
J. LOGIC PROGRAMMING 1992:12:121-146 121

DATABASE UPDATES IN THE EVENT CALCULUS

ROBERT KOWALSKI

D This paper investigates a special case of the event calculus, concerned with
database updates. It discusses the way relational databases, historical
databases, modal logic, the situation calculus, and case semantics deal with
database updates and compares the event calculus with the situation
calculus in detail. It argues that the event calculus can overcome the
computational aspects of the frame problem in the situation calculus and
that it can be implemented with an efficiency approaching that of destruc-
tive assignment in relational databases. a

INTRODUCTION

The event calculus [91 was developed as a theory for reasoning about events in a
logic-programming framework. It is based in part on the situation calculus [13,14],
but focuses on the concept of event as highlighted in semantic network representa-
tions of case semantics. Its main intended application is the representation of
events in database updates and discourse representation. It is closely related to
Allen’s interval temporal logic [l, 21 and Lee-Coelho-Cotta’s treatment of time in
deductive databases [ll]. The relationship between the event calculus and the
systems of Allen and Lee-Coelho-Cotta has been investigated by Sadri [15].

The event calculus is concerned with formalizing the effect of events on objects,
their properties, and their relationships. Thus, for example, given a description of
an event in which

Bob gives Book1 to John,

Address correspondence to Robert Kowalski, Department of Computing, Imperial College of Science
and Technology, 180 Queen’s Gate, London SW7 2BZ, England.

Received July 1989; accepted March 1990.

THE JOURNAL OF LOGIC PROGRAMWNG

OEIsevier Science Publishing Co., Inc., 1992

655 Avenue of the Americas, New York, NY 10010 0743-1066/92/$3.50

122 ROBERT KOWALSKI

the event calculus derives that for a subsequent period of time, initiated by the
event,

John possesses Book1

and for a previous period of time, terminated by the event,

Bob possesses Book1 .

This can be pictured in the form

c n +

R E R'

where E names the event, R names the terminated relationship, and R’ names the
initiated relationship.

Although events can be assumed to take place instantaneously, the event
calculus is actually neutral with respect to whether events are instantaneous or
have duration. Relationships (including both properties of objects and relation-
ships between objects), however, are assumed to hold for periods of time, which
have duration. A relationship is assumed to persist both into the future until it is
terminated by an event and into the past until it is initiated.

In this respect, past and future are treated symmetrically. Although such
symmetry is very powerful in the general case, it gives rise to conceptual complexi-
ties and computational inefficiencies which are unnecessary in many cases.

In this paper we concentrate on a special, simplified, asymmetric case of the
event calculus, where periods of time are assumed to persist only into the future.
In this case, an event of Bob giving Book1 to John will automatically initiate a
period of John’s possession:

7
E R

and end any earlier, unterminated period of Bob’s possession:

-0
E’ R E

This special case of the event calculus corresponds to the situation in conventional
databases, where relationships are interpreted as persisting from the time they are
recorded until the time they are deleted. It is because of this correspondence that
we refer to this case of the event calculus as the database update case.

In the first half of this paper, we review the treatment of database updates in
relational databases, historical databases, modal logics, the situation calculus, and
case semantics. We focus particular attention on the frame problem in the
situation calculus. In the second half of the paper, we introduce a special case of
the event calculus and discuss its treatment of database updates, focusing on its
efficient implementation.

This paper assumes some acquaintance with logic programming, but assumes no
detailed knowledge of the other approaches.

RELATIONAL-DATABASE UPDATES

Updates in conventional databases are performed by adding or deleting tuples of
relations. This can be viewed as adding or deleting variable-free atoms in a
deductive database containing only variable-free atoms. The main advantage of

DATABASE UPDATES IN THE EVENT CALCULUS 123

this approach is its efficiency, in terms of both time and space. Perhaps its main
disadvantage is that it confuses updates which simulate events in the world with
updates which describe changes of belief.

Suppose, for example, that a relational database consists of the variable-free
atoms

Possess(Bob Book11
Possess(John Book21
Possess(Mary Book3).

Consider the update

Delete Possess(Bob Book0
Add Possess(John Book0

This can represent either a change of state in the “world” due to the event
described by

“Bob gave Book1 to John”

or a change of state of belief in the database about who possessed Book1 in the
first place.

A conventional database only represents the current state of the world; infor-
mation about past states is deleted when an update is performed, and there is an
implicit restriction that updates can be performed only in the same order as the
events they describe in the world. Thus, for example, if the sequence of two
updates

(1) Delete Possess(Bob Book11
Add Possess(John Book11

(2) Delete Possess(John Book11
Add Possess(Mary Book11

describes events in the world, then there is an implicit assumption that the first
event of Bob giving Book1 to John took place before the second event of John
giving Book1 to Mary.

Addition and deletion of tuples as a way of performing updates need not
correspond to semantically meaningful events. The update

Delete Possess(John Bookl)
Add Possess(Mary Book41

for example, is syntactically acceptable but semantically meaningless. This lack of
semantic structure complicates the problem of maintaining database integrity.

Thus for the sake of the one advantage of efficiency of implementation,
conventional relational databases have the disuduuntuges that:

They confuse simulation with description of the world.

Information about past states is destroyed when updates are performed. (Strictly
speaking that is not entirely true, since most databases retain a log of
previous transactions, which can be undone to restore the database to a
previous state. However, even in this case a query can access at most one
state at a time.)

124 ROBERT KOWALSKI

Updates must be made in the same order as events occur.

Syntactically acceptable updates can be semantically meaningless.

HISTORICAL DATABASES

The first three of these disadvantages have been addressed by proposals to extend
conventional databases by incorporating the concept of time. Some of these
extensions [4,161 are based on a modal logic which provides a new semantics for
the database model; but most (e.g. [7,18,19,20]) represent time by means of
explicit temporal attributes, without changing the underlying semantic model.
Snodgrass [18], for example, considers historical databases, which represent the
times for which relationships are valid in the world; rollback databases, which
represent the times for which relationships are stored in the database; and
temporal databases, which represent both. Sripada [21] investigates an extension of
the event calculus which represents both valid time and storage time. In this paper,
however, we restrict ourselves to the representation of valid time, in order to
facilitate comparison between the event calculus and other formalisms, and to
focus more clearly on efficiency of implementation.

A historical database records the times at which a relationship starts and ends
by means of explicit attributes. For example

Possess(Bob Book1 (1 Sept 71) w)
Possess(John Book2 (25 Dee 76) m)
PossessCMary Book3 (25 Dee 76) m).

Here the third and fourth arguments record start and end times respectively. An
end time of 03 can be interpreted as indicating that the real end time is unknown
and that the relationship is assumed to persist indefinitely into the future.

The temporal query evaluation procedure determines whether a relationship
holds at a given time point by determining whether there is a tuple for the
relationship whose start time is before or equal to the time point, and whose end
time is after the time point. Because m is later than every time point, forward
persistence is an implicit property.

Updates that record changes in the world, rather than changes of belief, can be
performed without deletion. At most a one-time replacement of an unknown end
time by a real end time might be required. An update, for example of Bob giving
Book1 to John on (1 Jan 77), is recorded by changing the unknown end time of
Bob’s possession to the real end time and by adding a record of John’s possession:

Delete Possess(Bob Book1 (1 Sept 71) m)
Add PossessCBob Book1 (1 Sept 71) (1 Jan 77))
Add Possess(John Book1 (1 Jan 77) w).

The inclusion of explicit valid times overcomes many of the problems of
conventional relational-database updates. Since time is explicit, historical informa-
tion about past states is recorded and accessible. Moreover, relationships can be
recorded independently of their order of occurrence. In particular, information
about the future can be recorded along with information about the past, and
previously missing information about the past can be added later.

DATABASE UPDATES IN THE EVENT CALCULUS 125

It is also possible to distinguish between an update which represents a change of
state in the world from an update which represents a change of belief, such as the
change of belief that it was John rather than Bob who possessed Book1 in the first
place:

Delete Possess(Bob Book1 (1 Sept 71) w>
Add Possess(John Book1 (1 Sept 71) w).

(In temporal databases, even this deletion of an erroneous record is avoided, by
including two extra attributes for storage start and storage end times. Correction of
an error is performed by a one-time replacement of an unknown storage end time,
represented by 03, with a real storage end time, which is the time at which the
correction is made).

The main disadvantage of the historical (and temporal) database approach is
that, because updates are performed by recording the starting and ending of
relationships, the semantic structure of the events which terminate and initiate
relationships is lost. Expensive integrity-checking procedures might be needed to
ensure that updates correspond to semantically meaningful events.

The event calculus addresses this problem by changing the focus of attention
from relationships to events. Updates are performed by adding event descriptions.
The starting and ending of relationships follows as a logical consequence from
event descriptions, by means of general rules which express the semantics of
events. Moreover, these general rules have the same syntactic form as other rules
in the deductive database.

Compared with historical databases, therefore, the main distinguishing features
of the event calculus are that

the treatment of time is based on the notion of event,

events are used to give semantic structure by using general rules to derive the
initiation and termination of relationships from event descriptions,

the database and the rules of the event calculus itself are formulated as a
deductive database (or logic program).

TEMPORAL LOGIC

Reasoning about time is the subject matter of temporal logic. However, instead of
representing time explicitly, temporal logic represents time by means of modal
operators, such as “Past” and “Future” and “Always”. For example,

Past(Possess(Bob Bookl))
Future(Possess(John Bookl)).

Advocates of the modal approach regard its proximity to natural language as its
main advantage.

In contrast with conventional relational databases, the modal approach distin-
guishes between the times at which relationships hold in the world and the times at
which information is assimilated. As a consequence, information about past states
can be preserved, and information can be assimilated in an order which is different
from the real-world occurrence of events. Thus, for example, given a database

126 ROBERT KOWALSKI

state consisting of the single sentence

Possess(John Bookl) ,

we can have a sequence of updates

(1) Add Past(Possess(Bob Bookl))

(2) Add Future(Possess(Mary Bookl))

which first gives us information about the past and then gives us information about
the future. The database state after the sequence of updates contains information
about the past, present, and future. Such an ability to represent historical informa-
tion is essential for representing discourse as well as for updating databases which
contain incomplete information about the past.

The main disadvantage of the modal approach is that its references to time are
context sensitive. As a consequence, complex changes may need to be made to the
database to preserve its intended meaning when the context changes. Consider, for
example, the modal database

Past(Possess(Bob Bookl))
Possess(John Bookl)
Future(Possess(Mary Bookl))
Possess(John Book21
Possess(Mary Book3).

To record the event

“John gives Book1 to Mary”

we would need to make a large number of changes to the database:

Delete Possess(John Book0
Add Past(Possess(John Bookl))
Add Possess(Mary Bookl)
Add Past(Possess(John Book2))
Add Past(Possess(Mary Book3))

The complexity of these changes is disproportionate to the semantic complexity of
the event.

Because of context sensitivity, updates in the modal approach need to include
both addition and deletion of sentences. As with relational databases, such
updates can be semantically meaningless; moreover, because of their greater
complexity, maintaining semantic integrity is also more complex.

The modal operators of temporal logic deliberately avoid explicit reference to
time. They are not applicable therefore when time is an essential component of the
information to be represented, e.g.

Bob gave Book1 to John on (1 Jan 77).

To augment the modal logic with terms or predicates explicitly denoting times
defeats the purpose of using modal operators in the first place.

Thus the modal approach has naturalness of expression of temporal concepts as
its most important advantage. As a result it can record information about past,
future, and current states of the world, and it can record them in an order which is
not restricted by the order of the occurrence of events. Moreover, because updates
are performed by addition and deletion, it avoids, to some extent, the frame
problem, which arises with the explicit treatment of time in the situation calculus.

DATABASE UPDATES IN THE EVENT CALCULUS 127

The disadvantages of the modal operators are that

because they are context sensitive, even a simple change of context can necessi-
tate a complex revision of the database,

they cannot naturally represent explicit references to time,

updates, consisting of additions and deletions of sentences, need not be seman-
tically meaningful, and

existing proof procedures for modal logic are less efficient than proof proce-
dures for classical logic in general and for deductive databases in particular.

The event calculus addresses these problems by representing both time and events
explicitly. Database updates are given semantic structure by the use of general
rules to derive information about relationships from descriptions of events. The
event calculus borrows this structuring of updates from the situation calculus.

THE SITUATION CALCULUS

The situation calculus was introduced by John McCarthy [13] and developed by
McCarthy and Hayes [141 as a general logical framework for reasoning about
actions. It is still the subject of considerable theoretical investigation in artificial
intelligence, and has recently been the focus of Hanks and McDermott’s [6]
analysis of problems with formalizing the notion of temporal projection. In this
paper we investigate a version of the situation calculus, formulated within a
logic-programming framework, based on that presented in [Sl, and oriented toward
the treatment of database updates.

The situation calculus employs global states as explicit parameters of time-vary-
ing relationships. It treats events as state transitions. For example, the sequence of
two events

El: Bob gives Book1 to John
E2: John gives Book1 to Mary,

following the initial state

so: Bob has Book1
John has Book2
Mary has Book3,

gives rise to the sequence of state transitions pictured in Figure 1.

FIGURE 1.

128 ROBERT KOWALSKI

As in [8], for the sake of generality it is convenient to employ a predicate which
has parameters both for the name of the relationship and for the name of the
global state in which the relationship holds:

Holds(r s)

names a relationship f \ namesastate

Thus we write

Holds(possess(Bob Bookl) SO)

instead of the weaker, but also adequate,

Possess(Bob Book1 SO).

In the first formulation, possess(Bob Bookl) is a term which names a relationship.
In the second, PossessCBob Book1 SO) is an atomic formula. Both representations
are expressed within the formalism of first-order, classical logic. However, the first
allows variables to range over relationships, whereas the second does not.

If we identify relationships with atomic variable-free sentences, then we can
regard a term such as possess(Bob Bookl) as the name of a sentence. In this case
“Holds” is a metalevel predicate, which can be viewed as a restricted form of the
“Demo” predicate of [8]. Although the first argument of “Holds” is restricted to
names of atomic sentences, we shall see later that this is not as restrictive as it
might seem at first sight.

Whereas the initial state SO is named by a constant symbol, noninitial states are
named by means of a function symbol applied to the name of the previous state
and the name of the event which constitutes the state transition, e.g.

Sl = result(give(Bob Book1 John) SO>
S2 = result(giveOohn Book1 Mary) result(give(Bob Book1 John) SO))

Notice that the first parameter a, of the term

results(a s)

actually names an event type rather than a concrete event token. For example, the
term “give(Bob Book1 John)” names a type of event which can occur in different
states and therefore can have several tokens. Only one event of a given type may
occur in a given state. Thus the combination of an event type and a state
constitutes a unique event token.

With this notation, the situation calculus enables us to describe the successive
states SO, Sl, S2 of our example:

Holds(R1 SO) Holds(R1’ Sl)
Holds(R2 SO) Holds(R2 Sl)
Holds(R3 SO) Holds(R3 Sl)

Holds(R1” S2)
Holds(R2 S2)
Holds(R3 S2)

DATABASE UPDATES IN THE EVENT CALCULUS 129

Here Sl and S2 are abbreuiations for terms constructed by means of the function
symbol “result”, and

Rl abbreviates possess(Bob Book11
R2 abbreviates possess(John Book2)
R3 abbreviates possess(Mary Book3)
Rl’ abbreviates possess(John Bookl)
Rl” abbreviates possess(Mary Book0

Thus in effect the situation calculus associates a global state as a kind of
“context” or “time stamp” with every relationship that can be changed by an
update. The intended interpretation of the time stamp is potentially ambiguous.
Although we intend the state parameter to refer to states of the world, it can also
refer to states of the database itself. Alternatively we can have two state parame-
ters. For example

Holds*(rs db)

might express that

the database state db records the fact that relationship r holds in world state s.

In the remainder of this paper we shall assume that the state parameter, s, refers
to “world states”. Similarly, when we later discuss case semantics and the event
calculus, we shall assume that event parameters refer to “world events” rather
than “metaevents” of updating the database.

Like modal temporal logic, the situation calculus has the aduantage that
information about the past can be preserved when updates are performed. How-
ever, whereas the modal approach requires many sentences to be deleted and
replaced by others, the situation calculus makes it possible to perform updates by
adding sentences alone. Moreover, updates can be given semantic structure by
using general rules to derive information about states from descriptions of events.
For example, the relationship

Holds(possess(John Bookl) result(give(Bob Book1 John) SO))

can be derived from the event description

Happens(give(Bob Book1 John) SO)

by means of the general situation-calculus rule

Holds(r result(a s)) if HappensCa s)
and Initiates(a r>

together with a domain-specific rule expressing that giving initiates possession:

Initiates(give(x y 2) possess(2 y)) .

Explicit deletion of terminated relationships is replaced by implicit deletion of
relationships which are not preserved. This is achieved by means of a situation-
calculus rule called the frame axiom:

Holds(r result(a s)) if Happens(a s)
and Hold+ s)
and not Terminates(a r)

130 ROBERT KOWALSKI

together with domain-specific rules which describe the relationships terminated by
events, e.g.

Terminates(give(x y z) possess(x y)) .

The negative condition in the frame axiom can be interpreted by means of
negation as failure.

Together the “Initiates” and “Terminates” relationships describe the semantics
of events. Preconditions of events can be expressed as integrity constraints. A
comparison between this treatment of preconditions, using integrity constraints,
and the alternative treatment using conditions of general rules (as in [81) is given in
ml.

Because noninitial states are named by means of previous states, updates
performed by adding event descriptions, e.g.

Add Happens(give(Bob Book1 John) SO)
Add Happens(give(John Book1 Mary) Sl),

need to be made in the same order as events take place. Thus although the
database preserves old information about the past, it cannot assimilate new
information about the past. Moreover, there is an implied one-to-one correspon-
dence between states of the world and states of the database, since the two are in
synchrony.

Notice that, although the situation calculus only allows updates that explicitly
change atomic sentences, derived relationships defined by means of general rules
can be changed implicitly. For example if the database contains a rule which
expresses that John always wants what he doesn’t have, i.e.

Holds(wants(John x) s) if not Holds(possess(John x) s) ,

then explicit addition of the statement

Happens(give(John Book1 Mary) Sl)

causes implicit addition of the conclusion

Holds(wants(John Bookl) S2).

Notice that the first argument of the “Holds” predicate is restricted to a term
naming an atomic formula. In a more general approach it would be possible to
name a more general formula, as in the example

Holds(V(X(wants(John X) +- 7 possess(John X))) s) .

In such a case, however, it would be necessary to have a metainterpreter. But then
partial evaluation of the metainterpreter [22] would generate the situation-calculus
clauses where the first argument of “Holds” names an atomic formula. For this
reason, the situation-calculus restriction is not so great as it may seem at first sight.

The great disadvantage of the situation calculus is the so-called frame problem.
The frame problem has two main aspects-one epistemological, the other compu-
tational. The epistemological aspect is the knowledge-representation problem of
formalizing in a natural way that all relationships not terminated by an event are
preserved. This problem is solved by our use of the single “Holds” predicate and
negation as failure in the formulation of the frame axiom.

DATABASE UPDATES IN THE EVENT CALCULUS 131

FIGURE 2.

Notice that the use of negation as failure also avoids the Hanks-McDermott
problem 161, as discussed for example in 151 and 1231.

The computational aspect of the frame problem is the excessive computational
cost associated with using the frame axiom to reason that virtually all relationships
are preserved from state to state. This overhead is illustrated in Figure 2, where
the small circles represent the separate application of an axiom or inference step
to conclude that a relationship holds in a given state. These inferences need to be
performed whether the inference system reasons forward, deriving new states from
old ones, or backward, logic-programming style, to determine whether a relation-
ship holds in a given state by determining whether it held in the previous state.

A third aspect of the frame problem, the rum@cation problem, applies to our
current formulation of the situation calculus: A derived relationship could persist
even when the basis for its derivation is terminated. Thus, in our previous example,
John would continue to want Book1 in state Sl even though he possesses it in state
Sl. This problem can be solved by restricting the frame axiom to nonderived
relationships:

Holds(r result(a s>> if Holds(r s>
and Primitive(r)
and not Terminate&a rl,

where “Primitive” only holds for nonderived relationships:

Primitive(r) if Holds(r SO)
Primitive(r) if Initiatesca r-1,

and no relationship is both primitive and derived.
Thus the two main advantages of the situation calculus are that it preserves

information about the past and that updates have semantic structure. The initia-
tion and termination of relationships is accomplished by adding event descriptions
without performing explicit deletions. Moreover, because of the possibility of
defining derived relationships by means of general rules, ramifications are dealt
with automatically by the system rather than explicitly by the user.

The main disadvantages are that

the computational cost of the frame axiom is unacceptably high for an imple-
mentation of temporal reasoning,

because of the use of global states, events need to be totally ordered, and

it is not possible to assimilate new information about the past.

132 ROBERT KOWALSKI

The event calculus addresses these disadvantages by associating local time periods
rather than global states with relationships. These periods are a function of the
event which initiates or terminates their associated relationships. Events them-
selves are given names, as is suggested by their representation in case semantics.

CASE SEMANTICS

Perhaps most natural-language-understanding systems developed in artificial intel-
ligence are based upon some form of case semantics. Many of these are presented
in a graphical, semantic-network notation. For example, the meaning of the
sentence

“Bob gave Book1 to John”

might be represented by a collection of nodes denoting individuals and arcs
denoting binary relationships as shown in Figure 3. The explicit treatment of the
event (named El here) as an individual facilitates, among other things, the later
addition of further information, e.g.

“It all happened in the park on (1 Jan 77) ”

by adding extra nodes and arcs as shown in Figure 4. Thus updates are performed
by adding information without deletion. Not only is past information preserved,
but information can be added in any order, independently of the order of events.

Events can be temporally related to one another without having concrete times
associated with them. For example,

“John gave Book1 to Mary after he read it”

might be represented by the network shown in Figure 5. Different event tokens of
the same type can be distinguished without their needing to be associated with
different times, e.g. Figure 6.

Events ordered by the “Earlier-than” relation need not be totally ordered and
can be concurrent. A sequence of events which takes place in one part of the world
need not be temporally related to a sequence of events taking place in another
part. Thus the notion of event is fundmental, and different from the notion of
time.

El

Bob

Give

Book1

John FIGURE 3.

DATABASE UPDATES IN THE EVENT CALCULUS 133

Bob

Give

Book1

John

Park

(1 Jan 7’7) FIGURE 4.

The great advantage of the case-semantics approach is its ability to represent
complex semantic situations. Its disadvantages result from the lack of a logical
framework:

General rules cannot be conveniently represented.

General-purpose inference mechanisms are not well defined.

Because the connection between events and the relationships they initiate and
terminate cannot be easily expressed, updates have no semantic structure.

These disadvantages can be overcome by reexpressing the concepts of semantic
networks in a logical formalism. The semantic-network representations, in particu-
lar, can be translated into logic simply by using constant symbols in place of nodes
and binary predicates in place of arcs. The network representing the semantics of

“Bob gave Book1 to John”,

John

Earlier-than FIGURE 5.

134 ROBERT KOWAJ_.SKl

Bob

E4

FIGURE 6.

for example, can be reexpressed by means of binary predicates:

Donor(E1 Bob)
Act(E1 Give)
Object(E1 Bookl)
Recipient(E1 John).

A similar, but slightly less flexible, representation can be obtained by using
predicates of greater arity, e.g.

Give(Bob Book1 John El)

or

Happens(give(Bob Book1 John) El).

Such a reformulation of case semantics in a logic-programming framework has
been one of the major influences on the development of the event calculus. Other
important influences have been the desire to associate time periods with relation-
ships, as in Stamper’s Leg01 [19] and Allen’s temporal logic [l, 21, and the desire to
structure updates by using general rules to connect events with the relationships
they initiate and terminate, as in the situation calculus.

THE EVENT CALCULUS

Here we introduce the event calculus in the database-update case where events are
used to derive initiated relationships only.

As in the situation calculus, the event calculus uses general rules to derive that
a new relationship holds as the result of an event. However, as in historical
databases, the event calculus associates time periods rather than global states with
relationships. Thus, for example, the states of our situation-calculus example can
be given the pictorial form in Figure 7. Here the small circles represent event
tokens which give rise to time periods rather than global state transitions. The
associated computational overheads will be discussed later.

DATABASE UPDATES IN THE EVENT CALCULUS 135

FIGURE 7.

Whereas in historical databases time periods are identified by giving their start
and end times, in the event calculus they are named by terms of the form

after(e r) ,

where the first argument is the name of the event which starts the time period and
the second argument in the name of the relationship itself. This second parameter
is needed to distinguish different time periods that might be started by the same
event, and that might be ended therefore by different events. For example, an
event E of John’s exchanging his possession of Book1 for Mary’s possession of
Apple1 initiates different periods:

after(E possess(Mary Bookl))

after(E possess(John Applel))

of possession by Mary and John respectively.
The use of a single term after(e I) in the event calculus to name time periods

has similar functionality to the use of start and end times in historical databases.
The event e which starts the period can be extracted directly from the name of the
period. The event which ends the period can be derived by means of a general rule
(similar to the persistence rule presented below) which expresses that an event e*
ends after(e r) if e* terminates r and no event between e and e* terminates r.
The advantage of the single term over explicit start and end times is that unknown
ends can be catered for without the need to introduce a fictitious infinite end
time, m.

The event calculus uses a general, one-argument predicate to express that a
relationship r holds for a period after(e r):

Holds(after(e r)) .

Similar to the restriction that the first argument of “Holds” in the situation
calculus names an atomic formula, the argument “r” in after(e r) is also restricted
to the name of an atomic formula.

Using this notation, the states of our situation calculus example can be de-
scribed by the assertions

Holds(after(E0 possess(Bob Bookl))
Holds(after(E0 possess(John Bookl))
Holds(after(E0 possess(Mary Book 3))
Holds(after(E1 possess(John Bookl))
Holds(after(E2 possess(Mary Bookl)).

136 ROBERT KOWALSKI

As with the corresponding sentences of the situation-calculus formulation, the first
three sentences describing the initial state would be given explicitly. The constant
symbol EO is used for convenience as the arbitrary name of an initializing event.
The two remaining sentences can be derived from descriptions of El and E2 by
means of general rules. (Similarly, the first three sentences could be derived from a
description of EO.)

In general, the fact that a relationship holds for a period of time can be derived
from an event description by means of a general rule (the initiation rule)

Holds(after(e I)) if Happens(e)
and Initiates(e r)

together with rules describing the relationships initiated by events. In this example,

Initiates(e possess(x y)) if Act(e Give)
and Recipientce x)
and Object(e y).

Thus, for example, the assertions

Holds(after(E1 possess(John Bookl)),
Holds(after(E2 possess(Mary Bookl))

can be derived from the event descriptions

Happens
Donor(E1 Bob)
Act(E1 Give)
Object(E1 Book11
Recipient(E1 John),

Happens(E2)
Donor(E2 John)
Act(E2 Give)
Object(E2 Bookl)
Recipient(E2 Mary).

That El occurred earlier than E2 can be represented by adding an assertion

Earlier-than(El E2)

or by associating explicit times with the events, e.g.

Time(El(1 Jan 77))
Time(E2 (25 Dee 89)).

Here we have employed a binary-predicate representation of events. This facili-
tates the treatment of incomplete event descriptions.

In the general form of the event calculus, the descriptions of El and E2 can be
added to the database in any order. In particular, partial information about El can
be intermingled with partial information about E2. Thus the event calculus
incorporates the characteristics of semantic network representations of case se-
mantics within a logic-programming framework. In addition it incorporates general
rules connecting events with the relationships they initiate (and terminate) as in
the situation calculus. The “Happens” predicate can be combined with other

DATABASE UPDATES IN THE EVENT CALCULUS 137

predicates over events, e.g.

“Possible”, “Planned”, “Permitted”,. “Obligated”.

Thus modality can be incorporated without the use of modal logic. Moreover, as
pointed out by Shanahan [17], general rules can be used to express that certain
events are caused (implied) by other events.

THE FRAME PROBLEM

The computational aspect of the frame problem arises in the situation calculus
when the frame axiom is used to reason that a given relationship holds in a given
state because it held in the previous state and was not terminated by the state
transition. In the event calculus we seek to avoid the computational inefficiencies
of the frame problem by reasoning instead that a relationship holds at a given time
point (which could be represented, for example, by a state, event, or date) if it
holds for a period including that time point. This can be given a pictorial
representation:

after(e r)
o- --__-->
e

\

2 r holdsat n

no e* happens between
e and n to terminate r.

This reasoning can be formalized by employing a predicate

names a relationship nt names a time point

The “HoldsAt” predicate in the event calculus is meant to serve the same function
as the “Holds” predicate in the situation calculus. We call the rule which defines it
the persistence axiom :

HoldsAt(r n) If Holds(after(e r))
and e <n
and not 3e* [Happens and

Terminates(e* r) and
e < e* and
e* I nl.

138 ROBERT KOWALSKI

Notice that the inequalities in this axiom have the effect that relationships hold for
open periods which do not include their start and end times. Other conventions
could also be employed.

We also need rules describing the relationships terminated by events. In this
case

Terminatesce posses& y)) if Act(e Give)
and Donor(e x)
and Object(e y).

Notice that, as in the situation calculus, we can also have general rules which
express ramifications. For example:

HoldsAt(wants(John x) n)if not HoldsAt(possess(John x) n) .

The ramification problem does not arise, because the persistence axiom, together
with the initiation rule, only applies to explicitly initiated (i.e. primitive) relation-
ships.

The persistence axiom states that once a relationship has been initiated, it
persists indefinitely into the future until it is terminated. In practice we might want
to add an extra condition to the axiom, limiting persistence to a period of time
which is reasonable for the relationship concerned.

More importantly, the persistence axiom needs to be revised to deal correctly
with incomplete information. For example, given only descriptions of the events

El: Bob gives Book1 to John
E3: Mary gives Book1 to Bob

El < E3,

the persistence axiom concludes that John and Bob have Book1 at the same time:

El
John has Book1

0 ___.......__ _______-_____,

E3
Bob has Book1

0 ._____......_.. ___________,

This is because E3 only terminates a previous state of possession of Book1 by
Mary.

We shall discuss later how to modify the persistence axiom to deal correctly
with incomplete information.

EXECUTION OF THE PERSISTENCE AXIOM

Here, to facilitate comparison with the situation calculus, we assume that events
are totally ordered and therefore give rise to a sequence of global states:

EO El En

DATABASE UPDATES IN THE EVENT CALCULUS 139

The existence of this sequence implies that numerical time points can be associ-
ated with events. For example, we can arbitrarily assume that Ei occurs at time i.

We shall also assume that, as in the situation-calculus case, we have complete,
relevant information about the past. The present form of the persistence axiom
deals correctly with this case.

We claim that under these assumption, the event calculus solves the epistemo-
logical and computational aspects of the frame problem. As in the situation
calculus, the use of general “Holds” and “HoldsAt” predicates, together with
negation as failure, solves the epistemological aspect of the frame problem. The
solution of the computational aspect depends upon an optimization of the execu-
tion of the persistence axiom. In the case of the situation calculus, the problem is
the excessive computation required to determine whether a relation R holds in a
state Sn (equivalently, at a time point n). Pictorially:

+.y&+& . ..* ..A$
The frame axiom requires us to find an event Ei earlier than Sn, which initiates

R, such that no event between Ei and En terminates R. This requires n - i
applications of the frame axiom together with subsidiary inference steps to estab-
lish the conditions of the frame axiom. The inefficiency of these inferences,
compared with the one inference required when destructive assignment is used to
perform updates in relational databases, is the computational aspect of the frame
problem, which the persistence axiom seeks to avoid.

To determine, under the same circumstances in the event calculus, that R holds
at time n, requires, in contrast, only ooze application of the persistence axiom. This,
however, subdivides into two subparts. The first subpart (consisting of the first two
conditions) finds an event Ei at a time before n which initiates R. The second
subpart (consisting of the four negated conditions) shows that no event occurring
after Ei, and before or at time n, terminates R. Establishing these two subparts has
a hidden computational overhead, which we now discuss.

The minimum overhead involved in applying the persistence axiom is the
number of inference steps contained in a successful proof. In the case of the first
subpart, therefore, we can ignore (for the time being) the work needed to find the
right event Ei, and count only the number of steps in a proof. This is six steps for
the first condition, plus one for the other, a total of seven. This number seven of
steps in a proof is independent of the problem in general and of the size of n and i
in particular. Of course, the size of n might well affect the complexity of finding
the right solution. We shall come back to this point after we discuss the complexity
of the second subpart.

The minimum overhead involved in the second subpart of the persistence
axiom, because it involves negation as failure, is all the work of showing that the

140 ROBERT KOWALSKI

four conditions inside the negation have no solution. This requires an exhaustive
search of the entire search space. However, different ways of solving the four
conditions give rise to search spaces of dramatically different size. The possibility
of solving the frame problem depends largely on the size of these search spaces,
and therefore on the way the four conditions are solved.

At one extreme, executing the conditions in the order in which they have been
written, with

Happens(e*)

first, it would be necessary to investigate all recorded events

EO,El,..., En,

showing that none of them satisfies the remaining three conditions. This is
computationally even worse than executing the frame axiom, which explores only
the events between Ei and En.

It is possible to reduce the size of the search space significantly by executing
conditions in a different order. For example, executing the condition

Terminates(e* r)

first, followed by

Happens(e*) ,

limits attention to those recorded events which are of the right type to terminate r.
There is still a search required to determine whether any of these occur between
Ei and En. In practice this might be almost efficient enough to be regarded as an
acceptable solution of the frame problem. In fact, we can find a better solution by
executing several conditions simultaneously.

The potential for simultaneous execution of conditions can be illustrated by
considering the two conditions

e <e* and e*sn

executed one at a time with e and n given, but e* variable. In PROLOG-style
execution, followed by the two remaining conditions, it is necessary to explore
e <e* infinitely many times. This is clearly impossible. The situation is not much
improved if the order of execution of the two conditions is reversed. The situation
is dramatically improved, however, if the two conditions are transformed into one,

say

Between(e e* n) ,

so that given e and n, only times between e and n are generated as values for e*.
(Here, for the sake of simplicity, we assume that e, e*, and n range over positive
integers.) This transformation is easily accomplished and is an established logic-
programming technique. In this case, if the new condition is executed before the
two other remaining, we simulate execution of the frame axiom by exploring all
events between Ei and En.

Such program transformation can be combined with more sophisticated “run-
time” execution strategies. Among the simplest of these is the use of indexing for
the associative retrieval of clauses. Our proposed solution of the frame problem is
based upon such associative retrieval: We propose that event descriptions, when

DATABASE UPDATES IN THE EVENT CALCULUS 141

they are input, be executed one step forward to derive the conclusions of the form

Terminates(e r)

which they imply, and that these conclusions be stored and indexed on their
second argument r. Moreover, the cluster of events all terminating the same
relationship should be ordered according to the time of occurrence. Given such an
indexed, ordered storage of “Terminates” relationships, to satisfy the second
subpart of the persistence axiom, it suffices to

(1) access the cluster of events terminating the relationship R, and

(2) search of an event, stored in the cluster, which has occurred between i
and n.

Both access to the cluster and search for one event occurring at an appropriate
time can be accomplished efficiently using conventional database storage and
accessing techniques.

Moreover, in the most frequently occurring case, where n is the “current time”,
i.e. after the latest event occurrence, it suffices to look at the latest-occurring event
within the cluster of events terminating R. This can be done without any search,
once the cluster has been found.

One further refinement of the execution strategy is necessary. To avoid the
potential inefficiency involved in searching for the right event Ei to solve the first
subpart of the persistence axiom, we should similarly derive “Initiates” relation-
ships by reasoning one step forward from event descriptions, to derive conclusions
of the form Initiatesce r). These conclusions can then be stored, indexing them on
their second argument r, and ordering them according to the time of occurrence of
events.

The persistence axiom as a whole can then be implemented in the following
way: To determine whether R holds at time IZ,

(1) (a) access the cluster of events initiating R;
(b) find the latest one of them, e, occurring before n;
Cc> if there is none, then R does not hold at time n; otherwise

(2) (a> access the cluster of events terminating R;
(b) find the latest one, e*, occurring before or at n;
(c) if e <e*, then R does not hold at time n;

otherwise, if e* < e or if there is no such e*, then
R holds at time n.

Accessing the cluster initiating R in (l)(a) and the cluster terminating R in (2)(a)
can be performed using hashing and other indexing techniques, with the same
efficiency as accessing R in a conventional relational database. Finding the latest
time e before n in (1Xb) and e* before or at n in (2Xb) can be accomplished in
logk time, where k is the size of the given cluster. Moreover, in the most
frequently occurring case, where IZ is the current time, finding e and e* can be
accomplished without any search, once the clusters have been found.

Furthermore, if there were never any reason to access historical (noncurrent)
data, it would suffice to store only the latest initiating event for each relationship.
Thus any nonempty cluster would “degenerately” consist of only a single event

142 ROBERT KOWALSKI

initiating a relationship which currently holds. This gives us an implementation
very similar to that obtained with destructive assignment in relational databases.

One final inefficiency, however, remains in our implementation. Every relation-
ship has to be stored redundantly for every event which initiates or terminates it.
This overhead can be minimized by merging the two clusters of events, initiating
and terminating a given relationship, into a single cluster ordered by the time of
occurrence of events. The two parts of the implementation (1) and (2) of the
persistence axiom can then be combined into one.

The various implementations of the persistence axiom which we have discussed
do not exhaust the possibilities. The important point is that some of these rival the
efficiency of destructive assignment in relational databases, and others incur a
computational overhead which seems acceptable in comparison with that encoun-
tered in the situation calculus.

THE ELIMINATION OF TIME PERIODS

As a further optimization in the special case we have been considering, where
events only initiate the persistence of relationships forward into time, time periods
can be eliminated altogether. This can be done simply by using the initiation axiom
to eliminate the Holds(after(e r)) condition of the persistence axiom, obtaining the
rule

HoldsAt(r n) if Happens(e)
and Initiates(e r)
and e<n
and not 3e* [Happens and

Terminates(e* r 1 and
e <e* and
e* <n]

Time periods play a more important role in the general case where events also
terminate relationships which persist into the past.

THE GENERAL CASE

In the general case an event description can give as much information about the
past as it does about the future. Thus, for example,

“Bob gave Book1 to John”

implies both that Bob had the book before and that John had the book after the
event. Both periods of time can be named as a function of the event and of the
relationship. We use the notation

before(e r)

names an event names a relationship

DATABASE UPDATES IN THE EVENT CALCULUS 143

to name the period for which the relationship r terminated by e holds. We can
also formulate axioms for persistence backward into time:

Holds(before(e r)) if Happens(e)
and Terminates(e r)

HoldsAt(r n) if Holds(before(e r))
and n <e
and not 3e* [Happens and

Initiates(e* r> and
n I e* and
e* <e].

In cases such as

o____________I ._....... ___,
e

where no e* terminating or initiating r occurs between e and e’, the two
persistence axioms give us two ways of concluding r holds between e and e’. This
redundancy can be avoided by approximately combining the two persistence
axioms into one.

Cases of incomplete information that call for assimilating information about the
past, such as those pictured in (a), (b), and (c) below, where information about
events occurring between e and e’ is missing, necessitate more dramatic revision of
the rules:

(a)

where r and r’ are incompatible, e.g. r = possess(xy), r’ = possess(x’y),
and X’ZX.

(b)

o_......L.._, 0 r:..._,
e e’

where r and r’ are incompatible or identical.

(c)

‘_____L....., r’ (_ ___.._.. ___o
e e’

where r and r’ are incompatible or identical.

The persistence rules as currently formulated allow us to conclude in such cases
that incompatible relationships hold at the same time.

Such undesirable consequences can be avoided in several ways. The simplest
solution in a case such as (b), for example, is to use integrity constraints to insist
that, whenever an event description is added to the database, then all of the
relationships terminated by the event are recorded in the database as holding just

144 ROBERT KOWALSKI

before the event. This solution is, however, very restrictive. For example, it would
rule out the event description of E3 in the situation where

El:
E3:

Bob gives Book1 to John
Mary gives Book1 to Bob
El < E3.

El
John has Book1 ~_____________ _____ ___.__,

E3
Bob has Book1

()__________ _..______.. --,

A much more powerful solution was presented in the original event-calculus
paper [9], where general rules imply the existence of unreported events. Pictorially:

(a)

(b)

Cc)

‘.____L ___.. cl ,....r:.....,
e e’

In the example of the events El and E3 above, this solution implies that there
must be an event E4, between El and E3, which terminates John’s possession of
Bookl:

El
John has Book1

E4
~___________ .._._._._..__ 0

E3 Bob has Book1 c)_________ ______ _________,

In the database-update case, a third solution, which incorporates forward but
not backward persistence, is also possible. In this approach, the condition

Terminates(e* r)

in the persistence rule is replaced by the condition

Breaks(e* r)

where Breaks is defined by

Breaks(e* r) if Terminates(e* t-1,

Breaks(e* r) if Terminates(e* r’) and Incompatible(r r’),

Breaks(e* r) if Initiates(e* r>,

Breaks(e* r) if Initiates(e* r’) and Incompatible(r r’).

In the example of the events El and E3 above, this approach implies that John’s
possession of Book1 persists until E3:

El E3
John has Book1 Bob has Book1

~___________________-_____.~__-____----___ . ..________.

DATABASE UPDATES IN THE EVENT CALCULUS 145

This loses the information that Mary possessed Book1 immediately before E3, but
avoids concluding that incompatible relationships hold at the same time.

This problem with reasoning about persistence in the context of incomplete
information also arises in the context of historical databases, where it is more
difficult to deal with because there is no underlying semantics of events.

CONCLUSION

The event calculus seeks to combine the expressive power of case semantics with
the deductive power of logic and the computational power of logic programming. It
follows the situation calculus in its use of general rules to impose semantic
structure on updates, while at the same time attempting to avoid the frame
problem. In the course of doing so we have hoped to achieve, without explicitly
incorporating deletion in updates, the efficiency obtainable with destructive assign-
ment in relational-database updates. Thus we have aimed to obtain the advantages
of the other approaches without incurring their disadvantages.

I am grateful to Marek Sergot and Murray Shanahan for discussions about the event calculus, to Fariba

Sadri and Sury Sripada for helpful comments on earlier drafts of this paper, and to Lode Missiaen for

pointing out the significance of the ramification problem. This research was supported by the Science
and Engineering Research Council in the context of the Alvey Programme.

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Allen, J. F., Maintaining Knowledge about Temporal Intervals, TR-86, Computer
Science Dept., Univ. of Rochester, Jan. 1981, Comm. ACM 26:832-843 (1983).
Allen, J. F., Towards a General Theory of Action and Time,” Artif. Intefl. 23:123-154
(1984).

Clark, K. L., Negation as Failure, in: H. Gallaire and J. Minker (eds.), Logic and
Databases, Plenum, New York, 1978, pp. 293-322.

Clifford, J. and Warren, D. S., Formal Semantics for Time in Databases, ACM Trans.
Database Systems 8(2):214-254 (1983).

Eshghi, K. and Kowalski, R. A., Abduction Compared with Negation by Failure, in:
Fifth International Conference on Logic Programming, MIT Press, 1989.

Hanks, S. and McDermott, D., Nonmonotonic Logic and Temporal Projection, Artif.
Intell. 33(3):379-412 (1987).
Jones, S., Mason, P. J., and Stamper, R. K., Legal-2.0: A Relational Specification
Language for Complex Rules, Inform. Systems 4, No. 4 (1979).
Kowalski, R. A., Logic for Problem Soloing, North Holland, New York, 1979.

Kowalski, R. A. and Sergot, M. J., A Logic-Based Calculus of Events, New Generation
Comput. 4:67-95 (1986).
Kowalski, R. A. and Sadri, F., Knowledge Representation without Integrity Constraints,
Dept. of Computing, Imperial College, 1988.

Lee-Coelho-Cotta, Temporal Inferencing on Administrative Databases, Inform. Systems
10(2):197-206 (1985).

Lloyd, J. W. and Topor, R. W., Making Prolog More Expressive, J. Logic Programming
1(3):225-240 (1984).

146 ROBERT KOWALSKI

13.

14.

McCarthy, J., Situation, Actions, and Causal Laws, Memo 2, Stanford Artificial Intelli-
gence Project, 1963.

15.

16.

17.

18.

19.

20.

21.

22.

McCarthy, J. and Hayes, P. J., Some Philosophical Problems from the Standpoint of
Artificial Intelligence, in: B. Meltzer and D. Michie, (eds.), Machine Intelligence, 4,
Edinburgh U.P., Edinburgh, 1969, pp. 463-502.

Sadri, F., Three Recent Approaches to Temporal Reasoning, in: A. Galton ted.),
Temporal Logics and Their Applications, Academic, 1987, pp. 121-168.

Sernadas, A., Temporal Aspects of Logical Procedure Definition, Inform. Systems
5(3):167-187 (1980).
Shanahan, M., Representing Continuous Change in the Event Calculus, Dept. of
Computing, Imperial College, London, 1989.

Snodgrass, R., The Temporal Query Language TQuel, ACM Trans. Database Systems
12(2):247-298.

Stamper, R. K., The Leg01 Project and Language, in: Proceedings of the Datafair
Conference, British Computer Sot., London, 1973.
Stonebraker, M., The Design of the Postgress Storage System, in: Proceedings of VLDB,
Morgan Kaufmann, 1987, pp. 289-300.

23.

Sripada, S. M., A Logical Framework for Temporal Deductive Databases, in: Proceed-
ings of VLDB, Morgan Kaufmann, 1988, pp. 171-182.

Takeuchi, A. and Furukawa, K., Partial Evaluation of Prolog Programs and Its Applica-
tion to Metaprogramming, in: Proceedings of ZFZP 86, North Holland, 1986, pp.
415-420.

Evans, C., Negation-as-Failure as an Approach to the Hanks and McDermott Problem,
Dept. of Computing, Imperial College, 1988.

