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Abstract 
 
In this paper I investigate the implications for modularity of the view that the mind can be 
understood as a graph of connections (Kowalski 1975, 1979) among sentences expressed 
in the clausal form of logic. I argue that modularity is the property that such a graph may 
contain implicit or explicit sub-graphs, with a high degree of connectivity within sub-
graphs and a low degree between sub-graphs. I use the computational interpretation of 
clauses as logic programs, to make a case for clausal logic as the high-level language of 
thought, which can be executed directly at the logical level or, alternatively, can be 
compiled into lower-level representation languages. Different modules can be compiled 
into different lower-level languages, provided their logical connections with other 
modules are preserved. I also illustrate a possible relationship between connection graphs 
and connectionism. 

What’s the problem? 
How can we reconcile the apparent need for the mind to be organised into domain-
specific, modular components with the undeniable need for the mind to integrate 
information from diverse domains when the occasion demands? The problem was posed 
by Fodor (2000), partly in reaction to Pinker’s advocacy of mental modules in (Pinker, 
1997).  

How to solve it? 
The modularity problem has sparked a number of responses in addition to those by Pinker 
himself in (Pinker, 2005a, 2005b). Carruthers (2003, 2004), for example, suggests that, 
although “the mind is more or less modular in structure, built up out of isolable, and 
largely isolated, components”, the inputs and outputs of the various modules are 
integrated by means of natural language in the form of inner speech, co-opting the 
functions of the speech module for this purpose.  
 
My proposed solution is similar to Carruthers’, in that it too proposes that general-
purpose, inter-modular thinking is performed in a language of thought. However, I 
propose that intra-modular thinking can be viewed as also taking place in the same 
language of thought, and that the language of thought is a simplified form of logic. 
 



My proposal is also similar to Quine’s web of belief (Quine, 1963, Quine and Ullian, 
1970), in which the mind is viewed as a graph of connections (Kowalski 1975, 1979; 
Siekmann and Wrightson, 2002) among sentences expressed in a logical form. However, 
my connections are more specific, namely they are all the possible one step inferences 
that can be performed between sentences. Moreover, the sentences are in a special, 
simplified form, called clausal form; and the connections between sentences are also a 
simplified form of inference, called resolution.  
 
Connection graphs have a computational, as well as a logical, interpretation: Activating 
a connection between a clause that represents a goal and a clause that represents a belief 
is a form of backward reasoning, which reduces the goal to sub-goals, similar to way in 
which a procedure call activates a procedure and invokes other procedure calls. 
Backward reasoning is the basic idea of logic programming (Kowalski, 1974) and the 
programming language Prolog. 
 
Connection graphs can also simulate production systems. Activating a link between a 
clause that represents the record of an observation and a clause that represents a 
implicational goal is a form of forward reasoning (modus ponens), which derives a new 
goal, including the special case of a goal that is an atomic action. 
 
The logic programming interpretation of connection graphs bears on the issue of 
modularity. Both for the sake of efficiency and because large problem domains are 
typically composed of smaller domains, connection graphs typically have an implicitly 
modular structure. Instead of connections being distributed arbitrarily and uniformly 
throughout the graph, they tend to be clustered in sub-graphs, with a high degree of 
connectivity within sub-graphs and a low degree between sub-graphs. 
 
 
 

 

condition1  =  conclusion2 

conclusion1 or conclusions1  if condition1 and conditions1. 

conclusion2 or conclusions2  if condition2 and conditions2. 

A clause is an implication, having zero or more conjoined atomic conditions and 
zero or more disjoined atomic conclusions. Resolution unifies a conclusion of one 
clause with a condition of another clause, by applying a substitution of terms for 
variables that makes the selected conclusion and condition identical. The resolvent 
consists of the conclusions and conditions of the parent clauses, without the unified 
atoms, but with the unifying substitution applied.



The argument for modularity 
Perhaps the main argument is that modules are necessary to overcome the computational 
complexity that would result if the mind were organised as a general-purpose, 
unstructured web of belief. Without modularity, so the argument goes, every belief would 
be connected to every other belief, and thinking would become bogged down in a 
combinatorial explosion. Pinker (1997, p335), as quoted by Fodor (2005, p32), for 
example, says that “any true belief can spawn an infinite number of true but useless new 
ones”.  (In fact, this is untrue for most of the computational logics developed for 
automated reasoning, including connection graphs.) 
 
An additional argument for modularity comes from neuro-anatomy. The brain, as we all 
know, is organised into distinct physical areas devoted to such specialised functions as 
language understanding, memory, vision, etc. The modular structure of the mind is, 
therefore, just the obvious way in which the mind mirrors the physical structure of the 
brain. 
 
Other arguments come from psychology, where there is good evidence (as well-
documented, for example, by Carruthers (2003)) that people compartmentalise their 
thinking into distinct domains. So much so, that they may apply a belief in one domain, 
but fail to apply it in another. The psychological evidence supports the view that there are 
distinct modules for “physical objects, living things, other minds and artefacts” (Pinker, 
2005a, p15), among others. Pinker suggests that the number of modules needed might be 
“some two dozen emotions and reasoning faculties (distinguishing, for example fear from 
sexual jealousy from the number sense)” (Pinker, 2005b, p16). Fodor, however, sees the 
problem as stemming from the view that the mind is “massive modular”. 
 

The problem with modularity 
 
Part of the problem is that different people mean different things by the term 
“modularity”. They differ about whether modules are massively many or only moderately 
few. They differ also about the extent to which information is encapsulated inside 
modules, and about what such encapsulation might mean. And they differ about whether 
modules are associated with functions, such as cheater detection, or whether they are 
associated with domains, such as social interaction.  
 
But all of these notions of module have the same problem: how does the mind combine 
information from different modules. Fodor, for example, dismisses Pinker’s suggestion 
that “the mind is a network of subsystems that feed each other in criss-crossing but 
intelligible ways” (Pinker, 2005a, p17) as “entirely without content” (Fodor, 2005, p28).  
I will try to show that connection graphs can provide Pinker’s missing content, although 
not the sort of content that Pinker himself seems to have in mind. 
 
The problem of combining information from different modules is exacerbated when 
different modules use different, specialised implementations. As Pinker puts it, the mind 
“is not made up of mental Spam, but has a heterogeneous structure of many specialised 



parts” (1997, p31). However, not only does heterogeneity necessitate transforming 
information from one representation into another, but it necessitates recognising when 
different items of information expressed in different representations are relevant to one 
another and can be combined. 
 

The fox and the crow  

The connection graph approach to the modularity problem can be illustrated by a version 
of Aesop’s fable of the fox and the crow. We all know the story: The crow is perched in a 
tree with some cheese in its beak. The fox is on the ground under the tree and wants to 
have the cheese. To achieve its goal, the fox needs to combine its beliefs about the 
physical world, including the laws of gravity, with its beliefs about other minds, 
including that of the crow. 
 
For example, the fox could use the following simplified beliefs to solve its problem: 
 
  The crow holds the cheese in its beak. 
    
  An animal has an object  

if the animal is near the object 
and the animal picks up the object. 
 

   I am near an object 
 if the crow holds the object in its beak.  
 and the crow sings. 
 
The crow performs an action 
if an other animal praises the crow’s action. 

 
These beliefs are in the form of clauses, with some syntactic simplifications (such as the 
first occurrence of a typed variable in a clause is signalled by “a” or “an” and subsequent 
occurrences of the same variable in the same clause are signalled by “the”. 
 
The first three beliefs could be regarded as the output of a physical-world module, and 
the fourth belief as the output of an other-minds module. 
 
The connection graph for the first four clauses (ignoring unifying substitutions and type 
inferences) has the simple form: 
 



 
 
 
Connections in a connection graph can be selected and the associated resolution steps can 
be performed in any order. In logic programming they are triggered by a top-level goal, 
reducing it to sub-goals, and eventually to action sub-goals that are solved by executing 
them successfully in the environment.  
 
No matter in what order the connections are activated in the connection graph above, 
there is only one logical consequence that can ultimately be derived (far from the 
infinitely many imagined by Pinker): 
 
   I have the cheese  
   if an animal praises the crow’s singing. 

 and I pick up the cheese. 
 
This sentence can be viewed as a plan consisting of two actions for the fox to achieve its 
goal. (For simplicity I have ignored temporal considerations, constraining the praising of 
the crow to occur before the fox tries to pick up the cheese. I have also ignored the likely 
fact that the fox will choose to instantiate the typed variable “an animal” with the term 
“I” representing itself.) 
 
Of course, it is implausible that the fox’s initial connection graph would explicitly 
contain such a specialised belief as: 
 

I am near an object 
if the crow holds the object in its beak  
and the crow sings. 

 

An animal has an object  
if the animal is near the object 
and the animal picks up the object. 

I am near an object 
if the crow holds the object in its beak  
and the crow sings. 

The crow sings  
if an animal praises the crow’s singing. 

The crow holds the cheese in its beak.



It is more likely that the belief would be implicit, and that the fox would derive the belief 
from knowledge about its current location and from more general beliefs about the 
physical world: 
 
 
 

 
In a similar way, the fox’s belief: 
 

The crow sings  
if an animal praises the crow’s singing. 

 
might also be derived from more general beliefs about animal psychology. For example, 
from such beliefs as: 
 

An object is at a place 
if an other object is at the place  
and the other object holds the object. 

An object falls from a place 
if the object is at the place   
and the object is dropped. 
 

An object is near an other object 
if the object is under a place 
and the other object falls from the place. 

I am under the tree. 

An object is dropped 
if an animal holds the object   
and the animal looses hold of the object . 
 

A bird looses hold of an object  
if the bird holds the object in its beak  
and the bird sings. 
 

The crow is in the tree.  

A bird holds an object  
if the bird holds the object in its beak. 
 



 
 
 
 
The connection graph, which puts all of these beliefs together, looks like this: 
 
         

  
Of course, the example is greatly simplified. Not only does it ignore the representation of 
time, but, more importantly, it ignores the representation of the many other beliefs that 
are needed for reasoning about the physical and psychological domains. However, as 
simple as it is, it shows that modules can be implicit, rather than explicit, and that 
reasoning within modules can be performed by the same logical mechanism as reasoning 
between modules.  

Clausal Logic as the High-level Language of Computation 
 
Viewed in computational terms, the clausal form of logic is a high-level language, which 
can be executed directly at the logical level by performing resolution inferences, as in 

An animal sings 
if the animal is vain 
and the animal is naïve 
and another animal praises the animal’s singing. 
 

The crow is vain.  
 

The crow is naïve.  

An object is at a place 
if another object is at the place  
and the other object holds the object. 

An object falls from a place 
if the object is at the place   
and the object is dropped. 

One object is near another object 
if the object is under a place 
and the other object falls from the place. 

I am under the tree. 

An object is dropped 
if an animal holds the object   
and the animal looses hold of the object. 
.

A bird looses hold of an object  
if the bird holds the object in its beak  
and the bird sings. 

The crow holds the cheese in its beak  

The crow is in the tree.  

A bird holds an object  
if the bird holds the object in its beak.  
 

An animal has an object  
if the animal is near the object 
and the animal picks up the object. 

An animal sings 
if the animal is vain 
and the animal is naïve 
and another animal praises the animal’s singing. 
 

The crow is vain.  

The crow is naïve.  



connection graphs for example. Or instead it can be compiled, like any other high-level 
computer language, into a lower-level representation and then can be executed at that 
lower level. Indeed compiling one level of representation into a lower level can be 
iterated any number of levels, ending ultimately in hardware or brainware.  
 
In Computing, higher-level languages have the advantage of being easier to understand, 
develop and maintain. Lower-level languages have the advantage of greater efficiency. It 
is common to compile high-level representations into lower-level ones. But it is 
sometimes possible and desirable to decompile lower-level representations into higher-
level ones.  
 
The modular structure that is implicit in some connection-graphs can be made explicit by 
isolating the internal connections within modules from the internal connections within 
other modules. This isolation of internal structure encapsulates beliefs within modules, 
but has no impact on the over-all logic of all beliefs, provided the connections between 
modules are retained.  
  
Different modules can be compiled into different, heterogenous lower-level 
representations, taking advantage perhaps of the different syntactic structure of different 
modules. The use of different lower-level representations need not have any impact on 
the over-all logic of beliefs, provided they correctly compile their respective higher-level 
logical representations.   
 
Similar to the way in which simpler forms of life developed before more complex forms, 
in the history of Computing, lower-level programming languages were developed before 
higher-level languages. Legacy systems implemented in low-level computer languages 
often prove difficult to maintain when the environment and the system requirements 
change. In many such cases, however, it is possible to decompile the lower-level 
programs into higher-level languages. Sometimes, because of the undisciplined 
complexity of the lower-level programs, the corresponding higher-level programs only 
approximate and partially articulate the lower-level ones. 

Clausal Logic as the Language of Thought 
Logic is not very fashionable in Cognitive Science circles these days. Thagard (1996), for 
example, in his introductory textbook rates logic a long way behind production systems, 
concepts, neural networks and other more obviously computational formalisms.  
 
Part of the problem seems to lie in the forms of logic that Cognitive Scientists have 
considered, and in the lack of consideration they have given to clausal logic in particular. 
Another part seems to be a lack of awareness of the computational character of clausal 
logic and its relatives.  
 
Thagard (1996, p45), for example, incorrectly states that “in logic-based systems the 
fundamental operation of thinking is logical deduction, but from the perspective of rule-
based systems the fundamental operation of thinking is search.” In fact, all proof 
procedures for logic have two main components (Kowalski, 1979, p60). One is the set of 



inference rules that make up the individual steps of proofs. The other is the search 
strategy for finding proofs. In connection graphs, for example, search is implicit in the 
strategy for selecting and activating connections. Different selection strategies implement 
different search strategies, including breadth-first, depth-first and branch-and-bound. 
Branch-and-bound, in particular, can be used both to incorporate additional “heuristics” 
into the search and to search for near-optimal solutions by resource-bounded successive 
approximation.  
 
For example, in my version of the story of the fox and the crow, the fox might have the 
additional beliefs 

 
An animal is near an object 
if the object is at a place 
and the animal goes next to the place. 
 
An animal has an object  
if the animal is near the object 

 and another animal has the object 
and the animal takes the object from the other animal by force. 
 

It could use these beliefs to search for an alternative solution to the problem of having the 
cheese, in this case by going into the tree and taking the cheese from the crow by force. 
Heuristics and other techniques could be used to guide the search and to try to maximise 
some desirable characteristic, such as the expected utility of the solution. 
 
Clausal logic divides the inference rules of standard logic into two groups. One group is 
subsumed by the resolution rule, which can be viewed as the execution mechanism of 
clausal form. The other group can be viewed as the mechanism that compiles the standard 
form of logic into clausal form or decompiles clausal form into standard form. 
 
Resolution generalises modus ponens, transitivity of implication, and a number of other 
inference rules of standard logic. It also controls the instantiation of universally 
quantified variables, restricting instantiation to the most general substitution necessary 
for unification, avoiding a possibly infinite number of irrelevant instances. 
 
The other group of inference rules of standard logic are needed to convert standard form 
into clausal form and vice versa. For example, both the inference rule, derive “p” from 
“not not p”, and and-elimination, which derives “p” and “q” from “p and q”, generate 
clausal form from standard form. The use of such inference rules is reminiscent of the use 
of transformational grammars to generate deep structure from natural language surface 
structure. In both cases many different, but equivalent sentences are converted into the 
same canonical form. 
 
And-introduction, which derives “p and q” from “p” and “q”, converts clausal form into 
standard form. Used indiscriminately, and-introduction, like the instantiation of 
universally quantified variables, gives rise to many useless consequences. 



 
The thinning rule of inference, which derives “p or q” from “p”, is also used to generate 
standard form from clausal form, spawning an infinite number of useless new beliefs. It is 
also used for deriving any conclusion from a contradiction. Because thinning is absent 
from the clausal form of logic, clausal logic behaves as a para-consistent logic. In clausal 
logic, it is possible to derive useful consequences from an inconsistent set of beliefs 
without being able to derive everything. 
 
Variations of clausal logic have been used for knowledge representation in Artificial 
Intelligence, since at least the early 1970s. Often in simplified Horn clause form 
(conclusions with at most one disjunct). Often in more complicated form (with negative 
conditions, for default reasoning). Often combining object level with meta-level 
reasoning. Sometimes using the combination of object level and meta-level to represent 
propositional attitudes, such as goals and beliefs. 
 
In addition to logic programming, the applications of clausal logic include both 
representations of common sense, as well as representations of domain specific expertise. 
They also include the representation of the semantics of natural language sentences.  
 
The relationship I have in mind between clausal logic as the language of thought and 
natural language as a medium of communication is similar to the relationship between 
concepts and words proposed by Sperber and Wilson (1998). In this relationship, the 
language of thought, in which mental concepts are represented, is richer and more 
expressive than the natural languages and other means of communication that one human 
uses to convey her thoughts to another.   

Algorithm = Logic + Control 

Connection graphs represent the logic component of an agent’s beliefs. The manner in 
which connections are activated – in what sequence or in parallel – represents the control 
component. The combination of logic plus control determines the agent’s algorithmic 
behaviour, expressed by the equation: algorithm = logic + control (Kowalski, 1979). 
Most of the content of an algorithm is in its logic component. 

The equation can be used in many different ways. In particular, it can be used to turn a 
declarative belief into a procedure, by adding a control component; or it can be used to 
abstract a declarative belief from a procedure, by ignoring the control component.  
 
Frawley (2002) argues that the analysis of algorithms into logic plus control also applies 
to mental algorithms and helps to explain different kinds of language disorders. He 
argues that Specific Language Impairment, for example, can be understood as a defect of 
the logic component of mental algorithms for natural language; whereas Williams 
syndrome and Turner syndrome can be understood as defects of the control component. 
 



In natural language, declarative and procedural expressions of belief often occur side by 
side, as for example in the following extract from a London underground emergency 
notice: 
 
 “Press the alarm signal button, to alert the driver. 
 The driver will stop if any part of the train is in a station. 
 If not, the train will continue to the next station,…” 
 
The connection graph representing the underlying logical form of these sentences looks 
something like this1: 
 
 
 

 
 
The fact that the first natural language sentence is expressed in procedural form and the 
other two are expressed in declarative form signals that the different sentences are to be 
used in different ways: the first, to reason backwards, to reduce the goal of alerting the 
driver to the action sub-goal of pressing the alarm signal button, the other two to reason 
forwards, to derive and monitor the consequences of the sub-goal. 
 
The first sentence of the Emergency Notice illustrates the relationship between a goal-
reduction procedure and its underlying logical form. Sometimes the relationship is not so 
obvious. Thagard (page 45), for instance, presents the sentence: 
 
 If you want to go home and you have the bus fare, 
  then you can catch a bus. 
 

                                                 
1 Strictly speaking, the atomic part of the condition “not any part of the train is in a station” should be 
moved to the other side of the implication as a disjunct of the conclusion. However, it seems more natural 
to treat it as “negation as failure”.  

You alert the driver to an emergency 
if you press the alarm signal button. 

The driver will stop the train in a station 
 if you alert the driver to an emergency 

and any part of the train is in the station.  

The driver will stop the train at the next station 
 if you alert the driver to an emergency 

and not any part of the train is in a station



as an example of a condition-action rule, to support his claim that “unlike logic, rule-
based systems can also easily represent strategic information about what to do”. 
 
However, in terms of the equation algorithm = logic + control, the same example can 
also be understood as a goal-reduction procedure, obtained from the belief: 
 
 You go home if you have the bus fare and you catch a bus. 
 
expressed in logical form, using backwards reasoning as control. 
 
Genuine condition-action rules, which are not goal-reduction procedures, can also be 
understood in algorithm = logic + control terms. For example, the condition-action rule: 
  
 If I am hungry and I am near an object and the object is food 
 then pick up the object and eat the object. 
 
with its imperative conclusion, can be obtained from the goal: 
 
 If I am hungry and I am near an object and the object is food 
 then I pick up the object and I eat the object. 
 
expressed in logical form, using forward reasoning as control. 
 
In the same way that the Underground Emergency Notice contains both procedural and 
declarative sentences side by side, connection graphs can contain control pathways that 
are predetermined together with connections whose controls are determined only at the 
time of activation.  
 
Sub-graphs whose control pathways are all predetermined and that have few external 
connections to other parts of the connection graph are candidates for optimisation, by 
compiling them into modules implemented in lower-level representations. For example, 
sub-graphs whose connections are all controlled by backward reasoning can be 
implemented in procedural languages, whereas sub-graphs whose connections are all 
controlled by forward reasoning can be implemented as production systems. Thus 
modules implemented in different representation languages can be combined in a single 
connection graph, having a higher-level, logical structure as a whole. 
 
Natural language parsing is another example of the way in which a combination of logic 
plus control can be implemented in a specialised, lower-level representation. In 1971, 
Alain Colmerauer and I discovered that formal grammars can be represented in Horn 
clause form and that different parsing procedures can be obtained by applying different 
control strategies (Kowalski, 1979, Chapter 3). Top-down parsers, for example, are 
obtained by backward reasoning, and bottom-up parsers by forward reasoning. 
Colmerauer later invented definite clause grammars, as a specialisation of Horn clause 
logic with backwards reasoning and depth-first search, and integrated them into Prolog.  



The Pragmatic Nature of Beliefs 
Fodor (2005, p30), in his argument with Pinker, states that “cognition per se is interested 
in truth per se”, proposing that creatures achieve “what they want by a division of mental 
labor according to which cognitive processes are specialised to deliver truths and decision 
processes are specialised for figuring our what to do in the sort of world that cognition 
reports”. 
 
The logic-based agent model we have developed (Kowalski and Sadri, 1999; Kowalski, 
2001) supports Fodor’s distinction between thinking and deciding, as separate 
components of an agent’s observation-thought-decision-action cycle. However, it sides 
with Pinker in the view that “the belief system is prone to systematic error in 
circumstances where fixing true beliefs leads to lower fitness than satisficing or self-
deceiving with false beliefs” (2005, p36). 
 
The role of logic in our agent model is to help the agent achieve its goals in response to 
changes in its environment. For this purpose, its beliefs, expressed in logical form, need 
to be both effective in yielding successful responses and efficient in generating these 
responses in real time. In this role, true beliefs are normally more effective than false 
beliefs.  
 
However, the idea that the top priority of logic is to represent the truth was one of the 
main reasons for the decline of logic programming in the 1990s. In its heyday in the 
1980s, many enthusiasts believed you could simply write down the truth about a problem 
domain, feed it to Prolog, and Prolog would then be able to solve any problem in that 
domain. 
 
Unfortunately, it doesn’t always work that way. To write a program that works, it needs 
not only to be effective, in the sense of satisfying its specification, but it also needs to be 
efficient – which in many cases means that you need to write an efficient algorithm, 
instead of a program specification.  
 
To some extent, the equation, algorithm = logic + control, may have given the wrong 
impression – that all you need to do is to write down the truth in the logic component and 
adjust the control until you get an efficient algorithm. The problem is that there are many 
domains in which no control of the logical specification yields acceptable efficiency. 
John McCarthy (1990), for example, showed this in detail for the map colouring problem. 
 
To obtain acceptable efficiency, it is necessary to use both an appropriate logic and a 
suitable control. For example, as is well know in Computing, there are many ways to sort 
a list. One way is just to execute the specification of sorting as finding an ordered 
permutation of the list. But there is no way to control this specification and obtain 
acceptable efficiency. It is necessary, instead, to use some other formulation of the logic 
of the problem, corresponding, for example, to the quick-sort or the merge sort 
algorithms. 
 



In many applications, when the problem is inherently difficult (say, exponentially hard), 
there may not exist any algorithm that completely and correctly implements the 
specification with acceptable efficiency. In such cases, it is often possible to employ 
heuristics instead. Heuristics are rules of thumb, which may be neither correct nor 
complete, but which are useful in many cases. The use of heuristics is a common way of 
building expert systems. The equation algorithm = logic + control includes the special 
case of heuristics as a special kind of algorthim. 
 
Logic is concerned with the form of goals and beliefs, but not with their contents. It can 
be used to represent not only truth and specifications, but also the declarative content of 
conventional algorithms and heuristics. It treats all contents in the same way and enables 
them to be used for deriving logical consequences.  
 
Modularity is a property of the logic component of algorithms. It contributes to efficiency 
in two ways.  First, it limits the size of the search space for many problems, by confining 
the search to modules of manageable size. Second, it facilitates parallel processing, by 
enabling it to take place in different modules simultaneously with minimal or no 
interference. However, on its own, as a way of achieving efficiency, it is neither 
necessary nor sufficient. 

Modularity, object-orientation and domain-specificity 

Modularity, whether explicit or implicit, is associated with the natural decomposition of 
problem domains into sub-domains. However, in Computing, this decomposition is 
typically multi-layered, the different layers forming a hierarchy of domains and sub-
domains.  Such hierarchies are a defining characteristic of object-orientation, which is the 
dominant paradigm in Computing today.  

The relationship between computational logic and object-orientation has been a topic of 
concern for many years. Suffice it to say here that, as far as the modularity of the mind is 
concerned, the lesson of object-orientation seems to be that mental modules, whether 
explicit or implicit, whether represented in logical form or in some other, more 
conventional form, might also be structured in multi-layered hierarchies. 
 
This hierarchical structure of modules reflects the natural hierarchical structure of 
problem domains and implies a corresponding hierarchical classification of algorithms 
and beliefs. In contrast to the distinction often made between domain-specific and 
domain-general beliefs and procedures, it implies a more refined distinction between 
beliefs of varying levels of specificity and generality. 
 
Except for beliefs at the lowest level of the hierarchy, all beliefs are of necessity domain-
general to some degree. In the same way, unless there is a single top-most level of the 
hierarchy, rather than a number of top-most levels, all beliefs are also of necessity 
domain-specific. Thus, to take the example of Atkinson and Wheeler (2204, p155), the 
belief “that two physical objects cannot take up the same portion of space at the same 
time… looks like a paradigmatic example of genuinely domain-general information”. But 



even it is specific to the domain of physical objects, and does not apply to non-material 
things. 
 
In my proposal, only the connection graph mechanism, with resolution as its single rule 
of inference and with selection of connections as its single method of control, is entirely 
domain-general. Because modus ponens is subsumed by resolution, modus ponens is also 
domain-general, which is as Fodor (2000) maintains and Sperber (2002) denies.  

Connection graphs and Connectionism 
I have been deliberately vague about the detailed workings of the connection graph proof 
procedure. This is partly because many different implementations are possible, including, 
as I already mentioned, both sequential and parallel implementations, and partly because 
not all of the possibilities have been explored. 
 
The standard implementation repeatedly 
 

•  selects a connection, 
•  deletes the connection, 
•  adds the associated resolvent to the connection graph, 
•  adds connections between the resolvent and other clauses in the graph, 

 (inheriting them from the connections of the parent clauses), and 
•  deletes any clauses (starting with parent clauses) containing unconnected atoms. 

 
In general, a connection graph increases in size, when new resolvents and their 
connections are added. It decreases in size when clauses are deleted. In some cases, 
deleting a clause causes a chain reaction of deletions, which reduces the size of the graph 
dramatically. In any case, adding a new clause to a connection graph does not generally 
spawn the infinite number of consequences, which Pinker associates with logical 
reasoning. 
 
Although the standard implementation adds resolvents explicitly, it is also possible to 
represent them implicitly, as is done, for example, in implementations of Prolog. For 
example, the resolvent  
 
I have the cheese if an animal praises the crow’s singing and I pick up the cheese. 
 
can be represented implicitly by simply marking all the connections that were activated in 
the derivation of the resolvent with the same “colour”. The resolvent implicitly 
represented in this way is the collection of atoms left over when all the atoms joined by 
the marked connections ignored with their unifying substitutions applied: 
 



I am near an object 
if the crow holds the object in its beak  
and the crow sings. 

 
 
Connection graphs resolvents represented implicitly are similar to connectionist 
architectures of the mind. 
 
Consider the following example of a neural network taken from the textbook, 
Computational Intelligence: A Logical Approach, by Poole, Mackworth & Goebel 
(1998). The network simulates a user’s decision whether or not to read an article 
depending upon whether the author is known or unknown, the article starts a new thread 
or is a follow-up, the article is short or long, and the user is at home or at work. 
 
Poole et al present the example as an illustration of a neural network with hidden units, 
which do not have a symbolic interpretation. 
 

An animal has an object  
if the animal is near the object 
and the animal picks up the object. 

The crow sings  
if an animal praises the crow’s singing. 

The crow holds the cheese in its beak.

I =  
the animal The cheese = 

the object 
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Example    Action Author Thread Length  Where read
E1 skip known new long  home
E2 reads unknown new short work
E3 skips unknown follow-up long work

Neural network

inputs hidden units output
known
new reads
short
home

 
 
 
 
They also present a logic program that corresponds to the neural network. The following 
connection graph contains a variant of their program, with weights that are learned after 
backwards propagation using a set of training examples, and with “meaningful” predicate 
names. Here “f” is the sigmoidal function that coerces the real numbers into the range 
[0,1]. Similarly, the “strengths” of the inputs lie in the range [0,1], where 0 is associated 
with the Boolean value false and 1 with true. 
 



known  

home 

new  

 short  

 
 
The neural network example and its corresponding logic program and connection graph 
not only illustrate a possible relationship between connectionism and connection graphs, 
but they also illustrate a possible relationship between the clausal logic as the language of 
thought and natural language. They show, in particular, that clausal logic can represent 
mental concepts that can only be approximated in natural language. They also show that 
it can represent concepts, such as “arguably worth reading” and “arguably not worth 
reading” that do not have a direct interpretation in the external world. 

Conclusion 
The proposals put forward in this paper build upon work in three closely related, but 
independent research areas: automated reasoning, logic programming and logic-based 
agents. The area of automated reasoning contributes the connection graph proof 
procedure, including the use of clausal form. Logic programming shows how 
computational and logical models of the mind can be combined. And logic-based agent 
models show how logic can serve as the thinking component of an intelligent agent 
interacting with its environment. 

arguably not worth reading with strength S2 
if       known with  strength S4  
and    new with strength S5 
and    short with strength S6 
and    home with strength S7 
and    S2 =  f(.493 - 1.03 S4 - 1.06 S5 - .749 S6 + .126 S7) 
 

read with strength S3 
if       arguably not worth reading with strength S2  
and   arguably worth reading with  strength S1  
and   S3 = f(-2.98  + 6.88 S1 –  2.1 S2) 
  

arguably worth reading with strength S1 
if       known with  strength S4 
and   new with strength S5 
and   short with strength S6 
and   home with strength S7 
and   S1 =  f(– 5.25 + 1.98 S4 + 1.86 S5 + 4.71 S6 – .389 S7) 



 
Because these research areas are semi-autonomous, there are issues at the boundaries that 
remain to be resolved. I have already referred to one of them in a footnote, namely that 
some form of default reasoning, as found in negation as failure in logic programming, 
needs to be incorporated in connection graphs. One way to do so is to use the 
assumption-based approach to default reasoning of Dung, Kowalski and Toni (2005), 
which can be used to extend any monotonic logic into a dialectic argumentation system. 
 
Perhaps even more importantly, the connection graph proof procedure needs to be 
extended to incorporate a greater distinction between goals and beliefs. Some of the 
related issues concerning goals and beliefs are being investigated in (Kowalski, 2005). 
 
In addition, relationships to other disciplines need to be investigated further - the most 
obvious being the relationship between connection graphs and connectionism. 
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