is not confined to the
representation of theorem-proving problems. In the next section of this
paper we demonstrate an application of such search spaces to the problem
of enumerating all subsets of a given set of objects.
This paper assumes no prior acquaintance with the research literature

about search spaces and search strategies. On the contrary, our intention is
that it provide a readable, and not overly-biased, introduction to the subject.
For the same purpose, the reader will probably find Nilsson's book (1971)
useful.

DERIVATIONS, THEOREM-PROVING GRAPHS,
AND-OR GRAPHS

We observe first that and-or graphs and theorem-proving graphs determine
the same kind of search space (see figure 1). What distinguishes the two is
the direction of search: forwards from initially given axiom nodes towards
the goal node in theorem-proving graphs, and backwards from the goal
node towards the initially given solved nodes in and-or graphs. Both directions
of search can be combined in bi-directional search strategies which generalise
those investigated for path-finding problems.

Typically, theorem-proving graphs/and-or graphs are used for problems
of logical deduction where the task is one of finding some solution derivation
of an initially given goal sentence from initially given axioms. With theorem-
proving graphs, the initially given set of solved problems (axioms) is
repeatedly augmented by the addition of deduced theorems until the goal
sentence is derived and recognised as having been solved. With and-or
graphs, the solution of the initially given goal problem is repeatedly reduced
to the solution of alternative sets of subgoal problems, some of which might
be immediately recognised as being solved, others of which might need
further reduction. A solution is obtained when some such reduction set of
subgoals consists entirely of completely solved subproblems (axioms) of the
original problem. In both cases the search strategy can be regarded as selecting
some candidate derivation and then generating it by generating all of its
Previously ungenerated sentences and connecting inference steps.

169

INFERENTIAL AND HEURISTIC SEARCH

0 0 0 0

And-or tree

)415 theorem-proving graph

And-or graph and

/417 theorem-proving graph

Figure 1. In the and-or tree, the identical problems B are encountered in different
inference steps, working backwards from the goal T. Similarly E, F and G occur more
than once in the and-or tree. All distinct occurrences of a sentence have distinct nodes
associated with them. In the tree representation of theorem-proving graphs (used in
Machine Intelligence 5 (Kowalski 1969)), identical problems Tare generated at dif-
ferent times, working forwards from the initial set of axioms {D, E, F, G}. Here too
distinct occurrences of a sentence are associated with distinct nodes. In the and-or
graph and in the graph representation of theorem-proving graphs (as defined in this
paper) sentences are the nodes of the search space. Different ways of generating the
same sentence are represented by different arcs connected to the sentence.

Theorem-proving graphs and and-or graphs can also be applied to the
representation of search spaces in problems where the inference operation
connecting premises with conclusion is not one of logical implication.
Figure 2 illustrates just such an application where the 'inference operator' is
a restricted form of disjoint union of sets. Figure 2 also illustrates a more
conventional or-tree representation for the same problem of enumerating
without redundancy all subsets of a given collection of n objects. Both search
spaces contain the same number of nodes and achieve similar economies by

170

KOWALSKI

sharing a single copy of a subset when it is common to several supersets.
For a particular application to a problem in urban planning of identifying a
least costly collection of m housing sites out of a total of n possible, the use of
the theorem-proving graph, and-graph, provides several advantages. In
particular a certain bi-directional search strategy can be employed and

An or-tree search space

• • •

A theorem-proving
graph, and-graph,
search space, for n even

Figure 2. The or-tree and the theorem-proving graph provide two different ways of
enumerating all subsets of n objects without redundancy. The theorem-proving graph
is an and-graph, without any or-branching, because every subset can be derived in
only one way; there are no alternatives. (Every subset is the conclusion of a single
inference step. The two subsets which are premises of the inference step are disjoint.
One of these subsets contains only elements which are less than all of the elements
contained in the other premise subset. Either both premises have the same number of
elements, or else the premise which contains the smaller elements contains one less
element than the other premise.) Moving downwards in the space corresponds to
generation of subsets in the theorem-proving graph direction, combining smaller
subsets into larger ones. Moving upwards corresponds to generation in the
and-graph direction, decomposing subsets into smaller ones.

171

INFERENTIAL AND HEURISTIC SEARCH

interpreted as a model of the method of successive approximation. The
search begins with aggregated collections of objects in the middle of the
search space and works both forward combining smaller sets into larger ones
and backwards splitting aggregates into smaller sets; this method of bi-
directional search differs from the one which is discussed in this paper.
Further details regarding the use of theorem-proving graphs and heuristic
programming in the urban design problem are contained in the reports by
Kowalski (1971) and du Feu (1971).
In the following definitions, the notions of sentence and inference operator

should be interpreted liberally to include any kind of object and any operator
which maps sets of objects onto single objects. A more formal and abstract
treatment of these notions can be supplied along the lines detailed for
MIS theorem-proving graphs (Kowalski 1969).
Let sentence N follow directly from the finitely many sentences N1,.

by means of one application of an inference operator. Then N is connected
to each of Ni by a directed arc (from Ni to N), the collection of which is
called an and-bundle. The premises N1, N„, the conclusion N, and the
connecting and-bundle constitute a single inference step. Corresponding to
each axiom N is a single inference step having N as conclusion and an empty
set of premises. (In the figures we have not drawn arcs associated with
inference steps having axioms as conclusions.)

Figure 3. Some non-derivations.

172

KOWALSKI

A derivation D is a finite set of sentences and connecting inference steps
such that:
(1) Every sentence in D belongs to at least one inference step in D.
(2) Exactly one sentence C in D is the conclusion of an inference step but
premise of none.
(3) Every sentence in D is the conclusion of at most one inference step in D.
(4) D contains no infinite branches, where a branch in D is a sequence of
sentences Sli S29 • • .9 Sn9 Sn+19 • • .9 where S1 is in D and .5,0.1 is a premise of
an inference step in D which has S. as conclusion. (This condition guarantees
that the graph associated with D contains no cycles.)

Figure 3 illustrates some non-derivations.
The premises of D are those sentences in D which are conclusions of no

inference steps belonging to D. The conclusion of D is C. D is premise-free if
it has no premises. D is a reduction if the conclusion it derives is the initially
given goal sentence. D is a solution if it is a premise-free reduction. All
candidate derivations selected for generation in the forwards theorem-
proving direction are premise-free. All candidates selected in the and-or
direction are reductions. Every reduction derivation reduces the solution of
the goal node to the solution of the premises of the derivation. Every premise-
free derivation augments the initially given set of solved nodes by the con-
clusion it derives.
Path-finding problems constitute a special case of the derivation-finding

problem: every inference step contains at most one premise. A derivation,
therefore, consists of a single path connecting its premise with its conclusion.

THE ALGORITHM

The bi-directional algorithm for and-or graphs/theorem-proving graphs
described in this section includes as special cases
(1) uni-directional algorithms for theorem-proving graphs and for and-or
graphs;
(2) bi-directional algorithms for path-finding problems;
(3) algorithms for finding simplest solutions, relative to a given measure of
complexity, as well as algorithms for finding any solution, regardless of its
complexity; and
(4) complexity saturation algorithms which use no heuristic information,
as well as algorithms which do use heuristic information.
We do not claim that the general algorithm produces the most efficient
algorithm for any of these special cases; our objective is, instead, to formulate
an algorithm which abstracts what is common to many different search
problems and search strategies. The intention is that best algorithms for
special cases might be obtained by special additions or minor modifications
to the general algorithm.
The algorithm proceeds by first selecting a direction of generation, direction

F for forward generation or direction B for backward generation. If there are

173

INFERENTIAL AND HEURISTIC SEARCH

no candidate derivations (containing exactly one inference step as yet
ungenerated) the algorithm terminates without solution; otherwise it chooses
a candidate which is of best merit among all candidates in the selected
direction and then generates all previously ungenerated sentences and the one
previously ungenerated inference step belonging to the chosen derivation.
If an appropriate solution has not been generated (depending on the problem,
either any solution or else one which is simplest), then the algorithm begins
another cycle of selecting a direction of generation and then choosing and
generating a candidate derivation. The algorithm terminates when an
appropriate solution is generated. If the objective is to generate a simplest
solution then the algorithm continues until it finds a simplest solution and
identifies it as being simplest.
At any given time, the set of sentences and inference steps so far generated

is stored in two sets F and B. F contains all sentences and inference steps
belonging to already generated premise-free derivations. (Thus all sentences
in F are solved sentences, or theorems.) B contains all sentences and inference
steps belonging to already generated reduction derivations. The intersection
of F and B need not in general be empty. A derivation is regarded as generated
provided all its sentences and inference steps have been generated, even
though they might have been generated as part of some other candidate
derivation explicitly selected for generation. Thus some derivations are
deliberately selected and generated, while others, with which they share
inference steps, may be generated adventitiously. The following definitions
specify the algorithm more precisely.
Suppose that there exists an inference step which does not belong to F,

but all of whose premises do belong to F. Then any premise-free derivation
which consists of
(1) this inference step,
(2) its conclusion, and
(3) for every premise of the inference step, exactly one premise-free deriva-
tion, contained in F, whose conclusion is the premise,
is a candidate for generation in direction F.
Suppose that Do is a reduction derivation, contained in B, and every

premise of Do is the conclusion of some inference step not belonging to B.
Then any reduction derivation which consists of
(1) just one such inference step,
(2) its premises, and
(3) Do,
is a candidate for generation in direction B.
Assume that a notion of merit has been defined on derivations, such that

for any collection of derivations it is always possible to select effectively a
derivation of best merit, in the sense that no other derivation belonging to the
collection has better merit. Assume there is given just one goal problem.
This, without loss of generality, covers cases where there are finitely many

174

KOWALSKI

goals to be solved simultaneously or denumerably many (finite or infinite)
alternative:goals.
(1) Initialize both F and B to the null set.
(2) Select one of F or B as the direction X of generation.
(3) Terminate without solution if there are no candidates for generation in
direction X. Otherwise continue.
(4) Select and generate a candidate derivation D for X having best merit
among candidates for X. Generate D by adding to X the single inference step
and all sentences in D not already belonging to X.
(5) Update F and B by adding to both of them all inference steps and sentences
belonging to any already generated premise-free derivation of a sentence in B.
(6) Terminate with solution if (a) some solution D is contained in F or B,
and (b) no candidate for direction F or B has better merit than D. Otherwise
go back to (2).
Figure 4 illustrates the operation of a single cycle of the algorithm.

1
1
8,
A2

A4 /15 6 As

\/
/

/L.„/ ,..
&

R ? c? P P F

\ 1 ■ 1 \ I
■-1 \--1

O.,-- (:).......
-......., -..

B

E

D

C

T

Figure 4. The state of the search space at the beginning of a cycle of the algorithm:
Solid lines represent arcs which belong to inference steps already generated. Broken
lines represent arcs which belong to inference steps which are candidates for genera-
tion. Inference steps which have not yet been generated and which are not candidates
for generation are not represented in the figure. Of the axioms A1, ..., As , the first two
axioms have not yet been generated. The inference steps which have the remaining
axioms as conclusions are not illustrated.
The inference step which has B and C as premises and D as conclusion is a candi-

date for generation in both direction F and direction B. The sets F and B do not yet
have any elements in common.
Suppose now that B is chosen as direction of generation and that the reduction

derivation having premises {E, F, B, C} is the candidate selected for generation.
Then in step (4), the sentences B and C are added to B along with the inference step
having them as premises. In the update step, the same inference step is also added to
F along with its conclusion D. At the same time, all sentences and inference steps in
the derivations of B and C are added to B.

175

INFERENTIAL AND HEURISTIC SEARCH

Remarks

(1) The most complicated uni-directional case of the algorithm is the case of
and-or graphs (where the direction X is always chosen to be B). The set F,
which is initially empty, is augmented whenever a sub-problem is solved.
The updating step corresponds, in the usual algorithm for searching and-or
trees, to the operation of labelling sub-problems as solved. The effect of
labelling sub-problems as unsolvable is obtained by not counting as a candi-
date derivation one whose premises are not conclusions of some (as yet
ungenerated) inference step.
(2) The algorithm can be implemented easily in a list processing system, by
associating with every inference step backward pointers from the conclusion
to the premises. Such pointers correspond to the directed arcs connecting
conclusion with premises in the and-bundle of the inference step. Derivations
already generated can be accessed by following the pointers backwards.
(3) Unless the problem is one of obtaining a simplest solution, condition
6(b) is unnecessary and can be disregarded. 6(b) is used only when searching
for simplest solutions and when employing certain kinds of merit orderings.
But even then 6(b) is unnecessary for finding simplest solutions in uni-
directional and-or tree search or in uni-directional theorem-proving graph
search. This condition is necessary, however, for all bi-directional searches as
well as for uni-directional and-or graph search. We shall investigate these
matters in greater detail in the section concerned with admissibility.
(4) Our algorithm differs from others reported elsewhere in the literature
most importantly in one respect. Ordinarily a search strategy is regarded as
selecting derivations which are candidates for expansion. For path-finding
problems, a selected derivation is fully expanded by extending it in all
possible ways by the addition of a single inference step (arc). For and-or
trees, a derivation is selected, one of its premises is chosen and then all
inference steps are generated which have the given premise as conclusion.
In our algorithm, however, a search strategy is always regarded as selecting
derivations which are candidates for generation. A selected derivation is
generated by generating its single previously ungenerated inference step.
Our algorithm degenerates when it is impossible to predict the merit of

an ungenerated candidate derivation without a detailed examination which
requires that the derivation be fully generated. For X either F or B, let X
consist of those sentences and inference steps not in X but belonging to
derivations which are candidates for generation in direction X. The algorithm
selects and generates an inference step in X belonging to a candidate deriva-
tion of best merit. In the degenerate case, it is necessary to store the sets X
explicitly inside the computer. The algorithm then behaves indistinguishably
from one which fully extends candidate derivations for expansion. X can then
be re-interpreted as containing the set of fully expanded nodes and X as
containing the candidates for expansion.
In several important cases, the sets X need not be explicitly stored in order

176

KOWALSKI

to select and generate candidate derivations of best merit. Such cases are
more closely related to partial expansion (Michie and Ross 1969) than they
are to full expansion. The algorithm does not however, as in partial expansion,
first select previously generated nodes of best merit and then extend them by
applying the best applicable operator; nor does it first pick an operator of
best merit and then apply it to nodes of best merit. For in neither case does
the corresponding derivation, selected for generation, necessarily have best
merit among all candidates for generation. Our algorithm, in contrast,
selects and generates a candidate of best merit even when it cannot be
obtained from nodes and operator either of which individually has best merit.
The chief advantage of regarding the sets as containing candidates for

generation is that then the sets need not be finite in order to admit the
construction of exhaustive search strategies. In particular, it is quite useful
to construct spaces which have infinite or-branching, in the sense of having
infinitely many axioms, infinitely many alternative goals, or infinitely many
inference steps which apply to a fixed set of premises or to a given conclusion.
In fact, it seems apparent that such search spaces are often more appropriate
for representing certain problems and can be searched more efficiently than
alternative search spaces which involve finite or-branching. We shall continue
our discussion of this topic in the section concerned with completeness.

DELETION OF REDUNDANCIES

The use, in our algorithm, of and-or graphs, as opposed to and-or trees,
eliminates the redundancy which occurs when identical sub-problems are
generated, not identified, and consequently solved separately and redundantly
as though they were distinct. This use of and-or graphs has been necessitated
by wanting to regard generation of derivations in direction B as backward
search in a theorem-proving graph. Similarly, in order to regard generation in
direction F as 'backward' search in an and-or graph, we have had to abandon
the tree representation of theorem-proving graphs (Kowalski 1969). The
graph representation we use here can be obtained from the tree representation
by identifying nodes having the same label. The graph representation elimi-
nates the redundancy which arises when the same sentence is derived by
distinct premise-free derivations, which can be used interchangeably in all
super-derivations containing the given sentence. In both graph representa-
tions, and-or graph and theorem-proving graph, maximal use is made of
sharing common sub-derivations. In practice the recognition and identifica-
tion of regenerated sentences requires certain computational overheads.
These overheads can be reduced by using the hash-coding methods discussed
by Pohl (1971).
The present version of the algorithm admits another kind of redundancy;

when a sentence in F is derived by more than one premise-free derivation
contained in F. It is unnecessary to save all of these derivations by keeping
all backward pointers associated with each of the inference steps which have

177

INFERENTIAL AND HEURISTIC SEARCH

the given sentence as conclusion. It suffices instead to preserve at any given
time only those pointers associated with some single distinguished inference
step. In the case where one is interested in finding any solution no matter
what its complexity, virtually any decision rule can be employed to select
the distinguished inference step. However, completeness and efficiency are
ordinarily served best by choosing the inference step which belongs to the
simplest premise-free derivation of the sentence. If a search strategy is
admissible, in the sense that it always finds a simplest solution whenever one
exists, then the use of this decision rule, to remove redundant inference steps,
preserves admissibility.
The analogous redundancy in B occurs when distinct derivations contained

in B have the same set of premises. The different derivations represent
different reductions of the original problem to the same set of sub-problems.
It suffices to preserve only one such reduction at a time. Chang and Slagle
(1971) incorporate into their algorithm for and-or graphs a test for just such
redundancy. More generally, redundancy occurs when the premises of one
derivation are a subset of those belonging to another. In such a case the
first derivation represents a reduction of the original problem to a subset of
the sub-problems associated with the second derivation. Unfortunately it
seems virtually impossible to eliminate this redundancy in an efficient way,
because of the complicated manner in which derivations in B share sub-
structure. The situation does not improve even if consideration is limited to
the case where distinct derivations have identical sets of premises. In general,
virtually every inference step belonging to a derivation in B is shared with
some other derivation belonging to B. For this reason a derivation cannot be
removed from B by the simple removal of one of its inference steps, since this
would almost certainly result in the unintended removal of other derivations.
Perhaps the single case where redundant derivations can easily and efficiently
be eliminated is the case of path-finding problems. Here, eliminating redun-
dant derivations in B can be accomplished exactly as it is done in F.

COMPLETENESS

A search strategy is complete if it will find a solution whenever one exists. It is
exhaustive for direction X if it will eventually, if allowed to ignore the
termination-with-solution condition, generate all sentences and inference
steps which can be generated in direction X. Clearly, every exhaustive search
strategy is complete. That a search strategy can be complete without being
exhaustive is illustrated in figure 5.

It is of practical value to find useful conditions under which search
strategies can be certified to be complete. 6-finiteness is such a condition.
As defined below, this condition is a straightforward extension of the one
given in Kowalski (1969) and is more general than the one considered
elsewhere in the literature. An important feature of our definition is that it
applies to cases where or-branching is infinite. A derivation is considered

178

KOWALSKI

Figure 5. The search space contains an infinite chain of reductions: N can be solved
only if N1 can be solved; N1 can be solved only if N2 can; Nn can be solved only if
N.1-1 can. A search strategy which is depth-first along and-branches can be complete
without ever generating any of the search space above node N'. In general, depth-first
search along and-branches, although it sometimes violates exhaustiveness, in no way
adversely affects completeness. (A strategy is depth-first along and-branches if from
among any pair of premises in an inference step, it selects one premise and determines
its solvability or unsolvability before deciding that of the other premise.)

generatable in direction F if it is premise-free and is considered generatable
in direction B if it is a reduction derivation of the goal sentence. A merit
ordering of derivations is 6-finite for direction X if for any derivation D
generatable in that direction there exist only finitely many other derivations,
generatable in the same direction which have merit better than or equal to
that of D. A good example of a 6-finite merit ordering is the one measured by
the total number of distinct occurrences of symbols in a derivation and called
its symbol complexity. For denumerable languages constructed from finite
alphabets, symbol complexity has the property that, for each natural number
n, only a finite number of derivations has complexity n. It follows that merit
measured by symbol complexity is 6-finite, even in search spaces which have
infinite or-branching. Size and level are 6-finite for search spaces which have
finite or-branching but are not 6-finite for spaces with infinite or-branching.
A 6-finite search strategy need not be exhaustive but always is complete.
Theorem
Any bi-directional search strategy using a 3-finite merit ordering for some
direction X is complete, provided that at no stage does it become uni-
directional in the opposite direction Y X.
Proof. Suppose that D* is some solution which is not generated by the search
strategy. Then there exists some sub-derivation D of D* which at some stage

179

INFERENTIAL AND HEURISTIC SEARCH

becomes a candidate for generation in direction X but at no stage ever gets
generated. Unless the search strategy eventually terminates by finding some
solution other than D*, it must otherwise select and generate in direction X
candidate derivations D1, . . D„, . . . without termination. But then at
some stage, because of 3-finiteness, one of the selected derivations D„ has
merit worse than D; and this is impossible.//

It seems to be a common misconception that finite or-branching is a
necessary condition either for completeness or for efficiency. In particular, it
is sometimes believed that resolution theorem-proving inference systems have
the advantage over alternative inference systems that only a finite number of
inference steps can have a given set of sentences as premises. This belief
appears to be without foundation. Similarly, the condition often required in
pure logic that it be effectively decidable whether a given conclusion follows
directly from a set of premises by one application of an inference rule, is
yet another restraint which has no apparent relevance to the construction of
complete or efficient proof procedures.

It is especially important to bear in mind that infinite or-branching poses
no hindrance to efficient theorem-proving when evaluating proof procedures
for higher-order logic or for inference systems like those investigated by
Plotkin (1972). The practical utility of constructing search spaces with
infinite or-branching and of employing exhaustive search strategies is well
illustrated by the efficient theorem-proving programs written by Siklossy and
Marinov (1971). It is interesting to note that the notion of merit which
guides their search strategy is similar to that of symbol complexity.
Another relaxation of constraints which can usefully be employed to

improve the performance of search strategies is that the relative merit of
derivations be allowed to depend upon the state of computation, that is,
upon the entire set of derivations generated up to a given cycle of the
algorithm. This liberalized notion of merit, applied to, evaluation functions,
has been investigated by Michie and Sibert (1972). A useful application to
bi-directional heuristic search is described in the section concerned with
hi-directionality.

COMPLEXITY, DIAGONAL SEARCH, AND ADMISSIBILITY

Let! be a real-valued, non-negative function defined on derivations. f is an
evaluation function if it is used to define the merit of derivations:

DI has better merit than D2 iff(Di) <f(D2),
DI and D2 have equal merit if f(Di) =f(D2).

f is monotonic if no derivation has merit better than any of its sub-derivations,
that is, if

f(D')..<,f(D) whenever D' D.
A complexity measure (or cost measure) is any monotonic evaluation
function. Various measures which have been used to compute the complexity
of derivations are

180

KOWALSKI

(1) size, the number of sentences in a derivation,
(2) level, the largest number of sentences along any one branch of a derivation,
(3) sum cost, the sum of all costs, for all sentences in a derivation, where
every sentence has an associated cost (or complexity), and
(4) max cost, the largest sum of all costs, for all sentences along any one
branch of a derivation.
Symbol complexity is the special case of sum cost which is obtained when the
complexity of an individual sentence is measured by the number of occur-
rences of distinct symbols in the sentence. Size is the special case of sum cost
obtained when each sentence has associated with it a unit cost. Similarly level
is max cost where individual sentences have unit costs. Useful variant
definitions of complexity are obtained by associating costs with inference
steps rather than with individual sentences. On the whole, most of the
discussion of complexity below is independent of the exact details of the
definition involved. The only important property which we need require of
complexity measures is that they be monotonic.

It often occurs, especially in path-finding problems, that a particular
measure of complexity is given and it is required to find a simplest solution
(one having least complexity). Perhaps more often no such measure is given
and it is required only to find any solution, no matter what its complexity.
In the latter case it is plausible that some measure of the complexity of partial
solutions can usefully be employed to improve the efficiency of the search.
Such a measure might be employed in a depth-first search both to extend a
given derivation along simpler lines in preference to ones more complex as
well as to suspend the further extension of a derivation when it has become
intolerably complex. Alternatively, it may be decided to replace the original
problem of finding an arbitrary solution by the related, but different, problem
of finding a simplest or most elegant one. We will delay a more thorough
discussion of this problem until we have first dealt with the problem of
finding a simplest solution.

Diagonal search strategies

These strategies (or more precisely the special case of bounded diagonal
search) are equivalent to the branch-and-bound algorithms employed in
operations research (Hall 1971), to the algorithms of Hart-Nilsson-Raphael
(1968) for path-finding problems, to those Of Nilsson (1968) for and-or
trees, and to those of Kowalski (1969) for theorem-proving graphs. These
algorithms are well suited for problems where it is required to find a simplest
solution. Some authors, including Hall (1971), Kowalski (1969), Nilsson
(1971) and Pohl (1970), have recommended using such algorithms (or minor
variations) for problems requiring any solution, regardless of its complexity.
For a given complexity function g, a search strategy employing an evalua-

tion function f is a diagonal search strategy if
h(D)=f(D)—g (D)?.. 0 for all derivations D.

181

INFERENTIAL AND HEURISTIC SEARCH

h is called the heuristic function and! is often written as the sum g +h. The
evaluation function fof a diagonal search strategy can often be interpreted as
providing an estimate f(D) of the complexity of a simplest solution D*
containing the derivation D. The heuristic function h then estimates that
part of the complexity of D* which is additional to that of D. A diagonal
search strategy is a complexity saturation strategy if the complexity measure
g is used as evaluation function f, that is, iffg and therefore hO.
A diagonal search strategy is an upward diagonal strategy if, whenever two

candidate derivations for the same direction have joint best merit but unequal
complexity, the candidate derivation selected for generation is the one
having greater complexity. The use of upward diagonal strategies helps to
avoid the simultaneous exploration of equally meritorious partial solutions.
The geometric intuition underlying the terminology 'diagonal' and 'upward

diagonal strategies', is illustrated in figure 6. Inference steps in the search
space are treated as points in a two-dimensional space. An inference step has
co-ordinates (g, h) if it is generated by the search strategy as part of a selected
candidate derivation D with complexity g(D)=g and heuristic value h(D)

Figure 6. Whenever possible, diagonal search generates Di before D2 and D2 before
D3. It generates D2 before DI only if D2 is a sub-derivation of DI and generates D3
before D1 or D2 only if D3 is a sub-derivation of DI or D2. If the evaluation function is
monotonic then D3 could not be a sub-derivation of DI or D2, because, if it were, it
would have larger evaluation. Therefore, for monotonic evaluation functions, diagonal
search generates all derivations on a given diagonal before generating any on a longer
diagonal. Notice that a diagonal search strategy is bounded if its evaluation function
is monotonic and if h(D*)=0 whenever D* is a solution. All solution derivations lie
on the g-axis.

182

KOWALSKI

=h. A diagonal search strategy generates inference steps along diagonals,
moving away from the origin (0, 0), generating inference steps on shorter
diagonals (having smaller g + h) in preference to inference steps on longer
diagonals (having greater g + h). Within a diagonal, upward diagonal search
moves up the diagonal whenever possible, generating inference steps lower
on the diagonal (having greater g) before inference steps higher on the
diagonal (having smaller g).
A diagonal strategy is bounded if for all candidate derivations D, f(D) is

less than or equal to the complexity of any solution containing D, that is, if
f(D):<...g (D*) whenever Dg D* and D* is a solution.

Notice that any complexity saturation strategy is bounded.

Admissibility

A search strategy is admissible if it terminates with a simplest solution,
whenever the search space contains any solution.
Theorem
If a bounded diagonal strategy terminates with a solution derivation D*
then D* is a simplest solution.
Proof Suppose Do is a simpler solution than D* and suppose that termination
has occurred because no candidate in direction X has better merit than D*.
Then at time of termination some sub-derivation Dic, of Do is a candidate for

generation in direction X. Moreover A has merit better than D* because
f(14)...g (D0)<g (D*)=f(D*).

But this is in violation of the termination condition.//
Corollary
If a bounded bi-directional diagonal search strategy is 6-finite for some

direction X, then it is admissible, provided that at no stage does it become
uni-directional in direction Y X.
In the case of uni-directional search either in and-or trees or in theorem-

proving graphs, it can be shown that when a bounded diagonal strategy

first generates a solution D*, then no candidate for generation has merit
better than D*. Thus condition 6(b) is automatically satisfied and need not
be tested explicitly. In these cases, it suffices to terminate, therefore, as soon
as a first solution has been generated. Figure 7 illustrates the need for 6(b)
when searching for simplest solutions in bi-directional path-finding problems
and in uni-directional and-or graph search.
An interesting application of bounded diagonal search can be made in

certain cases where the problem is one of enumerating all nodes in a finite

search space and of verifying that they all have some property P. Under
certain conditions it is possible to verify that all nodes have property P
without generating all of the search space. Reformulate the problem as being
that of finding some derivation of a node having property not-P. Assume that
for some notion of complexity g, it is possible to construct a bounded

diagonal search strategy. Assume also that the maximum complexity of any

183

INFERENTIAL AND HEURISTIC SEARCH

solution is g. Then under these conditions, if a node having property not-P
is not found before generating a candidate D with value f(D)>g, then it
suffices to terminate the search and to conclude that no node in the search
space has property not-P and that all nodes, therefore, have property P.

Bi-directional search for
a path-finding problem

Direction F

Direction B

Uni-directional, and-or graph,
search for a derivation-
finding problem

Figure 7. For both of these problems, all inference steps in the search space are
illustrated and either have already been generated or else are contained in candidates
for generation. For the bi-directional search, F is the chosen direction of generation.
In both cases complexity is measured by size. Assume that, at the stage of the
algorithm illustrated here, both candidate derivations in each of the two search spaces
have heuristic value zero. Then, in both spaces, the candidate derivation containing
the node A is the candidate having best merit. When this candidate is selected and
generated, a solution derivation containing A is adventitiously generated. In neither
case is this solution a simplest one and its merit is worse than that of the remaining
candidate derivation containing the node B.

OPTIMALITY

The Optimality Theorem of Hart, Nilsson and Raphael (1968) states that,
unless it is better informed, no admissible algorithm generates fewer nodes
before termination than does a bounded diagonal strategy. They define one
admissible algorithm to be better informed than another if it admits the
calculation of a better heuristic function, that is, if the heuristic information
of the first strategy is represented by h1 and if the heuristic information of
the second is represented by h2, then h1(D)>h2(D) for all derivations and
h1(D)>h2(D) for some derivation implies that the first strategy is better
informed than the second. With these definitions, Hart, Nilsson and Raphael
prove the Optimality Theorem for uni-directional path-finding. Under the
assumption that both admissible strategies are bounded diagonal search
strategies, Kowalski (1969) proves the Optimality Theorem for uni-directional
theorem-proving graph search, and Chang and Slagle (1971) prove the
theorem for an uni-directional and-or graph search strategy similar to, but
different from, diagonal search. Since the authors of the original Optimality

184

KOWALSKI

Theorem do not specify what it means for a non-diagonal strategy to employ
a heuristic function, it is not clear that they have proved a stronger Optimality
Theorem, which is free of the assumption that both search strategies are
diagonal.
Even the weak version of the Optimality Theorem fails for bi-directional

path-finding and for uni-directional and-or graph search. In both cases the
attempted proof fails for the same reason. The proof requires it to be shown
that if an inference step is generated by the better informed strategy then it is
also generated by the other, worse informed strategy. The argument proceeds
by showing that, for the latter strategy, the inference step in question belongs
to a candidate derivation of merit better than that of a simplest solution and
is therefore generated before the search strategy terminates. This proof works
for uni-directional theorem-proving search and for the special case of uni-
directional path-finding, because, in these cases, once a derivation becomes a
candidate for generation it remains a candidate of unchanging merit until it
is selected for generation. This is not the case, for instance, for and-or tree
search. A derivation which is candidate for generation at one stage may
cease to be a candidate without ever being generated at a later stage. Its
ungenerated inference step may remain ungenerated as part of a new candi-
date derivation which contains the original one. The new derivation may have
merit worse than the old. The ungenerated inference step, which once
belonged to a candidate derivation having better merit than a simplest
solution, may now belong only to candidates whose merit is worse than that
of a solution.
Chang and Slagle rescue the proof of the Optimality Theorem by altering

the definition of candidate reduction derivation. Initially, before the goal
sentence has been generated, any single inference step which has the goal as
conclusion is a candidate for generation. Afterwards, a derivation D is
candidate for generation if some reduction derivation Do is a sub-derivation
of D which has already been generated and D contains only generated
inference steps belonging to Do and, for each premise of Do, a single un-
generated inference step whose conclusion is the given premise. The effect of
this definition is to assure that once an ungenerated inference step belongs
to a derivation which is a candidate for generation then that derivation
remains a candidate of constant merit until the inference step is generated.
But it is just this property which was needed to save the proof of the Opti-
mality Theorem.
The Chang-Slagle algorithm can be regarded as a special case of the general

bi-directional algorithm and, for and-or tree search, as a special case of
Nilsson's algorithm (1968). Viewed in this way, their algorithm amounts to a
strategy of breadth-first search along and-branches, which given a reduction
derivation investigates the solvability or unsolvability of all its premises in
parallel. Such a strategy does not seem optimal in any intuitive sense and is
demonstrably inefficient in many cases.

185

INFERENTIAL AND HEURISTIC SEARCH

BI-DIRECTIONALITY

Various methods have been suggested for determining, in path-finding
problems, which direction of generation should be selected in a given cycle
of the algorithm. Among these are the method of alternating between F and B
and of choosing that of F and B which possesses a candidate derivation of
best merit. Pohl discusses these and related methods in his papers (1969,
1971). In particular, he provides theoretical and experimental arguments to
support his method of cardinality comparison which chooses that of F or B
for which the set of candidates has least cardinality. Since we are especially
interested in the case where the sets of candidates are infinite, we need to
formulate a different criterion for the choice of direction. Our criterion, in
fact, can be regarded as a refinement of Pohl's:

Choose that of F or B which has the fewest candidates of best merit.
Notice that if a merit ordering is (5-finite for F or B then in that direction,
although the number of candidates for generation may be infinite, the
numbers of candidates of best merit is always finite.
A more serious problem with bi-directional searches, independent of the

method for choosing direction of generation, is that the two directions of
search may pass one another before an appropriate solution derivation is
found and verified. The resulting bi-directional search may then generate
more derivations than either of the corresponding uni-directional searches.
Such a situation may occur with bounded diagonal strategies and even
occurs with our present formulation of bi-directional complexity saturation
strategies. As the algorithm is presently formulated a bi-directional complexity
saturation strategy must both generate a simplest solution (of complexity g)
and also verify that the solution is simplest by generating all candidates of
complexity less than g for one of the directions X. Such a bi-directional
strategy does all the work of a uni-directional strategy for direction X and,
in addition, generates extra derivations in the opposite direction. The
algorithm can be modified so that bi-directional complexity saturation
behaves as it should: generating a simplest solution of complexity gF + gs
(where gx is the complexity of that part of the solution which is contained in
direction X) and generating all candidates in direction X of complexity less
than gx. Most importantly, the modifications necessary to achieve this effect
apply equally to the more general case of bi-directional bounded diagonal
strategies. The resulting improvement in efficiency should significantly increase
the utility of such search strategies. To minimize the complications involved
in the following discussion, we limit ourselves to consideration of bounded
diagonal search strategies for path-finding problems.
Suppose that every partial path maximally contained in direction X has

complexity greater than or equal to c. (A derivation is maximally contained
in X if the addition of some single ungenerated inference step makes it a
candidate for generation in direction X.) Then no partial path D which is
candidate for generation in the opposite direction Y can be contained in a

186

KOWALSKI

solution path whose additional complexity (in addition to that of D) is less
than c. Therefore we may require that

h(D)> min (g(D')), for D' maximally contained in X.
If h(D) is less than min (g (D')) then we should reset its value to min (g(D')).
Suppose that every partial path D' maximally contained in direction X

has value f(D') greater than or equal to e. Then e is a lower bound on the
complexity of a simplest solution. We may require, therefore, that for all
candidates D for generation in the opposite direction Y

f(D)min (f(D')) for D' maximally contained in X.
Iff(D) is less than the right-hand member of the inequality then we reset its
value so that it is equal.
These two ways, of updating the heuristic function for direction Y by

keeping track of h and f values for direction X, can be combined to obtain
even better-informed heuristic functions. For D, candidate for generation in
direction Y, we may insist that

h(D)>min[g(D')+(h(D')g(D))] for D' maximally contained
in X, where

b =
{0, if a<b

a.
a— b, otherwise.

Figure 8 illustrates a proof that such a heuristic function always yields a
bounded diagonal search strategy.

h(D)

D'

h(D)

Direction „

f(D')
f(D)

Direction Y

g(D) h(D')

D'

Case (1) h(D)-.-g(D)=0 Case (2) h(D)-rg(D)> 0
implies implies
g(D)+(h(D)-.-g(D))=g(D'). g(D')+(h(D17-g(D))=f(D)—g(D).

Figure 8. Suppose that D is a candidate for generation in direction X and suppose
that it is contained in some simplest solution D*. Then D* contains some partial
path D' which is maximally contained in Y. There are two cases:
(1) if h(D')<g(D) then h(D) should not be less than g(D').
(2) If h(D')>g(D) then f(D) should not be less than f(D') (which is already less
than or equal to g(D*)). But this means that h(D)=----f(D)—g(D) should not be
less thanf(D')—g(D).
In both cases h(D) should not be less than g(D'T-F(h(D')-7-g(D)).

187

f(D')

INFERENTIAL AND HEURISTIC SEARCH

FINDING ARBITRARY SOLUTIONS

It has sometimes been assumed that the problem of finding any solution can
be adequately replaced by the problem of finding a simplest solution. Pohl
(1970) and Nilsson (1971) adopt a more liberal position favouring the use of
diagonal search strategies with an evaluation function of the form g + coh
where h is a heuristic function and 0<o). We shall argue here that such
search strategies are not adequate to deal efficiently with the kind of search
spaces that arise in artificial intelligence problems.
Our main objection to diagonal search strategies is that they investigate

equally meritorious alternatives in parallel. For this reason, bounded diagonal
strategies are even better suited for finding all simplest solutions than they
are for finding any simplest solution. (Just change the termination condition
so that termination takes place when all candidates for generation have merit
worse than any solution found so far. By that time the algorithm will have
generated all simplest solutions.) The point is that once a bounded diagonal
strategy has found one simplest solution then it has either generated all
other simplest solutions or it very nearly has. More generally when two
candidates are tied for best merit, diagonal strategies typically generate one
soon after the other.

Typical of the search spaces and of the heuristic functions that can be
constructed for problem domains in artificial intelligence are ones where the
eventually-found solution derivation is obtained from candidate sub-
derivations which at some stage look worse (as viewed from the heuristic
function) before looking better again. More precisely, if D* is the eventually-
found solution, then more often than not there exist sub-derivations DI and
D2 selected and generated before D* (where DI c D2c D*) which are such
that the heuristic value of D2 is not better than that of DI, that is, h (D1)
h(D2). In such a case (no matter how large an co is used to weight the
heuristic function), if no other extension of DI looks better than D2, then a
g + coh search strategy will turn away from further exploration of extensions
of DI to an exploration of any alternatives which look equally meritorious
to DI. The search strategy eventually returns to generate D2 and then
continues generating extensions of D2 until some further extension has
heuristic value no better than D2. The upwards diagonal variant of diagonal
search is useful for dealing with the case where h (D1) =h (D2), but is unable
to deal appropriately with the more usual case where h (D1)< h (D2). The
trouble with diagonal searches is that they have no persistence. They abandon
a line of approach as soon as things look bad. They are short-sighted and
incapable of bringing long-term objectives to bear on the evaluation of
short-term alternatives.

Another more technical problem arises when we seek to apply diagonal
strategies to the finding of arbitrary solutions in and-or/theorem-proving
graph search spaces: what measure of complexity g should be employed by
the evaluation function g + coh? The arguments in favour of using g + coh

188

KOWALSKI

carry no indication of how g should be measured. In the case of path-finding
problems the alternatives are few in number. In the more general case we
have to choose between level, size, symbol complexity and various kinds of
sum costs and max costs. The choice, for instance, between level and size
has an important effect on the resulting behaviour of the corresponding
g + (oh strategy.
In fact, for resolution theorem-proving problems, when size is used to

measure complexity and when number of literals in the derived clause is used
to measure heuristic value, the resulting g + (oh strategies display intolerable
inefficiency. The problem is most acute when a solution of least size contains
subderivations of contradictory unit clauses of nearly equal size. Although
the solution can be generated as soon as the two units have been generated,
the search strategy must wait until the candidate solution becomes a candidate
of best merit. In most cases this will not happen before the program has
exceeded pre-assigned bounds of computer space and time. With the same
heuristic function, the situation would seem to be more satisfactory when
level is used to measure complexity. Whenever a unit clause is generated, an
immediate attempt is made to resolve it with all other previously generated
units, because any resulting solution derivation would automatically have
the same merit as the unit clause just generated (or better merit in the case
of upward diagonal searches). But other objections apply to using level as a
measure of complexity. For a fixed amount of computer time and space a
diagonal search strategy, treating level as complexity, generates fewer
derivations per unit of time (or spends less time evaluating each clause it
generates) than a diagonal strategy using size. By the same measure, symbol
complexity is still more efficient than size. We shall further elaborate upon
this theme in the following section.

It would be too lengthy to outline here some of the concrete alternatives we
envisage for the construction of more efficient search strategies. We remark
only that in the case of theorem-proving problems we favour strategies which
seek to minimise the additional effort involved in generating a solution. Such
strategies employ look-ahead and resemble depth-first strategies as much as
they do diagonal ones.

SOME ARGUMENTS FOR SIMPLICITY PREFERENCE

Our arguments against the employment of diagonal search for finding
arbitrary solutions are not arguments against the use of complexity for
guiding the order in which alternatives are explored by an intelligent search
strategy. On the contrary we believe that the complexity of candidate
derivations is one of the most important factors which search strategies can
employ in order to increase efficiency. For this purpose, level and max costs
are misleading measures of complexity, size is more appropriate than level,
and symbol complexity is more adequate than size. The arguments which
support symbol complexity are both empirical and theoretical.

189

INFERENTIAL AND HEURISTIC SEARCH

Empirical arguments

The increased efficiency contributed by the use of ad hoc heuristics in
resolution theorem-proving programs has been an unmistakable, and
unexplained, phenomenon. We shall argue that the most important of these
heuristics are disguised first approximations to a more general principle of
preference for small symbol complexity. Assuming that the argument succeeds
we will have an a priori case for believing that the use of a single strategy of
preference for small complexity will result in improved efficiency on the
order of that contributed by the ad hoc heuristics. In fact, we will have
grounds for believing more. If the use of symbol complexity unifies, subsumes
and subjects to a common unit of measure otherwise diverse heuristics, and
if such heuristics have a positive effect on efficiency, then we might expect an
even greater improvement to result from an application of a unifying
simplicity preference strategy. Such a theory could be tested by subjecting it
to experiment.

It can be argued in fact that such an experiment has already been performed
by Siklossy and Marinov (1971). Their program for proving theorems in
rewriting systems employs a search strategy which is very nearly symbol
complexity saturation. The statistics they have collected for a large number of
problems substantiate the thesis that a general-purpose, exhaustive, symbol
complexity preference strategy outperforms many special-purpose heuristic
problem-solving programs. What is additionally impressive about their
results is that they use a complexity saturation strategy which might be
improved further by extending it to a bounded bi-directional diagonal
search — this despite the arguments against diagonal search for finding
arbitrary solutions. We conclude that the advantages obtained by generalising
and extending the ad hoc heuristics compensate for the inefficiencies inherent
in saturation and diagonal search. It remains for us now to argue our case
that many of the ad hoc heuristics can be interpreted as first approximations
to some variation of simplicity preference. We shall limit our attention to
heuristics used in resolution theorem-proving programs.
(1) Unit preference (Wos et al. 1964). This heuristic gives preference to
resolution operations which have a unit clause (one containing a single
literal) as one of the premises. It behaves somewhat like the bounded
diagonal search strategy which measures complexity by level and measures
the heuristic value h(D) of a derivation D by the number of literals in the
derived clause. Until recently this seemed like an adequate, theoretically
justified substitute for unit preference. The more radical preference for
units involved in the original heuristic strategy seemed to be unjustified.
However, if we measure complexity by symbol complexity, and heuristic
value by the symbol complexity of the derived clause, then the resulting
bounded diagonal strategy exhibits a behaviour significantly more like that
of the unit preference strategy. The diagonal strategy has the advantage that
it does not depend on the initial specification of an arbitrary level bound,

190

KOWALSKI

within which unit preference is employed, and outside of which it is not
employed.
The argument here is not intended as a one-sided attack against unit

preference. On the contrary, the utility of the unit preference strategy is
widely recognised and is not in dispute. Indeed, we take the usefulness of
unit preference as an argument for the use of complexity, and of symbol
complexity more particularly, in search strategies for theorem-proving
problems.
(2) Function nesting bounds (Wos et al. 1964). This heuristic preserves all
clauses which have function nesting less than some initially prescribed
bound and deletes those which have nesting greater than or equal to the
bound. It is most effective when the user supplies a bound which is small
enough to filter out a great number of useless possibilities and large enough
to include all sentences in some tolerably simple solution. Unfortunately the
kind of knowledge necessary for obtaining such bounds is usually nothing
less than a knowledge of some simple solution and of the maximal function
nesting depth of all clauses contained in the solution. In other cases, the
reliability of user-prescribed function nesting bounds would seem to be
highly precarious and without foundation.

Despite these reservations, the uniform application of consistently small
nesting bounds has been exceptionally successful for obtaining solutions to a
large number of problems (see, for some examples, Allen and Luckham
(1969)). But Siklossy and Marinov (1971) make the same observation —
that simple problems have simple solutions — and obtain efficient results
with a graded simplicity preference strategy which does not involve the
employment of some initial, arbitrary, function nesting bound. Since degree
of function nesting can be regarded as an approximation to symbol com-
plexity, we can regard the employment of function nesting bounds as an
approximation to a strategy of simplicity preference which measures com-
plexity by symbol complexity.
(3) Preference for resolution operations involving functional agreement.
(This heuristic has been discovered independently by Isobel Smith, Donald
Kuehner and Ed Wilson, at different times in the Department of Computa-
tional Logic. It has probably been noticed elsewhere with similar frequency.)
Given a clause containing a literal P(f(y)), preference is given, for example,
to resolving it with a clause containing P (f(t)) rather than with one contain-
ing P(x). This heuristic generalises to one which prefers resolving pairs of
literals which have many common function symbols in preference to others
which have fewer common symbols. Such a heuristic favours the resolution
operation which involves the least complicated unifying substitution and
therefore the least complicated resolvent as well. The operational effect of
this heuristic can be obtained by preference for small symbol complexity.
(4) Other heuristics, such as preference for equality substitutions which
simplify an expression in strong preference to those which complicate it, are

191

INFERENTIAL AND HEURISTIC SEARCH

obvious and direct applications of the principle of preference for least
symbol complexity.

Theoretical arguments

Arguments for the use of symbol complexity can be obtained from entirely

theoretical considerations.
(1) We consider, as an argument for the use of simplicity preference, the
organising and simplifying effect which such search strategies have in a
theory of efficient proof procedures. Thus, for example, we count in its
favour the fact that symbol complexity provides a means for constructing
complete search strategies for search spaces with infinite or-branching.
The assumption that search strategies generate simple proofs in preference to
more complex ones is necessary for a formal justification of the intuitive
conviction that deletion of tautologies and subsumed clauses increases the
efficiency of resolution theorem-proving programs (Kowalski 1970, Meltzer
1971). A greater improvement in efficiency can be demonstrated when
complexity is measured by size rather than by level. Still greater improvement
follows when symbol complexity is used instead of size. Similar assumptions
about the employment of simplicity preference strategies are necessary for
the proofs of increased efficiency applied to linear resolution and s L-resolu-
tion (Kowalski and Kuehner 1971). In all of these cases, the assumption
that search strategies prefer simple proofs to ones more complex is a pre-
requisite for all proofs of increased efficiency. We regard the unavoidability
of such an assumption in a theory of efficient proof procedures as an argument
in favour of the implementation of such strategies.
(2) Assume that, within a given search space, all derivations have the same
probability of being a solution derivation. Assume that, on the average, all
symbol occurrences occupy the same storage space and require the same
amount of processing time. Then, for a fixed finite quantity of space and time,
symbol complexity saturation generates more derivations and therefore is
more likely to generate some solution than is any other search strategy for
the same search space. To the extent that not all derivations have equal
probability of being a solution, and to the extent that such information can
be made available to the search strategy, symbol complexity needs to play
a role subordinate to such knowledge. None-the-less, the point of our argu-
ment stands. Other considerations being equal, a search strategy which
generates derivations containing few symbol occurrences, in preference to
others which contain more, maximises the probability of finding a solution
derivation within fixed bounds on computer time and space.
(3) Symbol complexity is seemingly a most obvious example of the kind
of purely syntactic concept which has come under increasingly more vigorous
attack in the community of artificial intelligence workers. The argument
seems to be that emphasis upon uniform, general-purpose, syntactic notions
is detrimental to, and perhaps even incompatible with, progress in corn-

192

KOWALSKI

municating special-purpose, problem-dependent semantic and pragmatic
information to problem-solving programs. It is not our intention to wage
here a lengthy counter-attack against this position. We shall instead outline
a counter-proposal which aims to reconcile the opposing sides of this
dispute. We shall argue that special-purpose, domain-dependent semantic
and pragmatic information is inevitably reflected in the syntactic properties
of sets of sentences. Among the most important of these properties is symbol
complexity.
Suppose that in a given language, some definable concept occupies a

semantically-important and pragmatically-useful role for solving problems
posed in the language. Unless the concept is given a name, its definition in
terms of other named concepts may be exceedingly complex. The data
processing of propositions about the concept will be similarly complicated
and consuming both of space and time. In order that data processing be made
as efficient as is necessary to reflect the importance and utility of the concept,
the concept is given a name, which serves the effect of lowering its symbol
complexity as well as the complexity of propositions concerned with the
concept.
What can be argued about concepts can also be argued about propositions.

Suppose that some derivable proposition occupies a centrally-important
semantic and pragmatic role for solving problems posed in the language.
Then the more important this role, the more accessible the proposition needs
to be made to the problem-solver. It will not do if a useful proposition needs
to be re-derived in a complicated and time-consuming way every time it
needs to be applied. In order that data processing be done efficiently, axioms
are chosen and readjusted so that important and useful facts are accessed by
simple derivations.
To summarise, our argument has been that, in order for important and

useful concepts and propositions to be stored and processed efficiently, it is
necessary that they be associated with small symbol complexity. We do not
claim that symbol complexity is the only way of communicating useful,
special purpose information to a problem-solving system. We do maintain,
however, that it is one of the most important ways. This is not to argue that
symbol complexity has been used as we suggest it be used. Indeed practice
has been totally unconcerned with specifying languages whose syntax
reflects their pragmatics. Perhaps it is an argument against this practice that
is one of the more important and useful contributions of those who, otherwise,
seem to be arguing against reliance on general-purpose, syntactic methods in
problem-solving systems.

Acknowledgements

This research was supported by a Science Research Council grant to Professor 13. Meltzer.
Additional support came from an ARPA grant to Professor J.A.Robinson, during a
visit to Syracuse University, as well as from a French Government grant to Dr A.

193

INFERENTIAL AND HEURISTIC SEARCH

Colmerauer, during a visit to the University of Aix-Marseille. Thanks are due, for their
useful criticism, to my colleagues, Bob Boyer, Pat Hayes and Ed Wilson, in the
Department of Computational Logic, and to Mike Gordon and Gordon Plotkin in the
Department of Machine Intelligence.

REFERENCES

Allen, J.R. & Luckham, D. (1969) An interactive theorem-proving program.
Machine Intelligence 5, pp. 321-36 (eds Meltzer, B. & Michie, D.) Edinburgh:
Edinburgh University Press.

Chang, C. L. & Slagle, J. R. (1971) An admissible and optimal algorithm for searching
and-or graphs. Art. Int., 2, 117-28.

du Feu, D. (1971) An application of heuristic programming to the planning of new
residential development. Department of Computational Logic Memo No. 49, University
of Edinburgh.

Hall, P.A.V. (1971) Branch-and-bound and beyond. Proc. Second Int. Joint Conf. on
Art. Int., pp. 941-50. The British Computer Society.

Hart, P.E., Nilsson, N.J. & Raphael, B. (1968) A formal basis for the heuristic
determination of minimum cost paths. IEEE Trans. on Sys. Sci. & Cyber., 4, 100-7.

Kowalski, R. (1969) Search strategies for theorem-proving. Machine Intelligence 5,
pp. 181-201 (eds Meltzer, B. & Michie, D.) Edinburgh: Edinburgh University Press.

Kowalski, R. (1970) Studies in the completeness and efficiency of theorem-proving by
resolution. Ph.D. Thesis, University of Edinburgh.

Kowalski, R. & Kuehner, D. (1971) Linear resolution with selection function. Art. Int.,
2, 227-60.

Kowalski, R. (1971) An application of heuristic programming to physical planning.
Department of Computational Logic Memo No. 41, University of Edinburgh.

Meltzer, B. (1971) Prolegomena to a theory of efficiency of proof procedures. Artificial
Intelligence and Heuristic Programming, pp. 15-33. Edinburgh: Edinburgh University
Press.

Michie, D. & Ross, R. (1969) Experiments with the adaptive Graph Traverser.
Machine Intelligence 5, pp. 301-18 (eds Meltzer, B. & Michie, D.) Edinburgh:
Edinburgh University Press.

Michie, D. & Sibert, E.E. (1972) Some binary derivation systems. Department of
Machine Intelligence Internal Report, University of Edinburgh.

Nilsson, N.J. (1968) Searching problem-solving and game-playing trees for minimal
cost solutions. IFIPS Congress preprints, 11125—H130.

Nilsson, N.J. (1971) Problem-solving Methods in Artificial Intelligence. New York:
McGraw-Hill.

Plotkin, G. D. (1972) Building-in equational theories. Machine Intelligence 7, paper
no. 4 (eds Meltzer, B. & Michie, D.). Edinburgh: Edinburgh University Press.

Pohl, I. (1969) Bi-directional and heuristic search in path problems. SLA C Report
No. 104, Stanford, California. .

Pohl, I. (1970) Heuristic search viewed as path-finding in a graph. Art. Int., 1, 193-204.
Pohl, I. (1971) Bi-directional search. Machine Intelligence 6, pp. 127-40 (eds Meltzer, B.
& Michie, D.). Edinburgh: Edinburgh University Press.

Siklossy, L. & Marinov, V. (1971) Heuristic search vs. exhaustive search. Proc. Second
Int. Joint Conf. on Art. Int., pp. 601-7. The British Computer Society.

Wos, L.T., Carson, D.F. & Robinson, G.A. (1964). The unit preference strategy in
theorem-proving. Proc. A FIPS 1964 Fall Joint Comp. Conf., 25, 615-21. Washington
c: Spartan Books.

194

