
Dialectic proof procedures
for assumption-based, admissible argumen-
tation

3 February 2005

P.M. Dung
Division of Computer Science, Asian Institute of Technology
PO Box 2754, Bangkok 10501, Thailand
dung@cs.ait.ac.th

R.A. Kowalski, F. Toni
Department of Computing, Imperial College
180 Queen’s Gate, London SW7 2BZ, UK
{rak,ft}@doc.ic.ac.uk

Abstract

We present a family of dialectic proof procedures for the admissibility semantics
of assumption-based argumentation. These proof procedures are defined for any
conventional logic formulated as a collection of inference rules and show how any
such logic can be extended to a dialectic argumentation system.
The proof procedures find a set of assumptions, to defend a given belief, by start-
ing from an initial set of assumptions that supports an argument for the belief
and adding defending assumptions incrementally to counter-attack all attacks.
The proof procedures share the same notion of winning strategy for a dispute
and differ only in the search strategy they use for finding it. The novelty of our
approach lies mainly in its use of backward reasoning to construct arguments
and potential arguments, and the fact that the proponent and opponent can
attack one another before an argument is completed. The definition of winning
strategy can be implemented directly as a non-deterministic program, whose
search strategy implements the search for defences.

1 Introduction

In conventional logic, beliefs are derived from axioms, which are held to be beyond
dispute. In everyday argumentation, however, beliefs are based on assumptions, which
can be questioned and disputed.

Starting perhaps with Toulmin’s landmark book, The Uses of Argument [36], this con-
trast between conventional logic and argumentation has led many researchers, including
Perelman [29] and Walton [38], to regard ordinary, human argumentation as being be-
yond the reach of formal logic. However, in recent years a number of other researchers,

1

including Pollock [31], Nute [28], Gordon [17], Loui [25] and Prakken and Sartor [33],
have shown how argumentation can be understood in formal, logical terms. This work
on logical models of argumentation is surveyed by Chesnevar, Maguitman and Loui [6].

In our logical model of argumentation, we use conventional logic to construct an argu-
ment, but we focus on the assumptions that support the argument. An opponent can
dispute a proponent’s argument by attacking one of the argument’s supporting assump-
tions. The proponent can defend the argument by counter-attacking the opponent’s
attack with other arguments, possibly with the aid of other defending assumptions.

In [3] we introduced an assumption-based, argumentation-theoretic framework and
showed how it can be used for the semantics of default reasoning. We showed that the
stable semantics of many logics for default reasoning can be understood as sanctioning a
belief if the belief is the conclusion of an argument whose set of supporting assumptions
can be extended to a set of assumptions that both attacks every other assumption not
in the set, and does not attack itself.

We also argued that the same logics can be given an alternative semantics that has
a more natural argumentation-theoretic interpretation. This semantics, the admissi-
bility semantics, sanctions a belief if it is the conclusion of an argument whose set
of supporting assumptions can be extended to a set of defending assumptions, which
both counter-attacks every attack, and does not attack itself. In [24] we explored the
application of this semantics to argumentation in legal reasoning.

The admissibility semantics is a semantics in the sense that it non-constructively spec-
ifies when a belief is admissible. In [11] we showed how to derive from the specification
the top-most level of constructive proof procedures, using logic program transforma-
tion techniques [30]. This top-most level generates defences incrementally, without
showing how to construct them by means of a dialogue between a proponent and an
opponent. In this paper we derive our (full) proof procedures in a more informal,
intuitive fashion, which clarifies their dialectic character.

The basic proof procedure is illustrated by the following simplified example.

Example 1.1 Assume that two parties to a dispute agree on a common background
set of beliefs 1:

p ← q, r (1)

¬q ← s, v (2)

¬q ← t, u (3)

s ← t (4)

r (5)

v (6)

1Here “← ” should be read as “if” and “,” as “and”. We will explain this notation in section 3.

2

u ← w (7)

w (8)

(9)

Suppose that the proponent wants to defend the belief p. He/she can do so by putting
forward the argument:

a1 : q (by assumption)

r (by 5)

p (by 1)

with conclusion p and assumption q. The opponent can attack the argument, by
attacking the assumption q with the argument:

a2 : t (by assumption)

s (by 4)

v (by 6)

¬q (by 2)

with conclusion ¬q and assumption t.

The proponent can counter-attack this attack with the trivial argument:

a3 : ¬t (by assumption)

based on the assumption ¬t. If the opponent attempts to attack a3 with the argument:

a4 : t (by assumption)

based on the assumption t, then the proponent simply repeats the counter-argument
a3. However, the opponent can also attack a1 with the alternative argument:

a′2 : t (by assumption)

s (by 4)

w (by 8)

u (by 7)

¬q (by 3)

also based on the assumption t. But then the proponent simply repeats the counter-
argument a3.

3

The proponent’s belief p is admissible because it is the conclusion of an argument a1

that is supported by a set of assumptions {q} that can be extended to a defending
set of assumptions {q,¬t} that can counter-attack every attack (and does not attack
itself).

Notice that, by the same line of reasoning, the opponent can similarly defend a belief
in the contrary conclusion ¬p, based on the defending set of assumptions {¬p, t}. It
is for this reason - because different agents can admissibly hold contrary beliefs - that
the admissibility semantics is said to be credulous, rather than sceptical.

The assumption-based approach to argumentation of [3] builds upon Dung’s [10, 9],
which showed that many logics for default reasoning can be viewed as instances of an
abstract argumentation framework in which arguments and the attack relation between
arguments are defined entirely abstractly, ignoring their internal structure. In [3], we
showed that the attack relation between arguments in default reasoning depends only
on the assumptions on which those arguments are based. Different logics for default
reasoning differ mainly in their differing notions of assumption and of the contrary of
an assumption.

Starting with Vreeswijk and Prakken [37], a number of authors [13, 5, 18] have de-
veloped dialectic proof procedures for the abstract version of Dung’s admissibility
semantics. Applied to the example above, these proof procedures demonstrate the
admissibility of the proponent’s belief in p in terms of the abstract arguments, a1, a2,
a′2, a3 and a4:

Proponent: a1

Opponent: a2 attacks a1

Proponent: a3 attacks a2

Opponent: a4 attacks a3

Proponent: a3 attacks a4

Opponent: a′2 attacks a1

Proponent: a3 attacks a′2

This abstract view of argumentation simplifies the proof procedures, but does not show
how to find arguments and how to exploit the fact that different arguments can share
the same assumptions.

Our proof procedures generate and find arguments by reasoning backwards from con-
clusions to assumptions. They use backward reasoning both to find an initial argument
for a given belief and to find attacking and defending arguments for the contrary of an
assumption.

Each step in a backward argument can be viewed as a partially completed, potential
argument. Any assumption in such a potential argument can be attacked (by finding

4

an argument for its contrary) before the argument is completed. For example, our
proof procedures can attack and defeat the assumption t in the opponent’s argument
a′2 before it is completed, by reusing the argument a3.

Our proof procedures are presented at three levels of abstraction. We derive one from
the other by successive refinement, thereby simplifying the proofs and clarifying the
relationship between seemingly different proof procedures. Our final refinement can
be viewed as a generalisation of logic programming, which uses backward reasoning
to generate proofs and uses a generalisation of negation as failure to show that an
assumption is admissible (because its contrary can not be shown).

The remainder of this paper has the following structure: Section 2 describes the ab-
stract framework and the admissibility semantics. Section 3 describes the simplified
class of frameworks that we use for our examples. Section 4 shows how tight arguments,
which are used in the remainder of the paper, can be generated by backward reason-
ing. Sections 5, 6 and 7 present the successive refinements of the proof procedures, in
terms of abstract dispute trees, concrete dispute trees and dispute derivations, respec-
tively. Section 8 discusses algorithmic issues, including implementation and complexity.
Section 9 discusses related work and is followed by the conclusions.

2 Admissibility for assumption-based argumenta-

tion frameworks

In this section we briefly review the notion of assumption-based framework [4, 3, 24, 21]
and show how it applies to argumentation.

Any logic, viewed as a deductive system, can be extended to an assumption-based
argumentation framework.

Definition 2.1 A deductive system is a pair (L, R) where

• L is a formal language consisting of countably many sentences, and

• R is a countable set of inference rules of the form

α1, . . . , αn
α

α ∈ L is called the conclusion of the inference rule, α1, . . . , αn ∈ L are called
the premises of the inference rule and n ≥ 0.

If n = 0, then the inference rule represents an axiom. We do not distinguish between
domain-independent axioms, which belong to the specification of the logic, and domain-
dependent axioms, which represent a background theory. Similarly, we allow both
domain-independent and domain-specific inference rules.

5

Note that most logics are defined by inference rule schemata. For example, modus
ponens is actually a collection of inference rules of the form

α, α→ β

β

where α and β are sentences in L.

For notational convenience, we write α instead of the rule
α

throughout the paper.

Definition 2.2 A deduction of a conclusion α based on a set of premises P is
a sequence β1, . . . , βm of sentences in L, where m > 0 and α = βm, such that, for all
i = 1, . . . ,m,

• βi ∈ P , or

• there exists
α1, . . . , αn

βi
∈ R such that α1, . . . , αn ∈ {β1, . . . , βi−1}.

If there is a deduction of a conclusion α based on a set of premises P , we write P ` α.
We also say that the deduction is supported by or based upon P .

Notice that a deduction can contain applications of inference rules (called inference
steps) that are not relevant to the derivation of the conclusion. Similarly, it may
contain premises that are not relevant to the rest of the deduction. In particular, if
P ` α, then P ′ ` α for any P ⊆ P ′. This property of deductive systems is called
monotonicity.

Deductions are the basis for the construction of arguments, but to obtain an argument
from a deduction we restrict the premises of the deduction to ones that are acceptable
as assumptions. Which premises are acceptable as assumptions can vary from frame-
work to framework. In this paper we restrict ourselves to flat frameworks [3], whose
assumptions do not occur as conclusions of inference rules.

To specify when one argument attacks another, we need to determine when a sentence
is the contrary of an assumption. In many cases, the contrary of an assumption is just
its negation. But in applications to default reasoning [3], it can be more complicated.

Given a deductive system (L, R), these two notions - the notion of assumption and
the notion of the contrary of an assumption - determine the framework within which
arguments and counter-arguments take place.

Definition 2.3 An assumption-based framework is a tuple 〈L, R, A, 〉 where

• A ⊆ L, A 6= {}. A is the set of candidate assumptions.

• If α ∈ A, then there is no inference rule of the form
α1, . . . , αn

α
∈ R.

6

• is a mapping from A into L. α is the contrary of α.

In general, a deduction can fail to be an argument, because some of its premises may
be conclusions of inference rules (the framework is not “flat”) or because some of its
premises may not be acceptable as assumptions (they do not belong to A):

Definition 2.4 An argument is a deduction whose premises are all assumptions.

The essence of an argument is its conclusion and its set of assumptions. In our ap-
proach to argumentation, the only way to attack an argument is to attack one of its
assumptions.

Definition 2.5

• An argument a attacks an argument b if and only if a attacks an assumption
in the set of assumptions on which b is based.

• An argument a attacks an assumption α if and only if the conclusion of a is
the contrary α of α.

The notation A ` α encapsulates the essence of an argument, by focusing attention on
its set of assumptions A and its conclusion α. Not only does this notation ignore the
internal structure of the argument, namely the inference rules used to generate it, but
it ignores the fact that there can be several distinct arguments that give rise to the
same A ` α relationship. Nonetheless, we will use the notation A ` α to stand for an
argument, as an abuse of notation, when we want to draw attention to its assumptions
and conclusion, and ignore its internal structure. We will see in section 3 that this
representation of an argument is justified by the fact that only the assumptions and the
conclusion of the argument are relevant to the attack relationship between arguments.

Our focus on the assumptions of arguments motivates the following definition:

Definition 2.6 A set of assumptions A attacks a set of assumptions B if and
only if there exists an argument a based upon a set of assumptions A′ ⊆ A which
attacks an assumption in B.

In our approach to argumentation, the attack relationship depends solely on sets of
assumptions. In some other approaches, however, such as that of Pollock [31] and
Prakken and Sartor [33], an argument can attack another argument by contradicting
its conclusion. We reduce such “rebuttal” attacks to our “undermining” attacks, by
adding explicit assumptions to the premises of inference rules so that undermining the
additional assumption is equivalent to rebutting the conclusion of the inference rule
[24].

7

Example 2.1 Consider the inference rules

q

p
, q, ¬p

These can be used to justify both the argument

q, p

and the attacking argument

¬p

which rebuts the first argument by deriving a conclusion that contradicts the first
argument’s conclusion.

We obtain a similar effect by using instead the inference rules

q, assuming-p

p
, q, ¬p

where ¬p is the contrary of the assumption assuming-p, where assuming-p is a new
sentence in the language of the underlying deductive system. Here the effect of the
rebuttal is obtained by undermining the assumption of the argument

assuming-p, q, p

by means of the counter-argument

¬p.

The attack relationship is the basis of the admissibility semantics for argumentation.
Informally speaking, a belief is admissible if it is the conclusion of an argument based
upon a set of assumptions which can be defended against any attack. The defence set
of assumptions includes the support set as well as possibly other assumptions needed to
counter-attack all attacks by an opponent. In addition, the defence set must not attack
itself. Thus, an admissible set of assumptions has two kinds of assumptions: those that
are necessary to support an argument for a belief, and those that are necessary to defend
the belief against any attack.

Definition 2.7

• A set of assumptions A is admissible if and only if

1. A attacks every set of assumptions that attacks A, and

2. A does not attack itself.

• A belief α is admissible if and only if there exists an argument for α based on
a set of assumptions A0, and A0 is a subset of an admissible set A.

8

3 Simplified frameworks for assumption-based ar-

gumentation

To illustrate our approach, we use simplified assumption-based frameworks of the form
〈L, R, A, 〉where:

• All sentences in L are atoms p, q, . . . or negations of atoms ¬p,¬q, . . . (i.e. L is
a set of literals).

• The set of assumptions A is a subset of the set of all literals that do not occur
as the conclusion of any inference rule in R.

• The contrary of any assumption p is ¬p; the contrary of any assumption ¬p is p.

For notational convenience, we write inference rules

α1, . . . , αn
α

in the linear notation

α ← α1, . . . , αm

We also use the same linear notation for inference rule schemata containing meta-
variables that range over all elements of some domain. These schemata are a compact
representation of the set of all inference rules obtained by instantiating the meta-
variables. For example, p(X) ← q(X), with the domain of natural numbers, stands
for the infinite set of inference rules p(0) ← q(0), p(1) ← q(1), etc.

Note that these simplified frameworks can be viewed as a generalisation of extended
logic programs, which contain both explicit negation and negation as failure. Like
logic programs, they interpret implications as inference rules and prevent contrapositive
reasoning. They also allow only literals as sentences. They obtain the effect of negation
as failure by means of assumptions whose contrary cannot be shown [14, 3].

Example 3.1 Let 〈L, R, A, 〉 be the assumption-based framework:

• L = {p, q, r, s, t,¬p,¬q,¬r,¬s,¬t}

• R consists of

p ← q, r

r ← s

¬q ← t

• A = {q, s, t}

9

• q = ¬q, s = ¬s, t = ¬t.

One argument for the conclusion p is

s, r, q, p

based upon the set of assumptions {q, s}. Another is

t,¬q, s, r, q, p

based upon the set of assumptions {q, s, t}. Notice that both the assumption t and the
application of the inference rule ¬q ← t in the second argument are not relevant to
the deduction of the conclusion of the argument.

Also, notice that, the same abstract representation {q, s} ` p represents several differ-
ent arguments, namely both s, r, q, p and q, s, r, p .

Only the abstract relationship A ` α between the assumptions A and the conclusion α
of an argument is relevant to the attack relationship between arguments. For example,
the argument {t} ` ¬q attacks the argument {q, s} ` p, since its conclusion is the
contrary of an assumption in the support set of {q, s} ` p. Similarly, the argument
{q, s, t} ` ¬q attacks itself.

Note that the set of assumptions {q, s}, supporting the argument {q, s} ` p, is not
admissible, since there is no counter-attack against the attack {t} ` ¬q. However, for
the same reason, both the assumption t and therefore the conclusion ¬q are admissible.

Every assumption-based framework of the simplified form introduced in this section
is equivalent to a framework in which ← is treated as object-level implication and
the comma is treated as object-level conjunction ∧. The equivalent framework has
inference rule schemata for modus ponens and ∧-introduction:

β ← α, α

β

α, β

α ∧ β
.
In addition, wherever the simplified framework has an inference rule

α ← α1, . . . , αm

which is short for

α1, . . . , αn
α

the equivalent framework has the inference rule

10

α ← α1 ∧ . . . ∧ αn

The two frameworks are equivalent in the case where assumptions and conclusions
are restricted to literals, in the sense that they generate the same deductive relation-
ship between assumptions and conclusions of arguments. Both frameworks prevent
contrapositive reasoning with ← .

Example 3.2 Consider the framework in example 3.1. This can be written as an
equivalent framework with inference rules

p ← q ∧ r
,
r ← s

,
¬q ← t

, in addition

to modus ponens and ∧-introduction. The argument

q, s, r, p

in example 3.1 is equivalent to the argument

q, s, r ← s, r, q ∧ r, p ← q ∧ r, p

in this framework. Both arguments have the same abstract form {q, s} ` p.

4 Tight arguments

The admissibility semantics is a semantics in the sense that it is a non-constructive
specification of admissibility. A practical proof procedure, however, needs to be both
constructive and efficient.

A major source of the non-constructivity and inefficiency of the specification is the
monotonicity of deductive systems. Monotonicity has the consequence that for every
superset A′ of the set of assumptions A that supports an argument a attacking another
argument b, there exists an argument a′ supported by A′ that also attacks b. Thus, in
general, there can be infinitely many arguments against another argument b, differing
only in the superset of assumptions A′ on which those arguments are based. All of
these arguments need to be counter-attacked, to defend b.

Taken literally, therefore, the specification of admissibility can require the proponent
to counter-attack infinitely many attacks by the opponent. Moreover, for each such
attack, the proponent may need to search among infinitely many candidate counter-
attacks to find one that is successful.

The problem stems from our definition of deduction, which suggests that arguments
are constructed by reasoning forwards from assumptions to conclusions. Forward rea-
soning makes it hard to ensure that inference steps and assumptions that are used early
in an argument will be relevant to the final conclusion of the argument. By compar-
ison, backward reasoning from conclusions to assumptions automatically restricts the

11

search for arguments to those whose individual inference steps are all relevant to the
conclusion.

Perhaps the most natural way to represent the links between the assumptions and the
conclusion of an argument is in the form of a proof tree: the root of the tree is labelled
by the conclusion and the terminal nodes are labelled by the assumptions supporting
the argument. For every non-terminal node in the tree, there is an inference rule
whose conclusion matches the sentence labelling the node. The children of the node
are labelled by the premises of the inference rule. Each sentence in such a proof tree
is relevant to the argument, either because it is the conclusion itself, or because it is a
premise of an inference rule whose conclusion is relevant.

Backward reasoning can be seen as generating such proof trees top-down, from the
root to the terminal nodes. A backward argument is a sequence of frontiers S1, . . . , Sm
of the proof tree. The first step S1 represents the root of the proof tree, which is the
conclusion of the argument. The transition from Si to Si+1 represents the selection
of a node in Si, applying an inference rule backward to the sentence that labels the
selected node, replacing the selected node by all of its children, and obtaining the new
frontier Si+1.

The individual steps Si in a backward deduction can be represented by multi-sets, in
which the same sentence can have several occurrences, if it is generated more than
once as a premise of different inference steps. 2 We could replace multi-sets by sets,
but this would implicitly force proof procedures always to check whether a newly
introduced premise is already duplicated in Si. This check can increase efficiency in
cases where such duplications occur frequently, but it can decrease efficiency in cases
where duplications occur only infrequently.

Backward arguments are a generalisation of SLD resolution, which is the basis of proof
procedures for logic programming. As in SLD, if there is a backward argument using
one strategy for selecting occurrences of sentences in Si, then there is a backward
argument using any other selection strategy. Thus, different selection strategies are
simply different but equivalent ways of generating the same implicit proof tree. The
selection strategy for backward arguments can be formalised by means of a selection
function, as in the formalisation of SLD. 3

Definition 4.1 Given a selection function, a backward argument of a conclusion α
based on (or supported by) a set of assumptions A is a sequence of multi-sets S1, . . . , Sm,
where S1 = {α}, Sm = A, and for every 1 ≤ i < m, where σ is the selected sentence
occurrence in Si:

2Multi-sets of sentences are equivalent to nodes labelled by sentences. The fact that a sentence
can have several occurrences in a multi-set is equivalent to the fact that several nodes in a proof tree
can be labelled by the same sentence.

3A selection function, in this context, takes as input a sequence of multi-sets Si and returns as
output a sentence occurrence in Si.

12

1. If σ is a non-assumption sentence then Si+1 = Si − {σ} ∪ S for some inference

rule of the form
S

σ
∈ R. 4

2. If σ is an assumption then Si+1 = Si.
5

The multi-sets Si are called steps of the backward argument.

Terminology 4.1 To more clearly distinguish between ordinary arguments, as defined
in section 2, and backward arguments as defined here, we also call ordinary arguments
forward arguments.

There exists a forward argument for a conclusion α supported by a set of assumptions
A if and only if there exists a backward argument for α from a subset of A:

Theorem 4.1

1. For every backward argument of a conclusion α supported by a set of assumptions
A there exists a forward argument of α supported by A.

2. For every forward argument for a conclusion α supported by a set of assump-
tions A and for every selection function, there exists a backward argument of α
supported by some subset A′ ⊆ A.

The proof of this theorem and of all other results in the paper is given in the appendix.

Example 4.1 Let 〈L, R, A, 〉 be the assumption-based framework whereR consists
of

u ← p, s

p ← q, r

r ← s

¬q ← t

and A = {q, s, t}. A backward argument for u supported by {q, s} is (selected sentences
are underlined):

{u}, {p, s}, {q, r, s}, {q, r, s}, {q, s, s}, {q, s, s}, {q, s, s}

A corresponding forward argument, supported by the same set of assumptions, is

s, r, q, p, u.

4We use the same symbols for multi-set membership, union, intersection and subtraction as we use
for ordinary sets.

5Note that we need to restrict the selection function so that if σ is selected in Si then it will not
be selected again in any later Sj , j > i.

13

Another forward argument for u, supported by the larger set of assumptions {q, s, t},
is

s, r, t, q, p, u.

There is no backward argument supported by {q, s, t}.

Note that every initial fragment of a forward argument is an argument whose con-
clusion is the last sentence of the fragment). By contrast, an initial fragment of a
backward argument is only a potential argument, in that the last step of the fragment
typically contains premises that are not assumptions. A potential argument might not
lead to a full argument, if it contains premises that can not be reduced to assumptions.
For example, given the assumption-based framework with inference rules

p ← q, r

and assumptions {q},
{p}, {q, r}

is a potential argument for p, supported by the set of premises {q, r}. This potential
argument is not a full argument since r is not an assumption. Moreover, this argument
cannot be extended to a full argument, since r cannot be reduced to assumptions. Note
that the proof procedures presented in sections 6 and 7 rely upon the construction of
potential, rather than full, arguments.

Terminology 4.2 Because all steps in a backward argument are relevant to the con-
clusion by construction, we also call backward arguments tight arguments.

To show that a set of assumptions A is admissible, it suffices to consider only tight
attacks against A and tight counter-attacks supported by assumptions in A:

Theorem 4.2 A set of assumptions A is admissible if and only if

1. for every tight argument a that attacks A there exists a tight argument supported
by A′ ⊆ A that counter-attacks a, and

2. no A′ ⊆ A supports a tight argument that attacks an assumption in A.

This theorem is the basis of the abstract dialectic proof procedure in the next section.
To exploit the theorem for this purpose, we need to show how admissible sets of as-
sumptions can be generated incrementally, in defence of a given, desired conclusion.
The proof procedure, which does this, can be seen as generating a winning strategy
for a proponent to win a dispute against an ideal opponent. The proponent starts by
putting forward an initial, tight argument for the desired conclusion, and then the
proponent and the opponent alternate in attacking each other’s previously presented
arguments. The proponent wins if the opponent does not have an argument against
which the proponent has no defence.

14

Terminology 4.3 In the remainder of the paper, we will limit our attention to tight
arguments and refer to them simply as arguments, unless we need to emphasise their
tightness.

5 Abstract dispute trees

In this section we represent the incremental construction of an admissible set of as-
sumptions in defence of a given, desired conclusion by an abstract dispute tree, whose
nodes are labelled 6 by arguments. Every node is assigned the status of proponent node
or opponent node, depending upon whether the argument at that node is put forward
by the proponent or by the opponent.

Each branch of the tree represents a winning dispute for the proponent. The root
of the tree, at which the proponent puts forward an initial argument, is the starting
point of the dispute. (The argument at) every opponent node in the branch attacks
(the argument at) the immediately preceding proponent node, and similarly every
proponent node counter-attacks the immediately preceding opponent node.

A branch may be finite or infinite. A finite branch represents a winning dispute that
ends with an argument by the proponent that the opponent is unable to attack. An
infinite branch represents a winning dispute in which the proponent counter-attacks
every attack of the opponent, ad infinitum.

A tree as a whole represents a winning argumentation strategy for the proponent. For
every proponent node, there is a set (possibly empty) of children, which are opponent
nodes labelled by all the attacks against the proponent node. For every such attacking,
opponent node, there exists a single child, which is a proponent node, labelled by a
single counter-attack against the opponent node.

Thus, an abstract dispute tree is an incremental construction, starting from an initial
argument in favour of a given, desired conclusion, of a collection of proponent arguments
that together counter-attack every possible attacking argument that might be put
forward by the opponent.

An abstract dispute tree is an abstraction of a winning strategy for a dispute, because
it does not show the construction of arguments and counter-arguments. We will show
how this is done, by applying inference rules backwards, in the next section.

An abstract dispute tree is an abstraction of a winning strategy also because, although
it contains all possible attacks by the opponent, it contains only one successful counter-
attack by the proponent for each such attack. The tree does not show the search for
counter-attacks.

An abstract dispute tree can be viewed as an and-tree (“and” because it includes all
attacks against all proponent nodes in the tree). The search space can be viewed as

6We distinguish between nodes and their labels, because the same argument can label different
nodes.

15

an and-or-tree (”or” because it includes all the alternative ways of trying to counter-
attack the opponent’s attacks). To obtain a proof procedure, we need to specify
how to generate an abstract dispute tree, which is equivalent to specifying a strategy
for searching the and-or tree. Many such search strategies are possible, ranging from
depth-first to breadth-first, including everything in between.

Definition 5.1 An abstract dispute tree for an initial argument a is a (possibly
infinite) tree T such that

1. Every node of T is labelled by an argument and is assigned the status of pro-
ponent node or opponent node, but not both.

2. The root is a proponent node labelled by a.

3. For every proponent node N labelled by an argument b, and for every argument
c that attacks b, there exists a child of N , which is an opponent node labelled by
c.

4. For every opponent node N labelled by an argument b, there exists exactly one
child of N which is a proponent node labelled by an argument which attacks
some assumption α in the set supporting b. α is said to be the culprit in b.

5. There are no other nodes in T except those given by 1-4 above.

The set of all assumptions belonging to the proponent nodes in T is called the defence
set of T .

In the remainder of this section, we will refer to abstract dispute trees simply as ”dis-
pute trees”. However, in the next section, where we introduce the notion of “concrete
dispute tree”, we will use the qualifications “abstract” and concrete” when we need to
distinguish between them.

Note that, in 3 above, for every proponent node N labelled by an argument b, if there
are no attacks against b, then N is a terminal node. In particular, N is a terminal
node if the set of assumptions supporting b is empty.

Example 5.1 Consider the assumption-based framework 〈L, R, A, 〉 with R con-
sisting of:

¬s ← q

¬q ← r, s

¬q ← u, v

¬r
¬u

16

proponent: {q} ` ¬s

opponent: {r, s} ` ¬q

proponent: {} ` ¬r

Figure 1: Abstract dispute tree for {q} ` ¬s in example 5.1.

where A = {q, r, s, u}, L = A ∪ {¬s,¬q,¬r,¬u}, α = ¬α for all α ∈ A.

Suppose the problem is to show that ¬s is an admissible belief in the framework. To
do so, we construct a dispute tree (given in figure 1) whose root is a proponent node
labelled by the argument {q} ` ¬s. The root has a single child, which is an opponent
node, labelled by the argument {r, s} ` ¬q. This opponent node also has a single
child, which is a proponent node, labelled by the argument {} ` ¬r, which attacks the
culprit r in {r, s} ` ¬q. This proponent node is also a terminal node, because there is
no attack against an empty (support) set.

Note that s is another possible choice of culprit in {r, s}, and this is attacked by {q} `
¬s. Therefore, there is an infinite dispute tree in which the proponent {q} ` ¬s and
the opponent {r, s} ` ¬q alternate in attacking one another. This infinite dispute tree
is another winning strategy for the proponent, because the proponent has a counter-
attack for every attack of the opponent.

The definition of dispute tree incorporates the requirement that the proponent must
counter-attack every attack, but it does not incorporate the further requirement that
the proponent does not attack itself. This further requirement is incorporated in the
definition of admissible dispute tree:

Definition 5.2 An abstract dispute tree T is admissible if and only if no culprit in
the argument of an opponent node belongs to the defence set of T .

Note that the tree in figure 1 is admissible. Note also that the definition of admissibility
does not require that proponent nodes and opponent nodes have no assumptions in
common. This is because the opponent can use the proponent’s own assumptions
against the proponent. The opponent can also use assumptions that are neutral, in the
sense that they are neither in the defence set of the proponent nor in the culprit set of
the opponent.

If the opponent can attack the proponent using only the proponent’s own assump-
tions, then the proponent looses the dispute, because then the proponent attacks itself.

17

However, to win the dispute, the proponent needs to identify and counter-attack in
every attack of the opponent some culprit that does not belong to the proponent’s own
defence.

The admissibility requirement does not necessarily imply that a proof procedure that
searches for admissible dispute trees needs to incorporate an explicit admissibility
check. As we will see in theorem 5.2, finite dispute trees are guaranteed to be ad-
missible even without such a check.

The first part of the following theorem is a soundness result, which guarantees that
the defence set of an admissible dispute tree is admissible. The second part is a strong
form of completeness, which guarantees that, for any initial argument a whose support
set is contained in an admissible set A of assumptions, there exists a dispute tree
for a whose defence set A′ is contained in A. Whereas the admissible set A may
contain assumptions that are irrelevant to the defence of a, A′ contains only relevant
assumptions, associated with tight arguments.

Theorem 5.1

i) If T is an admissible abstract dispute tree for an argument a and if A is the
defence set of T ,

then A is an admissible set of assumptions.

ii) If a is an argument supported by a set of assumptions A0 and A is an admissible
set of assumptions such that A0 ⊆ A,

then there exists an admissible dispute tree for a with defence set A′ and A0 ⊆
A′ ⊆ A and A′ is admissible.

Admissible dispute trees bring us closer to a proof procedure, because they show how to
extend an initial set of assumptions incrementally to an admissible set of assumptions.
However, they are still non-constructive, because they can be both infinite in breadth
and infinite in depth: They can be infinite in breadth, because there can be infinitely
many tight attacks against a single assumption. They can be infinite in depth, because
there can be infinitely long branches of alternating attack and counter-attacks. The
following examples illustrate these two possibilities.

Example 5.2 Consider the assumption-based framework with inference rules consist-
ing of all instances over the infinite domain

Dom = {succi(0)|i ≥ 0} = {0, succ(0), succ(succ(0)) . . .}

of the inference rule schemata

18

p ← q

¬q ← r(X), s(X)

r(succ(X)) ← r(X)

r(0)

¬s(X)

with set of assumptions {q} ∪ {s(X)|X ∈ Dom}. There are infinitely many (finite)
attacks against the argument {q} ` p, i.e.

{s(0)} ` ¬q
{s(succ(0))} ` ¬q
{s(succ(succ(0)))} ` ¬q
etc.

Therefore, every dispute tree for {q} ` p is infinite in width. Note that every argument
of the form {s(succi(0))} ` ¬q is counter-attacked by an argument of the form {} `
¬s(succi(0)) and thus there exists an admissible dispute tree for {q} ` p with defence
set {q}. Therefore, by theorem 5.1, part (i), {q} is admissible, and as a consequence
the belief p is admissible.

Example 5.3 Consider the assumption-based framework with inference rules consist-
ing of all instances over the infinite domain Dom in example 5.2 of the inference rule
schemata

¬p(X) ← q(succ(X))

¬q(X) ← p(succ(X))

and set of assumptions {q(X)|X ∈ Dom} ∪ {p(X)|X ∈ Dom}. Consider the argu-
ment {q(succ(0))} ` ¬p(0). There exists an admissible dispute tree for this argument,
which consists of a single infinite branch of alternating proponent and opponent nodes.
For every proponent node labelled by an argument of the form {q(succ2i+1(0))} `
¬p(succ2i(0)), there is a single child node, which is an opponent node labelled by
{p(succ2i+2(0))} ` ¬q(succ2i+1(0)), Similarly, for every opponent node labelled by
{p(succ2i+2(0))} ` ¬q(succ2i+1(0)), there is a single child node, which is a propo-
nent node labelled by {q(succ2i+3(0))} ` ¬p(succ2i+2(0)). The defence set

{q(succ2i+1(0))|i ≥ 0}
is admissible.

In the special case of dispute trees that are finite in depth, the admissibility check of
definition 5.2 is unnecessary 7:

7However, as we will see later in section 7, although an explicit admissibility check is unnecessary for
finite trees, it can none-the-less decrease the size of dispute trees and therefore increase the efficiency
of proof procedures that search for them.

19

Theorem 5.2 Any dispute tree that has no infinitely long branches is an admissible
dispute tree.

For a large class of frameworks, generalising the class of stratified logic programs [1],
all branches of all abstract dispute trees are finite in depth.

Definition 5.3 A framework is stratified if and only if there exists no infinite se-
quence of arguments a1, . . . , an, . . ., where for every n ≥ 1, an+1 attacks an.

The assumption-based framework of example 5.1 is stratified (and the dispute tree in
figure 1 is indeed finite). However, the framework of example 5.3 is not stratified. An
even simpler example of a non-stratified assumption-based framework is:

Example 5.4 The assumption-based framework with inference rules

¬p ← q

¬q ← p

and set of assumptions {p, q} is not stratified, because there exists an infinite sequence
of arguments of the form:

{q} ` ¬p, {p} ` ¬q, {q} ` ¬p,

There exists an admissible dispute tree for ¬p, but this is infinite in depth.

6 Concrete dispute trees

In this section, we expand abstract dispute trees, to incorporate the incremental con-
struction of (tight) arguments. We call such expanded dispute trees concrete dispute
trees. To minimise the use of new terminology, when there is no possibility of confu-
sion, we use the same terminology, dispute tree, for both abstract and concrete dispute
trees.

Whereas in abstract dispute trees individual nodes are labelled by complete arguments,
in concrete dispute trees they are labelled by steps of potential arguments.

Concrete dispute trees are still abstract in the sense that they show only the successful
construction of a counter-attacking argument for every potentially attacking argument
of the opponent, but they do not show the search for counter-attacks.

Similarly to the branches of abstract dispute trees, every branch of a concrete dispute
tree represents a sequence of alternating attacks by the opponent and counter-attacks
by the proponent. However, these attacks and counter-attacks are against assumptions
in potential, rather than full, arguments. A concrete dispute tree represents a winning
strategy, in which the proponent counter-attacks with a full attack every potential
attack by the opponent.

20

In concrete dispute trees, there is an important difference between the potential argu-
ments of the proponent and of the opponent. For the proponent, all potential arguments
must eventually be completed. However, for the opponent, potential arguments can
be presented only partially, up to the point where they fail. As we will see later in
this section, there are two ways such a potential argument can fail - either because
some non-assumption sentence is selected and can not be proved (namely there is
no complete argument extending the potential argument); or because some assump-
tion is selected as culprit of the incomplete, potential argument and is defeated by a
counter-argument of the proponent (in which case it doesn’t matter whether there is
a complete argument extending the potential argument).

The partial presentation and counter-attacking of the opponent’s potential arguments
has both a good point and a bad point. The good point, already illustrated in sec-
tion 1, is that, when a potential argument is successfully counter-attacked, all ways of
completing the potential argument are also counter-attacked. So one counter-attack by
the proponent can successfully defeat many complete attacks by the opponent, without
the need to generate the complete attacks in full. The bad point, illustrated in ex-
ample 6.1 below, is that some potential arguments can not be extended into complete
arguments. Counter-attacking such unextendable potential arguments is a waste of
time.

There is also an important difference in the role of the selection function for proponent
and opponent. For both of them, when the selection function chooses a non-assumption
sentence, it does so to expand the potential argument constructed so far into a more
complete argument. The order in which such sentences are selected does not matter.

Similarly, when the selection function selects a proponent’s assumption, it does so to
determine an order in which attacks against the proponent’s argument are considered.
Since all such attacks must be counter-attacked, it does not matter in which order they
are selected.

However, when the selection function selects an opponent’s assumption, the assumption
becomes a potential culprit for counter-attack by the proponent. Since the dispute tree
contains only one counter-attack against one culprit in every attack by the opponent,
either the selected assumption is ignored (if it is not the actual culprit) or else it is
counter-attacked by the proponent. Thus the selection of the opponent’s assumptions
determines an order in which the search for counter-attacks is conducted.

Definition 6.1 Given a selection function, a concrete dispute tree for a sentence
α is a (possibly infinite) tree T such that

1. Every node of T is labelled by a multi-set of sentences (representing a potential
argument) and is assigned the status of proponent node or opponent node,
but not both.

2. The root of T is a proponent node labelled by {α}.

21

3. Let N be a proponent node labelled by P . If P is empty, then N is a terminal
node. Otherwise, P is not empty, and there exists some selected occurrence of a
sentence δ in P .

(i) If δ is an assumption, then there exists one child of N , which is an opponent
node labelled by {δ} and a second child of N that is a proponent node
labelled by P − {δ} (to consider all attacks against P).

(ii) If δ is not an assumption, then there exists some inference rule
S

δ
∈ R and

there exists exactly one child of N , which is a proponent node labelled by
P − {δ} ∪ S.

4. Let N be an opponent node labelled by O. Then O is not empty, and there exists
some selected occurrence of a sentence σ in O.

(i) If σ is an assumption, then

(a) either σ is ignored and there exists exactly one child of N , which is an
opponent node labelled by O − {σ},

(b) or σ is a culprit, and there exists exactly one child of N , which is a
proponent node labelled by {σ}.

(ii) If σ is not an assumption and there exists no inference rule
S

σ
∈ R, then

N is a terminal node (and the potential attack O fails of its own accord).

Otherwise, for every
S

σ
∈ R, there exists a child of N , which is an opponent

node labelled by the multi-set of sentences O − {σ} ∪ S.

5. There is no infinite sequence of consecutive nodes all of which are proponent
nodes.

6. There are no other nodes in T except those given by 1-4 above.

The set of all assumptions belonging to the proponent nodes in T is called the defence
set of T .

Definition 6.2 A concrete dispute tree T for a sentence α is admissible if and only
if no culprit at an opponent node belongs to the defence set of T .

Example 6.1 Consider the assumption-based framework of example 5.1, with infer-
ence rules:

¬s ← q

¬q ← r, s

¬q ← u, v

¬r
¬u

22

������

aaaaaa

proponent: {¬s}

proponent: {q}

opponent: {¬q}

opponent: {r, s}

proponent: {¬r} proponent: {¬u}

opponent: {u, v}

proponent: {}proponent: {}

Figure 2: Concrete dispute tree for ¬s in example 6.1.

and set of assumptions {q, r, s, u}. Again, the problem is to show that ¬s is admissible.
A concrete dispute tree for ¬s is given in figure 2. Notice that the concrete dispute
tree contains a branch that does not correspond to any branch in the abstract dispute
tree of figure 1. This is because the branch unnecessarily contains a defence against
the potential attack {u, v}, which cannot be developed into a complete attack.

The correspondence between abstract and concrete dispute trees is most obvious in
the special case of selection functions that always choose non-assumption sentences in
preference to assumptions. We call such selection functions patient, because they wait
until a complete argument has been constructed before beginning to attack it.

For every admissible concrete dispute tree constructed by means of a patient selection
function, there exists a corresponding admissible abstract dispute tree with the same
defence set. Conversely, for every admissible abstract dispute tree and for every patient
selection function, there exists a corresponding admissible concrete dispute tree with
the same defence set. However, in addition to nodes that simply add concrete inference
steps, a concrete dispute tree may contain extra branches that represent potential
arguments by the opponent that fail, not because they are counter-attacked by the
proponent, but because they contain some non-assumption sentence that cannot be
proved (as we have seen in example 6.1).

For example, given the assumption-based framework with the single inference rule
p ← p and set of assumptions {¬p}, there exists an admissible infinite concrete
dispute tree for the sentence ¬p, as shown in figure 3. The corresponding abstract
dispute tree contains only the root node {} ` ¬p.

23

...

proponent: {¬ p}

opponent: {p}

opponent: {p}

opponent: {p}

Figure 3: Concrete dispute tree for ¬p for the assumption-based framework with p ←
p.

However, whether the selection function is patient or not, a concrete dispute tree must
expand all of the proponent’s potential arguments into complete arguments. It is for
this reason that a concrete dispute tree may not contain any infinite sequences of
consecutive inference steps by the proponent (case 5).

For example, given the assumption-based framework with the single inference rule
p ← p and set of assumptions {¬p}, there exists no dispute tree for the sentence p.

As in the case of abstract dispute trees, to obtain a complete proof procedure, we
need to specify a strategy for the proponent to find a counter-attack for each of the
opponent’s attacks. One part of this strategy is to find a culprit in every attack. The
other part is to find a way of attacking the culprit.

Finding a culprit is dealt with in case 4(i) of definition 6.1, by choosing whether to
ignore or to counter-attack the selected assumption in an opponent node. Finding a
way of attacking the culprit is dealt with by the search strategy.

Our definition leaves the search strategy undetermined. As a consequence, the defi-
nition can be implemented, directly as it stands, in a non-deterministic programming
language, such as Prolog. The use of Prolog, of course, means that the search is depth-
first, but controlled by the Prolog compiler or interpreter, rather than by the Prolog
implementation of the definition.

The following theorem expresses the relationship between abstract and concrete dispute
trees.

24

Theorem 6.1

i) For every admissible abstract dispute tree T for a conclusion α, and for every
selection function, there exists an admissible concrete dispute tree T ′ for α such
that the defence set of T ′ is a subset of the defence set of T .

ii) For every admissible concrete dispute tree T ′ for a sentence α, there exists an
admissible abstract dispute tree T for a tight argument a of the conclusion α
such that the defence set of T is a subset of the defence set of T ′.

The following corollary is a direct consequence of this theorem and theorem 5.1 for
abstract dispute trees:

Corollary 6.1

i) If T is an admissible concrete dispute tree for a sentence α and A is the defence
set of T , then A is an admissible set of assumptions.

ii) If there is an argument for a conclusion α supported by a set of assumptions
A0 and A is an admissible set of assumptions such that A0 ⊆ A, then for every
selection function there exists an admissible concrete dispute tree for α with
defence set A′ and A0 ⊆ A′ ⊆ A and A′ is admissible.

As is the case with abstract dispute trees, an explicit admissibility check is unnecessary
for concrete dispute trees that are finite in depth:

Theorem 6.2 Any concrete dispute tree that has no infinitely long branches is an
admissible concrete dispute tree.

For a large class of frameworks, generalising the class of acyclic logic programs [2], all
branches of all concrete dispute trees are finite.

Definition 6.3 A framework is acyclic if there is a well-ordering of all sentences in
the language of the framework such that, whenever a sentence belongs to the premise
of an inference rule, then the sentence is lower in the ordering than the conclusion of
the inference rule.

The assumption-based framework of example 5.1 is acyclic (and the tree in figure 1 is
indeed finite). The following is an example of a non-acyclic assumption-based frame-
work:

Example 6.2 Any assumption-based framework with the inference rule

p ← p

is not acyclic.

25

7 Dispute Derivations

Dispute derivations are to dispute trees what backward arguments are to proof trees. In
both cases, the top-down generation of a tree is represented by a sequence of frontiers of
the tree. Dispute derivations generalise the abductive derivations for logic programming
of [14].

The frontier of a dispute tree is a set of proponent and opponent nodes labelled by
multi-sets of sentences, representing steps of potential arguments. A dispute derivation
represents the current state of this frontier, together with the set of defence assumptions
Ai and culprits Ci generated so far, as a quadruple: 〈Pi,Oi, Ai, Ci, 〉. The sets Ai and
Ci are used to filter arguments, as we will explain later.

Oi is a multi-set corresponding directly to the set of opponent nodes in the frontier - i.e.
its members are multi-sets of sentences representing the state of all of the opponent’s
potential arguments against the proponent.

The multi-set Pi is a flattened version of the proponent’s potential arguments - i.e. its
members are occurrences of sentences belonging to any of the proponent’s potential
arguments.

The first step of a dispute derivation represents the root of the dispute tree. Each
transition in the dispute derivation represents the selection of a node in the frontier of
the dispute tree and its replacement by its children. Any node in the frontier can be
selected for this purpose. Different selections give rise to different derivations, but do
not affect completeness, because they simply represent different ways of generating the
same dispute tree.

The selection of nodes in the dispute tree is different from the search for counter-attacks
against attacks. The search for counter-attacks requires a search strategy, which turns
the definition of derivation into a proof procedure for finding derivations. 8

Because our ultimate goal is to develop effective proof procedures, we restrict the
definition of derivation to derivations of finite length. However, as we will see later,
because of filtering by defences, the corresponding dispute trees can sometimes be
infinite.

The set of defence assumptions Ai is used both to filter proponent assumptions in Pi,
so they are not considered redundantly, more than once, and to filter potential culprit
assumptions in Oi, so that the final defence set A constructed by the derivation does
not attack itself. The set of culprits Ci is similarly used both to filter potential culprit
assumptions in Oi, so they are not counter-attacked redundantly more than once, and
to filter proponent assumptions in Pi, so that A does not attack itself.

8Here the selection function is an extension of the selection function for concrete dispute trees.
In addition to selecting sentence occurrences in potential arguments, here the selection function also
decides whether to focus attention on proponent assumptions in Pi or on potential opponent arguments
in Oi.

26

Definition 7.1 Given a selection function, a dispute derivation of a defence set
A for a sentence α is a finite sequence of quadruples
〈P0,O0, A0, C0〉, . . . , 〈Pi,Oi, Ai, Ci〉,, 〈Pn,On, An, Cn〉

where
P0 = {α},
A0 = A ∩ {α},
O0 = C0 = {},
Pn = On = {},
A = An, and
for every 0 ≤ i < n, only one σ in Pi or one S in Oi is selected, and:

1. If σ ∈ Pi is selected then

(i) if σ is an assumption, then

Pi+1 = Pi − {σ},
Ai+1 = Ai,

Ci+1 = Ci,

Oi+1 = Oi ∪ {{σ}};

(ii) if σ is not an assumption, then there exists some inference rule
R

σ
∈ R and

Ci ∩R = {} (filtering of defence assumptions by culprits),

Pi+1 = Pi − {σ} ∪ (R−Ai) (filtering of defence assumptions by defences),

Ai+1 = Ai ∪ (A ∩R),

Ci+1 = Ci,

Oi+1 = Oi.

2. If S is selected in Oi and σ is selected in S then

(i) if σ is an assumption, then

(a) either σ is ignored, i.e.
Oi+1 = Oi − {S} ∪ {S − {σ}},
Pi+1 = Pi,
Ai+1 = Ai,
Ci+1 = Ci;

(b) or σ 6∈ Ai (filtering of culprits by defences) and
Oi+1 = Oi − {S},
Pi+1 = Pi ∪ {σ},
Ai+1 = Ai,
Ci+1 = Ci ∪ {σ};

27

(ii) if σ is not an assumption, then

Oi+1 = Oi − {S} ∪ {S − {σ} ∪ R |
R

σ
∈ R, andR ∩ Ci = {}} (filtering of

culprits by culprits)

Pi+1 = Pi,
Ai+1 = Ai,

Ci+1 = Ci.

The filtering of defence assumptions by defences can turn an infinite dispute tree into
a finite derivation, as illustrated by the following example.

Example 7.1 Consider the assumption-based framework of example 5.4 with inference
rules

¬p ← q

¬q ← p

and set of assumptions {p, q}. Consider the sentence p.

There exists a five-step derivation for p of the defence set {p} (with the output of the
selection function underlined):

〈{p}, {}, {p}, {}〉,
〈{}, {{¬p}}, {p}, {}〉,
〈{}, {{q}}, {p}, {}〉,
〈{¬q}, {}, {p}, {q}〉,
〈{}, {}, {p}, {q}〉 (filtering of defence assumptions by defence assumption p)

Without such filtering of and by defence assumptions, it would be necessary to gener-
ate an infinite sequence of alternating proponent arguments {p} ` ¬q and opponent
arguments {q} ` ¬p, and the derivation would never terminate. Thus, filtering defence
assumptions allows finite derivations to be constructed in some cases where the corre-
sponding dispute tree is infinite. Example 5.3, however, is a case of an infinite dispute
tree that does not have a corresponding finite dispute derivation.

Because filtering of defence assumptions can turn an infinite dispute tree into a finite
derivation, filtering of culprits is necessary for admissibility:

Example 7.2 Consider the assumption-based framework with inference rules

r ← p, q

¬p ← q

¬q ← p

28

and set of assumptions {p, q}. Consider now the sentence r.

With filtering of defence assumptions, but without filtering of culprits by defences,
there would exist a derivation:

〈{r}, {}, {}, {}〉,
〈{p, q}, {}, {p, q}, {}〉,
〈{q}, {{¬p}}, {p, q}, {}〉,
〈{q}, {{q}}, {p, q}, {}〉,
〈{q,¬q}, {}, {p, q}, {q}〉 (no filtering of culprit q),
〈{q}, {}, {p, q}, {q}〉 (filtering of defence assumption p),
〈{}, {{¬q}}, {p, q}, {q}〉,
〈{}, {{p}}, {p, q}, {q}〉 (no filtering of culprit p),
〈{¬p}, {}, {p, q}, {q, p}〉,
〈{}, {}, {p, q}, {q, p}〉 (filtering of defence assumption q).

This derivation corresponds to an infinite dispute tree that is not admissible.

Filtering of culprits by defences can also improve efficiency by turning an infinitely
failed attempt to generate a derivation into a finite failure.

Example 7.3 Consider the assumption-based framework with only one inference rule
p ← ¬p and only one assumption ¬p. Consider the sentence ¬p.

The only partial derivation that can be generated by any proof procedure terminates
in failure after only two steps:

〈{¬p}, {}, {¬ p}, {}〉,
〈{}, {{p}}, {¬p}, {}〉,
〈{}, {{¬p}}, {¬p}, {}〉 (filtering of potential culprit ¬p by defence assumption ¬p).

Without filtering of culprits by defences, a proof procedure would attempt to gener-
ate an infinite sequence of alternating defending arguments {¬p} ` p and attacking
arguments {¬p} ` p and would never terminate.

The defence set derived by a dispute derivation is admissible, because there is a
corresponding admissible dispute tree with the same defence set:

Theorem 7.1 For every dispute derivation of a defence set A for a sentence α, there
exists a (possibly infinite) admissible dispute tree for α with defence set A.

It follows immediately that:

29

Corollary 7.1 For every dispute derivation of a defence set A for a sentence α, the
defence set A is admissible, and there exists some A′ ⊆ A that supports an argument
for α.

Completeness holds for finite derivations, in the sense that for every finite dispute tree
there exists a corresponding finite dispute derivation. However, because of filtering, a
dispute derivation can contain only one way of defending a defence assumption and
only one way of counter-attacking a culprit assumption. But a dispute tree, without
filtering, can have different defences for different occurrences of a defence assumption
and different counter-attacks against different occurrences of the same culprit. It is for
this reason that the defence set of a dispute derivation can be strictly contained in the
defence set of the corresponding dispute tree:

Theorem 7.2 For every finite dispute tree for a sentence α with defence set A, there
exists a dispute derivation for α of a defence set A′ ⊆ A.

8 Algorithmic issues

The definition of dispute derivation specifies the structure of a winning argumenta-
tion strategy. However, it does not determine the search strategy for finding winning
strategies. In this respect, it resembles a non-deterministic, rather than a determin-
istic program. In fact, the definition can be rewritten directly as a non-deterministic
program.

The non-deterministic program below is expressed in procedural form, but could also
be expressed declaratively as a Prolog program, in which case it would be virtually
identical to its definition. In fact, we have implemented the definition as a Prolog pro-
gram, to test it on a variety of simple examples. The implementation inherits Prolog’s
depth-first search strategy for finding defences. It also inherits Prolog’s unification for
matching sentences with the conclusions of inference rule schemata.

In the procedural version of the program below, we represent destructive assignment
by :=.

Algorithm 8.1
To find a defence set A for a sentence α, let

P := {α},
O := {},
A := A ∩ {α},
C := {}.

While P 6= {} and O 6= {}, select σ ∈ P or S ∈ O.

1. If σ ∈ P is selected, then

30

(i) if σ is an assumption, then

P := P − {σ},
O := O ∪ {{σ}};

(ii) if σ is not an assumption,

then find some inference rule
R

σ
∈ R such that C ∩R = {}.

P := P − {σ} ∪ (R− A),

A := A ∪ (A ∩R).

2. If S ∈ O is selected and σ ∈ S is selected in S, then

(i) if σ is an assumption,

then choose one of the following two alternative options:

(a) either σ is ignored, i.e.

O := O − {S} ∪ {S − {σ}};
(b) or σ 6∈ A and

O := O − {S},
P := P ∪ {σ},
C := C ∪ {σ};

(ii) if σ is not an assumption, then

O := O − {S} ∪ {S − {σ} ∪R | R
σ
∈ R andR ∩ Ci = {}}.

Return A.

Because our Prolog implementation inherits Prolog’s unification, it can represent in-
ference rule schemata finitely. As a result, it is possible to represent infinitely many
potential attacks by a single schematic potential attack, as illustrated by the following
example.

Example 8.1 Consider the sentence ¬p and the assumption-based framework with
inference rules:

p ← q(X), ¬r(succ(X))

q(0)

r(succ(0))

r(succ(X)) ← r(X)

and A = {¬p} ∪ {¬r(X)|X ∈ {succi(0)|i ≥ 0}}.

The only way to attack the sentence is by using instances of the inference rule schema
p ← q(X), ¬ r(succ(X)). Without unification, a proof procedure would have to

31

consider separately the infinitely many potential attacks {q(succi(0)),¬ r(succi+1(0))},
where i ≥ 0, associated with the infinitely many instances of the inference rule schema.

However, by using unification instead of instantiation, it is possible to consider instead
only the single schematic potential attack {q(X),¬r(succ(X))}. Then, if the selection
rule chooses q(X) in this schematic potential attack, with unification, only the attack
{¬ r(succ(0))} needs to be considered. This is trivially counter-attacked by the empty
set of assumptions, thus leading to a successful defence for the admissible belief ¬p. The
following trace shows the state of the variables during the execution of algorithm 8.1.

P O A C

{¬p} {} {¬p} {}
{} {{p}} {¬p} {}
{} {{q(X),¬r(succ(X))}} {¬p} {}
{} {{¬r(succ(0))}} {¬p} {}

{r(succ(0))} {} {¬p} {¬r(succ(0))}
{} {} {¬p} {¬r(succ(0))}

The algorithm terminates, returning defence set {¬p}.
Because of unification, the algorithm can also represent infinitely counter-attacks against
infinitely many attacks, as illustrated by the following example.

Example 8.2 Consider again sentence p and the assumption-based framework in ex-
ample 5.2:

p ← q

¬q ← r(X), s(X)

r(succ(X)) ← r(X)

r(0)

¬s(X)

with set of assumptions {q} ∪ {s(X)|X ∈ {succi(0)|i ≥ 0}}.
The following trace shows the state of the variables during the execution of algo-
rithm 8.1.

P O A C

{p} {} {} {}
{q} {} {q} {}
{} {{¬q}} {q} {}
{} {{r(X), s(X)}} {q} {}

{¬s(X)} {} {q} {s(X)}
{} {} {q} {s(X)}

32

The algorithm terminates, returning defence set {q}.

The computational complexity of determining whether a set of assumptions is admissi-
ble has been studied by Dimopoulos, Nebel and Toni [7]. They investigate the concrete
instance of the assumption-based framework for logic programming [14, 10], default
logic [34], autoepistemic logic [27], Theorist [32] and Circumscription [26]. In this pa-
per, because we have restricted ourselves to flat assumption-based frameworks, only
their results for logic programming and default logic are relevant to this paper.

In [7], the problem of determining whether a set of assumptions is admissible has been
shown to be NP-complete for logic programming, and Σp

2-complete for default logic.
These complexity bounds are identical to the ones for the analogous problem under
the more conventional stability semantics for logic programming [16] and default logic
[34]. However, as [7] notes, these worse-case results do not take into account the fact
that reasoning under the admissibility semantics can be much simpler than reasoning
under the stability semantics, due to the “locality” of the former and the “globality”
of the latter.

9 Related work

The proof procedures presented in this paper are based upon the admissibility semantics
for default reasoning and argumentation developed in [9] and extended in [3]. An earlier
version of the top-most level of these proof procedures was presented in [11].

The proof procedures of [11] are expressed in the form of metalogic programs and
are derived from specifications in logic, using logic program transformation techniques
[30]. In applying these techniques, we discovered that their formal character seemed
to obscure the intuitive, dialectic nature of the proof procedures. As a consequence,
we decided to develop the less formal, but more intuitive dispute tree approach in this
paper.

Kakas and Toni [35, 21] also developed argumentation-theoretic proof procedures for
the admissibility semantics and (by suitably varying parameters) for the well-founded
semantics [15], the weak stability semantics [22] and the acceptability semantics [23].
Their proof procedures are explicitly defined only for logic programs, but, as the authors
remark and as this paper shows, they can be generalised to any flat assumption-based
framework.

Although the proof procedures of Kakas and Toni [35, 21] employ a form of argumen-
tation tree, they are, in fact, based on a form of dispute derivation, rather than on
dispute trees as we have defined them. Therefore, although their proof procedures are
related to our dispute derivations, they are not based on dispute trees in our sense.
Moreover, their use of tree terminology arguably obscures the dialectic nature of their
proof procedures.

33

The proof procedures of [11] and [35, 21], like those of this paper, generalise the abduc-
tive proof procedure for logic programming of [14]. The abductive proof procedure uses
recursion to implement a Prolog-like depth-first selection strategy for finding dispute
derivations. It interleaves two types of computation. The first type, called the abduc-
tive phase, corresponds to arguments by the proponent. The second type, called the
consistency phase, corresponds to arguments by the opponent. The argumentation-
theoretic nature of the abductive proof procedure was pointed out in [19, 20] and
developed also by Dung in [10].

Whereas the proof procedures of this paper and of the earlier papers [11] and [35, 21]
are based on the assumption-based framework of [3], the two-party immediate response
disputes (or TPI-disputes) of Vreeswijk and Prakken [37] are based on the abstract
framework of [9]. These TPI disputes are formalised and their efficiency is analysed by
Dunne and Bench-Capon in [13]. TPI-disputes are similar to our dispute derivations,
but differ in their incorporation of a specific, depth-first search strategy for finding
defences.

For this reason, our proof procedures are closer to the argument games of Cayrol,
Doutre and Mengin [5], which similarly focus on the definition of winning argumen-
tation strategy, leaving open the the search strategy for finding them. The argument
games of [5] are based on the dialectic framework of Jakobovitz and Vermeir [18], which
in turn is also based on the abstract framework of [9].

Like us, [5] also present their proof procedures both in the form of trees and in the
form of derivations. In particular, their φ1-proofs are similar to our dispute derivations
(restricted to abstract arguments); and their φ2-winning strategies (extended to the
case involving possibly infinitely many arguments) are similar to our abstract dispute
trees.

The definition of φ1-proof imposes two intuitively appealing restrictions. One is that
the opponent should not put forward an argument if it can be attacked by an ar-
gument already deployed by the proponent. The other is that the proponent should
not reuse an already deployed argument. While these restrictions may be useful in a
setting where arguments are considered only abstractly, they would be very expensive
to implement in a framework, like ours, which requires that concrete arguments be
constructed explicitly.

In our concrete approach, we approximate the restrictions on φ1-proofs, by filtering
with defence and culprit assumptions. In this way, although we can not prevent the
proponent from redeploying some already deployed argument, filtering using defence
assumptions ensures that the proponent does not have to defend the same defence as-
sumption more than once. Filtering using culprit assumptions similarly ensures that
an opponent argument that has already been counter-attacked by some proponent ar-
gument will not be selected for counter-attack again.

34

In addition to this difference between our approach and that of [5], our assumption-
based approach has the following features, which distinguish it from all the abstract
approaches, as we have already remarked earlier in the paper:

• tight arguments are generated by reasoning backwards from conclusions to as-
sumptions,

• partially constructed, potential arguments can be attacked before they are com-
pleted,

• the same counter-argument can be used to attack different arguments sharing the
same assumption.

Our proof procedures implement the credulous, admissibility semantics. However, [37],
[13] and [5] present proof procedures both for the admissibility semantics and for the
sceptical semantics that can be viewed as the intersection of all credulous semantics.
Dung, Mancarella and Toni [12] have shown how any proof procedure for the admis-
sibility semantics can be used for this sceptical semantics. Earlier, Dung [8] showed
that the SLDNF proof procedure for logic programming can be viewed as an argument
game. It can be shown that this argument game is an instance of our finite concrete
dispute trees applied to this sceptical semantics.

10 Conclusions

We have presented three, successive refinements of dialectic proof procedures for the
admissibility semantics of assumption-based frameworks. The proof procedures search
for a winning strategy for a proponent, who argues to establish the admissibility of a
belief, against an opponent, who attacks in every possible way the initial and defending
arguments of the proponent.

The proof procedures are abstract in the sense that they can be defined for any con-
ventional logic formulated as a collection of inference rules. They show, therefore, how
any logic can be extended to a dialectic argumentation system.

The first refinement of the proof procedures is the most abstract, in that it focusses
only on the assumptions and conclusions of arguments and ignores their internal struc-
ture. The second refinement incorporates the internal structure of tight arguments, by
reasoning backwards from conclusions to assumptions.

The first two refinements both represent the proponent’s winning strategy in the form
of a dispute tree. The third refinement represents winning strategies in the form of
dispute derivations, which construct concrete dispute trees by successively expanding
their frontiers. It also incorporates filtering of and by defence and culprit assumptions.

Our proof procedures generalise the abductive proof procedure for logic programming
of [14], which in turn is an extension of Prolog and of the SLDNF proof procedure. On

35

the one hand, they contribute to the special case of logic programming, because they
allow a more general and more flexible way of executing negation as failure. On the
other hand, they also show how any logic can be turned into a logic programming style
language with the potential efficiency of logic programming style proof procedures.

Among the desirable features of our proof procedure are the generality and flexibil-
ity provided by separating out both the search strategy for finding defences and the
selection strategy for deciding what part of a dispute tree to investigate next. This flex-
ibility can be exploited by such heuristics as focussing on subgoals with fewer possible
solutions before subgoals with a greater number of possible solutions.

Our dispute derivations expand the frontiers of concrete dispute trees one step at a
time. It might be useful to investigate other refinements of concrete dispute trees that
expand frontiers several nodes at a time, in parallel.

Our proof procedures can be used for default reasoning, either by using the credulous,
admissibility semantics directly, or by using it as a basis for computing other sceptical
semantics and even certain cases of the stable semantics, as shown for example in [12].

It would be useful to investigate further the applications of our proof procedures in
such areas as legal reasoning and negotiation. The assumption-based nature of our
approach to argumentation might be especially useful for these application because
it shows how a difference of opinion can be reduced to a difference of assumptions.
In particular, the defence and culprit sets generated by our proof procedures can be
understood as identifying the critical differences of opinion on which conflicting beliefs
are based. Moreover, by separating the search space from the search strategy, our
approach might help to identify different ways in which a proponent might be able to
win an argument, while minimising the conflict (culprit set) with the opponent.

Acknowledgements

This research was partially funded by the IST programme of the EC, FET under the
IST-2001-32530 SOCS project, within the Global Computing proactive initiative, and
by the Italian MIUR programme “Rientro dei cervelli”.

References

[1] K.R. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowledge.
In J. Minker, editor, Foundations of deductive databases and logic programming.
Morgan Kaufmann, 1988.

[2] K.R. Apt and R. Bol. Logic programming and negation: a survey. Journal of
Logic Programming, 19-20:9–71, 1994.

36

[3] A. Bondarenko, P.M. Dung, R.A. Kowalski, and F. Toni. An abstract,
argumentation-theoretic framework for default reasoning. Artificial Intelligence,
93(1-2):63–101, 1997.

[4] A. Bondarenko, F. Toni, and R.A. Kowalski. An assumption-based framework
for non-monotonic reasoning. In A. Nerode and L. Pereira, editors, Proc. 2nd
International Workshop on Logic Programming and Non-monotonic Reasoning,
pages 171–189. MIT Press, 1993.

[5] C. Cayrol, S. Doutre, and J. Mengin. On decision problems related to preferred
semantics a of argumentation frameworks. Journal of Logic and Computation,
13(3):377–403, 1003.

[6] C. Chesnevar, A. Maguitman, and R. Loui. Logical models of argument. ACM
Computing Surveys, 32(4):337–383, 2000.

[7] Y. Dimopoulos, B. Nebel, and F. Toni. On the computational complexity of
assumption-based argumentation for default reasoning. Artificial Intelligence,
141:57–78, 2002.

[8] P.M. Dung. Logic programming as dialog-game. Technical report, AIT, 1993.

[9] P.M. Dung. The acceptability of arguments and its fundamental role in non-
monotonic reasoning and logic programming and n-person game. Artificial Intel-
ligence, 77:321–357, 1995.

[10] P.M. Dung. An argumentation theoretic foundation of logic programming. Journal
of Logic Programming, 22:151–177, 1995.

[11] P.M. Dung, R.A. Kowalski, and F. Toni. Synthesis of proof procedures for default
reasoning. In J. Gallagher, editor, Proc. LOPSTR, pages 313–324. Springer Verlag
LNCS 1207, 1996.

[12] P.M. Dung, P. Mancarella, and F. Toni. Argumentation-based proof procedures
for credulous and sceptical non-monotonic reasoning. In A.C. Kakas and F. Sadri,
editors, Computational Logic: Logic Programming and Beyond – Essays in Honour
of Robert A. Kowalski, pages 289–310. Springer Verlag LNAI 2408, 2002.

[13] P.E. Dunne and T.J.M. Bench-Capon. Two party immediate response game: prop-
erties and efficiency. Artificial Intelligence, 149:221–250, 2003.

[14] K. Eshghi and R.A. Kowalski. Abduction compared with negation as failure. In
Proc. ICLP. MIT Press, 1989.

[15] A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for
general logic programs. Journal of the ACM, 38(3):620–650, 1991.

37

[16] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R. Kowalski and K. A. Bowen, editors, Proceedings of the 5th InternationalConf.
on Logic Programming, pages 1070–1080. MIT Press, 1988.

[17] T.F. Gordon. The Pleadings Game. An Artificial Intelligence Model of Procedural
Justice. Dordrecht Kluwer, 1995.

[18] H. Jakobovits and D. Vermeir. Dialectic semantics for argumentation frameworks.
In Proc. ICAIL, pages 53 – 62. ACM Press, 1999.

[19] A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive logic programming. Journal
of Logic and Computation, 2(6):719–770, 1993.

[20] A. C. Kakas, R. A. Kowalski, and F. Toni. The role of abduction in logic program-
ming. In D. M. Gabbay, C. J. Hogger, and J. A. Robinson, editors, Handbook of
Logic in Artificial Intelligence and Logic Programming, volume 5, pages 235–324.
Oxford University Press, 1998.

[21] A. C. Kakas and F. Toni. Computing argumentation in logic programming. Jour-
nal of Logic and Computation, 9:515–562, 1999.

[22] A.C. Kakas and P. Mancarella. Stable theories for logic programs. In Proc. ISLP.
MIT Press, 1991.

[23] A.C. Kakas, P. Mancarella, and P.M. Dung. The acceptability semantics for logic
programs. In P. Van Hentenryck, editor, Proc. ICLP, pages 504–519. MIT Press,
1994.

[24] R. A. Kowalski and F. Toni. Abstract argumentation. Journal of Artificial Intelli-
gence and Law, Special Issue on Logical Models of Argumentation, 4(3-4):275–296,
1996.

[25] R.P. Loui and J. Norman. Rationales and argument moves. Artificial Intelligence
and Law, 3:158–189, 1995.

[26] J. McCarthy. Circumscription – a form of non-monotonic reasoning. Artificial
Intelligence, 13:27–39, 1980.

[27] R. Moore. Semantical considerations on non-monotonic logic. Artificial Intelli-
gence, 25, 1985.

[28] D. Nute. Defeasible reasoning. In J. H. Fetzer, editor, Aspects of Artificial Intel-
ligence, pages 251–288. Kluwer Academic Publishers, 1987.

[29] C. Perelman. Justice, Law and Argument. Reidel, Dordrecht, 1980.

[30] A. Pettorossi and M. Proietti. Transformation of logic programs: foundations and
techniques. Journal of Logic Programming, 19-20:261–320, 1994.

38

[31] J. Pollock. Defeasible reasoning. Cognitive Science, 11(4):481–518, 1987.

[32] D. Poole. A logical framework for default reasoning. Artificial Intelligence,
36(1):27–47, 1988.

[33] H. Prakken and G. Sartor. The role of logic in computational models of legal
argument: a critical survey. In A.C. Kakas and F. Sadri, editors, Computational
Logic: Logic Programming and Beyond – Essays in Honour of Robert A. Kowalski,
pages 342–381. Springer Verlag LNAI 2408, 2002.

[34] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13, 1980.

[35] F. Toni and A.C. Kakas. Computing the acceptability semantics. In V.W. Marek,
A. Nerode, and M. Truszczynski, editors, Proc. 3rd International Workshop on
Logic Programming and Non-monotonic Reasoning, pages 401–415. Springer Ver-
lag LNAI 928, 1995.

[36] S.E. Toulmin. The uses of arguments. Cambridge University Press, 1958.

[37] G. Vreeswijk and H. Prakken. Credulous and sceptical argument games for pre-
ferred semantics. In Proc. JELIA. Springer Verlag LNCS 1919, 2000.

[38] D.N. Walton. What is reasoning? What is an argument? Journal of Philosophy,
87(8):399–419, 1990.

39

A Proofs

Proof of Theorem 4.1

Preliminaries

Given a backward deduction S1, . . . , Sm, based on a set of assumptions A, we write

Si
S
σ−→ Si+1

if Si+1 is obtained from Si by the application of an inference rule S
σ

, and we write

Si
σ−→ Si+1

where σ is an assumption (and Si+1 = Si).

Proof

1. Let S1, . . . , Sm be a backward argument of α supported by a set of assumptions
A. It is not difficult to see that the sequence σm−1, . . . , σ1, where σ1 = α and,

for each 2 ≤ i ≤ m − 1, either Si

S
σi−→ Si+1 or Si

σi−→ Si+1 holds, is a forward
deduction of α

2. Let σ1, . . . , σn be a forward deduction of α (i.e. α = σn). For each σi, let
rank(i) = minj=1,...n{j |σj = σi}. Hence σrank(i) = σi and for each 1 ≤ j <
rank(i), σj 6= σi. If σi is not an assumption, let R be the rule that is used to
derive σrank(i), i.e. R is of the form S

σrank(i)
such that S ⊆ {σrank(i)−1, . . . , σ1}.

Define Pre(σi) = S. It is clear that for each σ ∈ Pre(σi): rank(σ) < rank(σi).

Let sl be a selection rule. Define inductively a sequence S1, . . . , Sm as follows:

S1 = {α}
Suppose Si has been constructed. Let σ be the sentence selected by sl from
Si

9. If σ is an assumption then Si+1 = Si. If σ is not an assumption then
Si+1 = Si − {σ} ∪ Pre(σ).

It remains to show that the above construction is finite.

For each set S ⊆ {σ1, . . . , σn}, define rank(S) = max{rank(α) |α ∈ S}. Further,
for each i, define S|i = {α ∈ S | rank(α) = i}.
Define an order between sets of sentences from σ1, . . . , σn as follows: S = R
iff rank(S) ≥ rank(R) and there exists k ≤ rank(S) such that the following
conditions hold:

• for each k < i ≤ rank(S): S|i = R|i
9Note that no assumption should be selected twice by sl.

40

• S|k ⊃ R|k

It is clear that there is no infinite decreasing sequence wrt =. It is also easy to
see that Si = Si+1. It follows immediately that the constructed sequence is a
backward deduction.

Proof of Theorem 4.2

• Only-If-Direction: Let A be an admissible set of assumptions. We prove that
conditions 1 and 2 in the statement of the theorem hold for A.

1. Let a be a tight argument attacking A. Therefore A attacks the set of
assumptions on which a is based. Then, from theorem 4.1, there is a tight
argument whose support is a subset of A attacking the set of assumptions
on which a is based.

2. It is obvious that no subset of A supports a tight argument attacking A.

• If-Direction. Let A be a set of assumptions for which conditions 1 and 2 in the
statement of the theorem hold. We prove that A is admissible, namely it satisfies
conditions 1 and 2 in definition 2.7.

1. Let B be a set of assumptions attacking A. From theorem 4.1, there is a
tight argument attacking A and whose support is a subset of B. Hence,
there is a tight argument attacking B and whose support is a subset of A.
From theorem 4.1, it is clear that A attacks B.

2. A can not attack itself since otherwise there would be a tight argument
whose support is a subset of A attacking A.

Proof of Theorem 5.1

Preliminaries

For each node N in a abstract dispute tree, let arg(N) denote the argument labelling
N while supp(N) denotes the set of assumptions on which arg(N) is based. If N is
an opponent node and assumption σ is the selected culprit in N , then σ is denoted by
culprit(N). For each argument a, supp(a) denotes the set of assumptions on which a
is based.

Proof

i) We prove that 1) A attacks every tight attack against it and 2) A does not attack
itself.

41

1) Assume that a is a tight argument attacking some assumption δ ∈ A. From
the definition of A, there is a proponent node N such that δ ∈ supp(N).
Therefore there is a child M of N which is an opponent node labelled by a.
Let K be the proponent node that is the only child of M . It is clear that
supp(K) ⊆ A. This implies that A attacks a.

2) From the definition of admissible dispute tree, it follows that for each oppo-
nent node N in T , culprit(N) 6∈ A.

Assume that A attacks itself. Let δ ∈ A such that A attacks δ. Because
A is the union of the support of arguments at proponent nodes, there is a
proponent node N such that δ ∈ supp(N). Since A attacks δ, A attacks
supp(N). Therefore, there is a tight argument t that attacks δ and supp(t) ⊆
A (theorem 4.1). Hence there is a child M of N that is labelled by t. Since
culprit(M) ∈ supp(t) and supp(t) ⊆ A, it follows that culprit(M) ∈ A:
contradiction to the admissibility of T .

ii) Construct a dispute tree as follows:

(a) The root is labelled by a. This node is of rank 0.

(b) Suppose we have constructed all the nodes of rank ≤ i where i = 2k, k ≥ 0.
Note that nodes of rank i are proponent nodes whose supports consist of
assumptions from A.

• For each node N of rank i, for each tight attack t against arg(N) there
is exactly one child of N that is an opponent node and labelled with t.
The rank of these new nodes is i+ 1.

• As each node M of rank i + 1 represents an attack against A, there is
an assumption δ ∈ supp(M) such that A attacks δ. Thus, there is a
tight argument tM whose support consist of assumptions from A that
attacks δ. Expand the tree as follows:
For each node M of rank i + 1, create exactly one child that is a pro-
ponent node, and label it with tM . The new nodes created in this step
are of rank i+ 2.
It is clear that the supports of the new nodes of rank i+ 2 consist only
of assumptions from A.

• If the set of nodes of rank i+2 is empty then stop. We have successfully
constructed a finite abstract dispute tree. Otherwise, set i to i+ 2 and
goto (b).

If the above algorithm does not terminate, we have constructed an infinite ab-
stract dispute tree. It is obvious that the constructed tree is an admissible dispute
tree whose defence set A′ is a subset of A and a superset of A0 = supp(a). Finally,
by part (i) of the theorem, A is admissible.

42

Proof of Theorem 5.2

Preliminaries

A pair of nodes (P,O) is said to be conflicting if P is a proponent node and O is
an opponent node such that the culprit of O belongs to the support of P . Define
(P,O) < (P ′, O′) if (P,O) and (P ′, O′) are conflicting pairs of nodes, P ′ is a child of
O, and O′ is a child of P .
It is clear that the existence of an infinite sequence (P0, O0) < (P1, O1) < implies
that the dispute tree is infinite.

Proof

To prove the theorem, we prove that any non-admissible abstract dispute tree is infi-
nite. This follows directly from the following:

Claim: Let (P,O) be a conflicting pair of nodes. There is another conflicting pair
(P ′, O′) such that (P,O) < (P ′, O′).
Proof of Claim: Let α be the culprit at O. Let P ′ be the only child of O and t be
the argument labelling P ′. It is clear that P ′ is a proponent node and t attacks α.
Because α belongs to supp(P) (defined in the proof of theorem 5.1) there is a child
O′ of P that is labelled by t. Because O′ is an opponent node, supp(O′) 6= {}. Hence
it is clear that the culprit at O′ belongs to supp(t) whereas supp(t) = supp(P ′). This
implies that (P ′, O′) is a conflicting pair of nodes and (P,O) < (P ′, O′).

Proof of Theorem 6.1

Preliminaries

A representative set of supports for a sentence α is defined as a set of assumptions B
such that B ∩ A 6= {} for any support A of α.

It should be clear that R is a representative set of supports for an assumption α iff
α ∈ R. Further if α has no support then every set of assumptions is a representative
set of supports of α. If α has an empty support then there exist no representative set
of support of α.

Lemma A.1 Let α be a non-assumption sentence.

1. Let B be a representative set of support of α. Then for each rule of the form S
α

,
there is at least one β ∈ S such that B is also a representative set of supports of
β.

2. For each rule r of the form S
α

, let Br be a representative set of supports of at
least one β ∈ S. Then

43

B =
⋃
{Br |r is a rule of the form

S

α
}

is a representative set of supports of α.

Proof of Lemma A.1

1. Let B be a representative set of supports of α. Let r be a rule of the form S
α

.
We want to show that B is also a representative set of support for some β ∈ S.
Assume the contrary. Therefore, for each β ∈ S there is a set of assumptions Rβ

such that Rβ supports β and B ∩ Rβ = {}. Therefore, R =
⋃{Rβ | β ∈ S } is a

set of assumptions that supports α and R ∩ B = {}. This is contrary to the fact
that B is a representative set of supports of α. Therefore, there is β ∈ S such
that B is a representative set of supports for β.

2. Let R be a set of assumption that supports α. Therefore, there is a rule r of the
form S

α
such that R supports S. Therefore, R also supports every element of S.

Therefore, from the definition of Br, it follows immediately that R ∩ Br 6= {}.
Hence B∩R 6= {}. Thus, we have proved that B is a representative set of supports
of α.

We now introduce two kinds of partial trees which together constitute the concrete
dispute tree.

Support Tree

A support tree of a sentence α (wrt a selection function sl) is defined as follows:

1. The root is a proponent node labelled by {α}.

2. Let N be a proponent node labelled P . If P is empty, then N is a terminal node.
If P is not empty and the selected sentence (wrt sl) in P is an assumption σ,
then there exist exactly two children of N : one is an opponent node that is a
terminal node labelled by {σ} and the other is a proponent node labelled by P -

{σ}. If σ is not an assumption, then there exists some inference rule
S

σ
∈ R and

there exists exactly one child of N labelled by P − {σ} ∪ S.

It is easy to see that finite support trees of α correspond to backward deductions of α.

Representative Tree

A representative tree (wrt selection function sl) of a sentence α is defined as follows:

1. The root is an opponent node labelled by {α}.

44

2. Let N be an opponent node labelled by O. Then O 6= {}. Let σ be the sentence
selected (wrt sl) in O.

If σ is an assumption, then N has exactly one child that is either a terminal and
proponent node labelled by {σ} (σ is a culprit) or an opponent node labelled by
O − {σ} (σ is ignored).

If σ is not an assumption and there exists no inference rule
S

σ
∈ R, then N is a

terminal node. Otherwise, the children of N are a set of opponent nodes labelled

by the sets of sentences O−{σ} ∪ S, where
S

σ
∈ R. (There being one such child

for each such inference rule.)

Let α be a sentence and sl be a selection function, and T be a representative tree of α
wrt sl. Further, let B = S0, . . . , Sm be a backward deduction of α wrt sl. We say that
a path N0, . . . , Nk from the root N0 of T to Ni corresponds to a prefix of B iff (1) for
each 0 ≤ i ≤ k, label(Ni) = Si −Ai where Ai is the set of assumptions selected on the
path from N0 to Ni, and (2) the same sentence is selected at Ni and Si. It is easy to
see (by induction) that the following property holds:

Lemma A.2 There is a terminal node N in T that is also a proponent node such that
the path from the root to the parent node of N corresponds to a prefix of B.

Furthermore:

Lemma A.3

1. Let B be the set of assumptions selected in a representative tree T of α wrt sl.
Then B is a representative set of supports of α.

2. Let B be a representative set of supports of α. Then, there is a representative
tree T of α wrt sl such that the set of culprit assumptions selected in the tree is
a subset of B.

Proof of Lemma A.3

1. Let A be a set of assumptions supporting α. We want to show that A ∩ B 6= {}.
From theorem 4.1, there is a backward deduction D = S0, . . . , Sm of α wrt sl
such that Sm ⊆ A and S0 = {α}. From lemma A.2, there exists a terminal node
N in T such that the path from the root to the parent node of N corresponds to
a prefix of D and N is a proponent node. It follows that the sentence selected at
the parent of N belongs to Sm. That means A ∩ B 6= {}.

2. T is defined as follows:

(a) The root is an opponent node labelled by {α}.

45

(b) Let N be an opponent node labelled by B.

If B 6= {}, select a sentence σ ∈ B following sl.

If σ is an assumption not belonging to B, then N has exactly one child that
is an opponent node labelled by B − {σ}.
If σ is an assumption belonging to B, then N has exactly one child that is
a proponent node labelled by {σ}.

If σ is not an assumption and there exists no inference rule
S

σ
∈ R, then

N is a terminal node. Otherwise, the children of N are a set of opponent

nodes labelled by the sets of sentences B − {σ} ∪ S, where
S

σ
∈ R. (There

being one such child for each such inference rule.)

It remains to show that T is a representative tree of α. Suppose the contrary.
Hence there is an opponent node N in T that is labelled by an empty set. It
follows that the branch from the root to N represents a backward deduction of α
supported by a set of assumptions disjoint to B: contradiction to the assumption
that B is a representative set of supports of α.

Proof

We prove theorem 6.1 by transforming concrete dispute trees into abstract dispute
trees and vice versa.

Transformation from Concrete Dispute Trees into Abstract Dispute Trees

Let T be a concrete dispute tree (wrt selection function sl) and N be a node in T .
Define T (N) as follows:

• Let T1 be the subtree of T rooted at N .

• Delete every node M in T1 such that the type of the parent of M is different to
the type of N . The resulting tree is T (N). 10

It is easy to see that if N is an opponent node labelled by {α} then T (N) is a rep-
resentative tree of α. Further if N is a proponent node labelled by {α} then T (N) is
a support tree of α. In the latter case, let arg(N) denote the tight argument corre-
sponding to T (N).

In the following, we construct inductively a sequence of trees (T0, f0), . . . , (Tn, fn), . . .
where:

10The type of a node determines whether it is an proponent or opponent node. Note also that if a
node is deleted then all of its successors are deleted as well.

46

• Nodes in Ti are either proponent or opponent nodes labelled with tight arguments.
For an opponent node, an assumption from the set of assumptions supporting
the argument labelling it is also given as the culprit at this node.

• The frontier of Ti consists only of proponent nodes.

• fi are functions mapping the proponent nodes in the frontier of Ti into the pro-
ponent nodes of T such that each node N in the frontier of Ti is labelled with
arg(T (fi(N))).

1. T0 consists of exactly one node that is a proponent node labelled by arg(N0)
where N0 is the root of T . f0 maps the root of T0 into N0.

2. For each proponent node N in the frontier of Ti with fi(N) = M where M is a
proponent node in T and a is the argument labelling N , expand Ti as follows:

For each tight argument b attacking a, add a child Nb of N to Ti that is an
opponent node labelled by b.

Let σ be the assumption in a such that b is a tight argument of σ. From the
assumption hypothesis, a = arg(T (M)). It is clear that σ is selected at some
node M ′ in T (M).

From theorem 4.1, there is a tight argument c wrt the selection function sl whose
support is a subset of supp(b).

Let H be the child of M ′ in T that is labelled with {σ}. H is hence an opponent
node. Therefore, there is a branch in T (H) corresponding to c (lemma A.2). Let
δ be the assumption selected on this branch and let K be the terminal proponent
node labelled by {δ} in T (H). It is clear that δ belongs to the set of assumptions
of b. Select δ as the culprit at Nb and add to Nb in Ti exactly one child N ′ that
is a proponent node labelled by arg(T (K).

Define fi+1(N ′) = K.

3. The obtained tree is Ti+1.

4. Define reduct(T) to be the limit of T0, T1, . . . , Ti,

It follows immediately that reduct(T) is an abstract dispute tree of α such that the
defence set of reduct(T) is a subset of the defence set of T .
Due to the fact the the culprits in reduct(T) are also the culprits in T , it follows that,
if T is admissible, then reduct(T) is also admissible.

Transformations from Abstract Dispute Trees into Concrete Dispute Trees

Let T be an abstract dispute tree for a sentence α. Let D, C be the defence set and
the set of culprits of T , respectively.

47

For each σ ∈ C, let arg(σ) be an argument with conclusion σ labelling some node in
T .
For each σ ∈ D, let Bσ be the set of culprits in the arguments attacking σ in T . It is
clear that Bσ is a representative set of supports for σ.

In the following, we construct inductively a sequence of trees T0, . . . , Tn, . . . as follows:

1. T0 is a support tree of α corresponding to the argument labelling the root of T .

2. Let i = 2k such that the non-terminal nodes in the frontier of Ti are opponent
nodes labelled by set of sentences of the form {σ}, where σ ∈ D.

Expand each such node by a representative tree (wrt sl) of σ wrt Bσ (the existence
of such tree is guaranteed by lemma A.3). The obtained tree is Ti+1.

3. Let i = 2k+1 such that the non-terminal nodes in the frontier of Ti are proponent
nodes labelled by sets of sentences of the form {σ}, where σ ∈ C.

Expand each such node by a support tree of σ (wrt sl) corresponding to arg(σ).
The obtained tree is Ti+1.

4. Define expand(T) to be the limit of Ti.

It follows immediately that expand(T) is a concrete dispute tree of α such that the
defence set of expand(T) is a subset of the defence set of T .
Due to the fact the the culprits in expand(T) are also the culprits in T , it follows that,
if T is admissible, then expand(T) is also admissible.

Proof of Corollary 6.1

i) Let sl be the selection function of T . We prove that 1) A attacks every attack
against it, and 2) A does not attack itself.

1) Assume that a is a tight argument attacking some assumption σ ∈ A. From
theorem 4.1, there exists a tight argument b wrt sl such that supp(b) ⊆
supp(a) and both a and b support the same conclusion. (see the proof of
theorem 5.1 for the definition of supp.)

From the definition of A, there is an opponent node N labelled by {σ}.
Therefore there is a branch in the representative tree T (N) corresponding
to b (lemma A.2). Hence, the culprit selected on this branch is attacked by
A. Therefore A attacks b, and hence it also attacks a.

2) Assume A attacks itself. Then, there exists an argument a attacking some
assumption σ ∈ A and such that the support of a is a subset of A.

From the definition of A, there is an opponent node N labelled by {σ}.
Therefore there is a branch in the representative tree T (N) corresponding
to b (lemma A.2). Hence, the culprit selected on this branch belongs to A.
This is impossible due to the admissibility of T .

48

ii) From theorem 5.1, part (ii), there exists an admissible abstract dispute tree T
for a such that the defence set D of T is a subset of A. From theorem 6.1, there
exists an admissible concrete dispute tree T ′ of α such that the defence set A′ of
T ′ is a subset of D. Hence, A′ is a subset of A and a superset of A0 = supp(a).
Finally, by part (i) of the corollary, A is admissible.

Proof of Theorem 6.2

Preliminaries

A pair of nodes (P,O) are said to be conflicting if P is a proponent node and O is an
opponent node such that both of them are labelled by the same set {α} where α is
an assumption. Define (P,O) < (P ′, O′) if (P,O) and (P ′, O′) are conflicting pairs of
nodes, P ′ is a successor of O, and O′ is a successor of P .
It is clear that the existence of an infinite sequence (P0, O0) < (P1, O1) < . . . implies
that the concrete dispute tree is infinite.

Proof

To prove the theorem, we prove that any non-admissible concrete dispute tree is infinite.
Let T be a non-admissible concrete dispute tree. It is obvious that there exists a
conflicting pair in T . The theorem follows directly from the following:

Claim: Let (P,O) be a conflicting pair of nodes in a concrete dispute tree T There is
another conflicting pair (P ′, O′) in T such that (P,O) < (P ′, O′).
Proof of Claim: Let α be an assumption such that {α} labels both P and O. Let D
be the backward deduction represented by the support tree T (P). ¿From lemma A.2,
there is a path from the root O to a terminal node P ′ in the tree T (O) that corresponds
to D. Let β be the assumption such that {β} labels P ′. It follows that there is also a
terminal node O′ in T (P) also labelled by {β}. It is clear that P ′ is a proponent node
and O′ is an opponent node and (P,O) < (P ′, O′).

Proof of Theorem 7.1

Preliminaries

A partial (concrete) dispute tree is a tree obtained from a concrete dispute tree by
deleting some nodes together with all of their successors and siblings and the successors
of the siblings.
A terminal node in a partial dispute tree is a terminal node N such that (1) N is a
proponent labelled by the empty set , or (2) N is an opponent node and there is no
rule whose conclusion coincides with the selected sentence at N .

49

Proof

Let D = 〈P0,O0, A0, C0〉, . . . , 〈Pi,Oi, Ai, Ci〉,, 〈Pn,On, An, Cn〉 be a dispute deriva-
tion of a sentence α.
In the following, we construct inductively a sequence T0, . . . , Tn of partial (concrete)
dispute trees satisfying the following properties:

1. The union of all sentences belonging to the labels of proponents nodes in Ti is
equal to P0 ∪ . . . ∪ Pi.

2. The multiset of all non-assumption sentences appearing in the frontier proponent
nodes in Ti is equal to the multiset of non-assumption sentences in Pi.

3. The set of assumptions in Pi is a subset of the set of assumptions appearing at
the frontier proponent nodes.

4. There is one-to-one mapping mpi from Oi into the set of frontier non-terminal
opponent nodes such that for each S ∈ Oi, S labels mpi(S). Moreover, if a non-
terminal frontier opponent node N in Ti does not belong to the range of mpi,
then N satisfies two properties:

(a) N is labelled by {α} for some assumption α ∈ Ai.
(b) The parent of N is a proponent node.

• T0 is a tree consisting of exactly one proponent node labelled {α}.

• Suppose Ti has been constructed. Ti is expanded into Ti+1 as follows:

– If σ ∈ Pi is selected at step i in the derivation then proceed as follows: Let
N be a frontier proponent node in Ti such that σ appears at N .

∗ If σ is a non-assumption then expand Ti into T ′i by adding a child to
N that is a proponent node P0 labelled by S − {σ} ∪ R where S la-
bels N and R

σ
is the rule selected to proceed from 〈Pi,Oi, Ai, Ci〉 to

〈Pi+1,Oi+1, Ai+1, Ci+1〉. Let R ∩ Ai = {α1, . . . , αk}. Construct a se-
quence of trees Ti,0, Ti,1, . . . , Ti,k as follows:

· Ti,0 = T ′i .

· Suppose Ti,j has been constructed. Expand Ti,j into Ti,j+1 by adding
two children to node Pj: one is a proponent node Pj+1 labelled
by S − {αj}, where S is the multiset labelling Pj, the other is an
opponent node labelled by {αj}.
· Ti+1 = Ti,k

∗ If σ is an assumption then expand Ti into Ti+1 by adding two children
to N : one is a proponent node labelled by S − {σ}, where S is the
multiset labelling N , the other is an opponent node labelled by {σ}.

50

– If S ∈ Oi and σ ∈ S are selected at step i in the derivation then proceed as
follows: Let N = mpi(S). N is hence a frontier opponent node in Ti such
that S labels N and σ appears in S.

∗ If σ is a non-assumption then expand Ti into Ti+1 by: 1) adding for each
rule R

σ
a child M to N that is an opponent node labelled by S−{σ}∪R.

Note that if no such child exists, then N is a terminal node in Ti+1; 2)
if R contains an assumption σ from Ci then σ is the culprit at N and
add exactly one child to M that is a proponent node labelled by {σ}.
∗ If σ is an assumption then expand Ti into Ti+1 by adding exactly one

child to N which is

· an opponent node labelled by S − {σ} if σ is ignored in the deriva-
tion, or

· a proponent node labelled by {σ}, otherwise.

It is not difficult to show by induction that all trees Ti satisfy the properties 1-4 listed
above. Since D is a dispute derivation, the following lemma holds obviously:

Lemma A.4

1. The frontier opponent (resp. proponent) nodes of Tn are either terminal nodes
or labelled with a set of the form {σ} where σ is an assumption such that there
is a unique non-frontier opponent (resp. proponent) node Nσ in Tn that is also
labelled by {σ}.

2. The set of assumptions appearing at the proponent nodes in Tn is equal to An.

3. The set of assumptions α such that {α} labels a proponent node is equal to Cn.

For each assumption σ appearing at a proponent node in Tn, let Tσ be the subtree of
Tn whose root is Nσ.
Construct a new sequence of trees T ′0, T

′
1, . . . as follows:

• T ′0 = Tn.

• Suppose T ′i has been constructed. Expand T ′i into T ′i+1 by adding simultaneously
to all non-terminal frontier nodes in T ′i that are labelled by {σ}, where σ is an
assumption, the tree Tσ.

Let T be the limit of T ′0, T
′
1, It is not difficult to see that T is a concrete dispute tree

whose defence set coincides with the defence set of Tn and whose culprit set coincides
with the culprit set of Tn. From lemma A.4, it follows immediately that T is an
admissible concrete dispute tree whose defence set coincides with An.

51

Proof of Theorem 7.2

Let T be a finite admissible concrete dispute tree of α. Let N0, . . . , Nn be a listing of
nodes in T according to the leftmost depth-first order.

A node N in T is said to be an attack node if N is labelled by {σ} where σ is an
assumption and the parent of N is a node of the opposite type. 11 Because T is
admissible, attack nodes with the same label are of the same type.

Let Nk be the first attack node in N0, . . . , Nn such that there exists another attack
node Ni, i > k, with the same label.
The tree simpl(T) is obtained by deleting all nodes except Nk that are attack nodes
with the same label as Nk, together with their successors.
Because T is finite, there exists i such that simpli(T) = simpli+1(T). Let T ′ =
simpli(T).
It is clear that the listing of the nodes in T ′ according to the leftmost depth-first search
is a subsequence of the list N0, . . . , Nn.
It is obvious that following property holds for T ′:

Property Let σ be an assumption.
If σ appears in some proponent nodes of T ′, then there is exactly one attack opponent
node in T ′ that is labelled by {σ}.
If σ is the culprit in some opponent nodes of T ′ then there is exactly one attack pro-
ponent node in T ′ that is labelled by {σ}.

Let N be a proponent node (labelled by S) in T ′ such that the selected sentence at
N is an assumption σ and N has exactly one child M in T ′ that is a proponent node
(labelled by S − {σ}). Simplify T ′ as follows: Collapse N , M together and remove σ
from the labels of the all proponent nodes that are ancestors of N such that there is no
opponent nodes on the path from them to N . Repeat this step until it can not carried
out anymore. Let the obtained tree be T ′′.

Let K0, . . . , Km be a listing of the nodes in T ′′ according to the leftmost depth-first
order. An opponent node Ki is said to be redundant in T ′′ if the label of Ki contains
assumption σ and there is a proponent node Kj, j < i, that is labelled by {σ}.

Continue to simplify T ′′ by removing all redundant nodes in T ′′ together with their
successors. Let the obtained tree be T . It is easy to see that the listing M0, . . . ,Mk of
the nodes in T according to the leftmost depth-first search is a subsequence of the list
N0, . . . , Nn.

Let Ti be the tree obtained from T be deleting all nodes Mj, j > i, except those that
are siblings of the nodes M0, . . . ,Mi.
For each 0 ≤ i ≤ k, define

11Note that a opponent (resp. proponent) node is said to be of opposite type of a proponent (resp.
opponent) node.

52

• Pi is the multiset of sentences appearing in the frontier proponent nodes of Ti,

• Oi is the multiset of the labels of the non-terminal frontier opponent nodes in Ti,

• Ai is the set of assumptions appearing in the proponent nodes in Ti,

• Ci is the set of assumptions σ such that {σ} labels some proponent node in Ti
whose parent is an opponent node.

From the definition of Ti, it is not difficult to see that

D = 〈P0,O0, A0, C0〉, . . . , 〈Pi,Oi, Ai, Ci〉,, 〈Pn,On, An, Cn〉

is a dispute derivation.

53

