
INTEGRITY CHECKING IN DEDUCTIVE DATABASES

Robert Kowalski Fariba Sadri Paul Soper

Department of Computing
Imperial College of Science and Technology

180 Queen’s Gate
London SW7 2BZ

We describe the theory and implementation of a general
theorem-proving technique for checking integrity of
deductive databases recently proposed by Sadri and
Kowalski. The method uses an extension of the SLDNF
proof procedure and achieves the effect of the simplification
algorithms of Nicolas, Lloyd, Topor et al, and Decker by
reasoning forwards from the update and thus focusing on
the relevant parts of the database and the relevant
constraints.

Formalisation of the procedure using logic as meta-
language forms the basis of our implementation in Prolog.
It is further shown that in the absence of implicit deletions
a transformation of the database clauses and constraints
allows the method to be implemented with efficiencies
comparable to implementations of Prolog.

(1) Introduction

This paper continues the development of the Consistency

Method for checking integrity in deductive databases
recently proposed by Sadri and Kowalski [ll]. The
method is designed to exploit the assumption that the

Permission to copy without fee all or part of this
material is granted provided that the copies are not made
or distributed for direct commercial advantage, the
VLDB copyright notice and the title of the publication
and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment.
To copy otherwise, or to republish, requires a fee and/or
special permission from the Endowment.

database satisfies its constraints before the transaction, and
thus any violation afterwards must involve at least one of
the updates in the transaction. It does this by using a proof
procedure that allows reasoning forwards from the updates,
which has the effect of focusing attention only on the parts
of the database and the constraints that are affected by the
updates.

This approach contrasts with Prolog-based implementations
of deductive databases which rely on the purely backward
reasoning strategy of SLDNF [6]. Backward reasoning is
well-suited for evaluating queries to a fixed database but not
for checking the integrity of a changing database. The
simple approach of evaluating all the integrity constraints
as queries after each transaction can suffer from
unacceptable inefficiencies, because it fails to exploit the
assumption that the database satisfies its constraints prior
to the transaction, and may redundantly recheck constraints
which are unaffected by the transaction.

Methods for avoiding this redundancy have been proposed
by Lloyd, Topor et al (called L4T from now on) [7,8, 131
and Decker [3]. Their simplification algorithms extend
Nicolas’ algorithm for relational databases [lo] and consist
primarily of two stages. The first stage derives from the
transaction a simplified set of constraints, which is
possibly smaller and more highly instantiated than the
original set, and whose satisfaction ensures the validity of
the updated database. The second stage evaluates the
simplified constraints using the SLDNF proof procedure.
The Consistency Method achieves the effect of such
simplification algorithms while remaining within a
uniform theorem-proving framework

Proceedings of the 13th VLDB Conference, Brighton 1987 61

The proof procedure adopted for this method extends
SLDNF by

0 allowing forward reasoning as well as backward
reasoning,

0 incorporating additional inference rules for reasoning
about implicit deletions caused by changes to the

-ase,and
0 incorporating a general&d resolution step, which is

needed for reasoning forwards from negation as
failure.

The procedure is identical to SLDNF whenever the top
clause is a denial. When the top clause comes from the
transaction, the proof procedure can approximate the
simplification algorithms of UT and Decker, by employing
different literal selection and search strategies. These
strategies are discussed in detail in [111.

Our implementation in Prolog is based on a me&level
formalisation of the new proof procedure in Horn clause
logic augmented by negation as failure. The formalisation

functions as a meta-interpreter and is consequently less
efficient than an implementation that runs directly in
Prolog. We show that in special cases a simple
transformation of the database and the integrity constraints
allows us to dispose of the meta-interpreter and to run the
integrity checking method directly in Prolog.

The paper is organised as follows. The Consistency
Method is described informally in Section 2. Section 3
presents a formalisation of the method, which forms the
basis of our implementation described in Section 4.
Finally, in Section 5 we propose a more efficient
implementation for a special case.

(2) The Consistency Method

The Consistency Method is a method for checking integrity

in range-restricted deductive databases.

A deductive dutubuse D is a finite set of deductive rules of

the form

A c-- Ll and . . . and Ln, n20,

where the conclusion A is an atomic formula (atom), each
condition Li is a literal, i.e. an atom (a positive condition)

or a negated atom (a negative condition), and all variables
are assumed to be universally quantified over the whole of
the rule. When n=O the deductive rule is also called a fact.
When n > 0 the rule is said to be non-atomic.

D is range-restricted if for each rule c every variable of c
occurs in a positive condition of c. This is a standard
restriction to ensure that negative conditions can be fully
instantiated before evaluation. This restriction corresponds
exactly to Decker’s “range-restriction” [2] and Lloyd and
Topor’s “allowed” [9] conditions.

Integrity constraints are closed first-order formulae that D
is required to satisfy. The set of constraints I specified for
D is assumed to be consistent. The Consistency Method
deals directly with constraints that have the form of a
denial

<-- L1 and . . . and L,,

where the Li are literals and variables are assumed to be

universally quantified over the whole formula. More
general constraints (including those with conclusions
having existentially quantified variables) can be
transformed into this form as described in [111. From now
on in this paper, without loss of generality, we assume that
integrity constraints are in the form of denials.

The Consistency Method appeals to the consistency view
of constraint satisfaction, according to which D satisfies I
if and only if the set Comp(D)uI is consistent. u denotes
the set union operation. Camp(D), the completion of the
database, is essentially D together with the only-if version
of the rules in D and an appropriate equality theory [1,6].
The relationship between this view of constraint
satisfaction and the more usual view which insists that the
constraints be theorems of Camp(D) is discussed in [111.

By taking the integrity constraints in I as top clauses the

62 Proceedings of the 13th VLDB Conference, Brighton 1987

SLDNF proof procedure can be used to check if
Comp(D)uI is consistent. This, however, fails to exploit

the assumption that D satisfies its constraints prior to the
transaction. The Consistency Method takes advantage of
this assumption by taking each update as a top clause in a
proof procedure which extends SLDNF.

Suppose a transaction T is performed on D and I to give an
updated database DT and an updated set of constraints IT.
The Consistency Method takes DTuIT as input set and
each update in T as a candidate top clause. If an update is
the insertion of a rule or constraint, the update stands as top
clause as it is. If it is the deletion of a fact A the top clause
associated with it is NOT(A), provided that A is not
implicit (i.e. derivable) in DT. If A is implicit in DT the
update does not alter the logical content of the database.
(We assume that an update of deleting a fact only deletes
the explicit occurrence of that fact). Updates that are
deletions of constraints cannot cause inconsistency and are
not considered as top clauses. Finally, if an update is the
deletion of a non-atomic rule then, following Decker, we
determine which instances of the conclusion of the rule are
deleted as a result of deleting the rule. The negations of
these deleted atoms are then candidate top clauses.

In SLDNF the top clause can only be a denial. All
subsequent formulae in a derivation are either denials or the
empty clause. To reason forwards from updates, the proof
procedure underlying the Consistency Method allows as top
clause any deductive rule, denial or negated atom.
Subsequent formulae in the derivation may be any of these,
the empty clause, or a formula of the form

(*) NOT(A) <-- Ll and . . . and Ln, n 2 1,

where A is an atom and the Li are literals. This last type

of formula can be obtained by an application of the
inference rules for implicit deletions, which are &scribed in
the next section. For convenience, in the sequel, we use

the term clause to refer to any deductive rule, denial,

negated atom or formula of the form (*).

A derivation according to the new proof procedure is a

sequence of clauses

such that Co is a top clause and Ci+l is obtained from Ci

as follows. If the selected literal Of Ci is a condition Of Ci

then Ci+ 1 is obtained exactly as in SLDNP. If the selected

literal is a conclusion then Ci+l is either the resolvent of
Ci and an input clause (using the standard or a generalised

resolution step), or it is a clause &rived by an application
of an inference rule for implicit deletions. The examples
below help illustrate the proof procedure further. A formal
definition is given in the next section.

A detailed description of the Consistency Method is given
in [ll] where it is proved correct in general and complete
when the database contains no negative conditions and the
transaction contains no deletions. Correctness of the
method means that if we obtain a refutation with an update
as top clause then the updated database violates its
constraints. In cases where the method is complete we can
conclude that Comp(DT)uIT is consistent if all top clauses
associated with the updates in T lead to fmitely failed search
spaces.

Example 1: Suppose we have the following database,
constraint and transaction. Here “Dependent(x y)” means x
is a dependent of y. In this paper all constant and predicate
symbols start in the upper case, and all variables and
function symbols are in the lower case.

D: Right-residence(x) <--
Registered-alien(x) and
NOT(Criminal-record(x)) (RI)

Right-residence(x) <-- Citizen(x) 032)

Citizen(Tom) (R3)
Dependent(Jo Tom) (R4)
Departed (RR
Deported(Jack) (W

I: <-- Right-residence(x) and Deported(x) (w)

T: Add the rule
Right-residence(x) c--

Citizen(y) and Dependent(x y)

Proceedings of the 13th VLDB Conference, Brighton 1987 63

D satisfies I. To check if the updated database DT satisfies
the constraint we use the update as top clause, with DTuI
as input set. We obtain the following search space, where
the selected literals are underlined and [] denotes the empty
clause:

Right-residence(x) c-- Q&&y) and Dependent(x y)

I (R3)
Right-residence(x) e-- DeDendent(x

The search space consists of one refutation illustrating that
the updated database violates the integrity constraint.

Example 2:
D: As for Example 1 plus the following facts:

criminal-mrd(Frimk) (R7)
Registered-alien(Frank) (RQ
-d) (R9)

I: Same as Example 1

T: Delete Criminal-record(Frank)

D satisfies I. By taking NOT(Criminal-record(Frank)) as
top clause we show that DT violates I. The first step is a
generalised resolution step, which allows negated atoms to
be resolved upon.

I (RI)
m <-- Registered-alien(-

0
<--

& .) andDeported(Frank)

I t-W
<--v

I (R9)
[I

Example 3:
D: Same as Example 2 plus the following facts:

Employed(Alan) (RlO)
Registered-alien(Alan) CR111

I: <-- Employed(x) and
NOT(Right-residence(x)) 09

T: Add Criminal-record(Alan)

D satisfies I. To check if DT still satisfies the constraint,
we use the update as top clause, as before, but now there is
no input clause with which it can resolve. However,
intuitively, the addition of the fact “Criminal-record(Alan)
implicitly deletes the fact “Right-residence(Alan)” , which
was provable in the database before the update. Thus
“NOT(Right-residence(Alan))” is provable in the updated
database as a consequence of the update. Since
“Employed(Alan)” is also provable in this database, the
constraint is violated. We need to reason as follows:

(R) because in DT
Criminal-mrd(Alan) holds and we have
Right-residence(x) <-- Registered-alien(x) and

NOT(Criminal-record(x))
and we have no other way of proving
Right-residence(Alan) and
Right-residence(Alan) was provable in D
then Right-residence(Alan) is deleted
Thus NOT(Right-residence(Alan)) is provable in DT.

Assuming that we have an inference rule that allows us to
reason in this way, we obtain the following search space
illustrating the violation of the constraint in the updated
database.

There is another symmetric way in which implicit deletion

64 Proceedings of the 13th VLDB Conference, Brighton 1987

can occur: when the deletion of a fact implicitly deletes
another. For example the deletion of the fact A in the
database {A, B<--A} implicitly deletes B. In the next
section we show how inference rules for implicit deletions
can be general&d and forma&d.

(3) Formalisation of the Proof Procedure

The proof procedure is defined using logic as meta-language
where the object language is that of the database and the
integrity constraints.

To formalise the proof procedure we define a relation
Refute(s c) which means that there is a refutation with s as
input set and c as top clause. If c is a denial and s a set of
deductive rules then Refute(s c) is equivalent to the usual
SLDNF provability.

The resolution (standard and generalised) and negation by
failure inference rules are formalised by R2 and R3,
respectively, together with the base case Rl:

(Rl) Refute(s [1)
(R2) Refute(s c) <-- Select(1 c) and

In(d s) and
Resolve(d c 1 r) and
Refute(s r)

(R3) Refute(s c) <-- Select(+not@) c) and
NOT(Refute(s c-p)) and
Remove(c <-not(p) r) and
Refute(s r)

Select(1 c) means literal 1 is selected from clause c via a safe
literal selection strategy. A literal selection strategy is safe
if it does not select negative conditions unless they contain
no variables. In “Select” and “Remove” the term
“<-not(p)” denotes an occurrence of the literal “NOT(p)” in
the conditions of a clause. Later we use the notation

“1~-” to denote an occurrence of a literal 1 in the conclusion
of a clause.
Remove(c 1 r) means r is the clause c from which an
occurrence of literal 1 is removed.
Resolve(d c 1 r) means r is the resolvent of clauses d and c

on literal 1.

In(d s) means d is a clause in s.
“<-” and “not” are names for I’<--‘I and “NOT”.

In (R2) and (R3) an implicit, Prolog-like, unification has
been assumed. An alternative approach would be to treat
unification explicitly as in the definition of provability
given in [5].

Let DT and IT name the updated database and the updated
set of integrity constraints obtained after performing the
transaction T on database D and constraints I. Then rules
(R4) and (R5) cater for the cases of implicit deletions
resulting from additions and deletions, respectively. R4
generalises rule R of Example 3 and R5 deals with’the
symmetric case.

(R4) Refute@TuIT xc-c) <--
Select(x<- xc-c) and
In(ae-b DT) and
On(not(x) b) and
Deleted(DT D a) and
Refute(DTuIT not(a)<-c)

(RS) Refute@TuIT not(x)<-c) <--
Select(not(x)<- not(x)<-c) and
In(a<-b DT) and
On(x b) and
Deleted(DT D a) and
Refute@TuIT not(a)<-@

On(l b) means literal 1 occurs in the conjunction of literals
b. In (R4) and (R5) the variable c stands for a (possibly
empty) conjunction of literals.
Deleted(DT D a) means fact a is provable in database D but
not in the updated database DT, i.e.

(R6) Deleted(DT D a) <-- Refute(D <-a) and
NOT(Refute(DT <-a))

We now have all the rules we need for defining the relation
“Refute” (apart from rules for the subsidiary relations “In”,
“On”, etc.). Let “transact(al dl)” represent the transaction T

Proceedings of the 13th VLDB Conference, Brighton 1987 65

which consists of a set of additions al and a set of deletions
dl. The following rules, which should be considered as part
of the database management system rather than the proof
procedure, automatically generate all the updates in T as
candidate top clauses.

(Il) IC-Violated(DTuIT transact@ dI)) <--
On(a al) and
Refute(DTuIT a)

(I2) IC-Violated(DTuIT transact(al dl)) <--
On(a+b dl) and
Deleted(DT D a) and
Refute(DTuIT not(a))

Note that (12) also deals with the case where “a<-b” is a
fact, i.e. when b is empty. Sadri and Kowalski’s
formalisation does not cater for updates that modify the
integrity constraints. We have changed their formalisation
slightly to deal with such updates. Newly ad&d constraints
are generated as top clauses by (Il), and deleted constraints
are correctly ignored by (I2).

To check if DT satisfies constraints IT, we have to
determine whether “IC-Violated@TuIT transact@ dl))” is
a logical consequence of our formalisation. If we can prove
that it is a theorem then the constraints are violated in DT.

(4) Implementation

The Consistency Method for integrity checking has been
implemented in Sigma-Prolog running under Unix on the
Sun III (see 1121 for a detailed account).The interesting
features of this implementation are:

0 the representation of the object level clauses,
0 the implementation of reasoning with the two

databases D and DT which is required for rule R6,
0 the use of indexing information about input clauses

to guide selection of candidate clauses for resolution,
thus providing a reasonably efficient search control.

We discuss each of these features, in turn.

The theorem-prover consists essentially of the clauses for
“Refute” and the necessary subsidiary definitions. These are
represented directly using Sigma-Prolog notation, that is as
lists of the form (Ml...M,), n 1 1, where each Mi has the
form (predicatelarguments) and MI is the conclusion of the
clause.

Object level clauses are represented by terms in the meta-
language. They are represented as lists of the form
(Ll...I&, n2 1, where each Li has the form
(side sign predicatelarguments). “side” is either “Cone”
indicating that the literal is the conclusion of the clause or
it is “Cond” indicating that the literal is in the conditions.
“sign” is either “Pas” for atoms or “Neg” for negated
atoms.

The integrity checking method requires reasoning with the
initial database D and the updated input set DTuIT. These
sets are represented by clauses of the form

((Member set clause-name clause))

signifying that “clause” belongs to the set named “set” and
is given the name “clause-name”. These clauses are
maintained automatically by preprocessing the initial
database and the transaction T. The reason for introducing
“clause-name” will become clear shortly when we discuss
selection of candidate clauses for resolution. In the
implementation “set” is either “OLD”, “NEW” or a
variable. Clauses identified by the term “OLD” belong to
D-DT, where “-” denotes set difference. Those identified by
“NEW” belong to (DT-D)uIT, and those identified by a
variable belong to both databases D and DT. Thus to
access clauses in DTulT we use the identifier “NEW”, and
to access those in D we use “OLD”.

With this convention the top-level Sigma-Prolog goal for
integrity checking, for example, is

?((IC-Violated NEW (transact al dl)))

One potential source of inefficiency in the proof procedure
is the search involved in rule (R2) for an input clause that

66 Proceedings of the 13th VLDB Conference, Brighton 1987

can be resolved with a clause in the derivation on its

selected literal. In SLDNF all selected literals are condition
literals and therefore SLDNF only needs to search the
input set to fmd conclusions which unify with the selected
literal. In the new proof procedure, however, selected
literals can come from the conclusion as well as from the
conditions of clauses. This requires a larger search over the
totality of literals in the input set, looking for unifying
conditions as well as conclusions. To reduce this search,
for each predicate occurrence “predicate” in each clause in
the input sets we include an assertion of the form

(Possible-Resolve input-set clause-name i (side sign

predicate))

in the meta-level database. This assertion means that the
input clause identified by “input-set clause-name” can
potentially resolve (apart from unification of arguments) on
its i-th literal with a clause whose selected literal is
represented by (side sign predicatelarguments). These
assertions are generated automatically, given the two
databases and the constraints. Them are as many “Possible-
Resolve” assertions as there are literal occurrences in the
databases and the constraints. Rule (R2) is rewritten to use
this set of assertions:

((Refute input-set clause)
(Select (side sign predicatehirguments)

clause)
(Possible-Resolve input-set clause-name i

(side sign predicate))
(Member input-set clause-name input-clause)
(Resolve-i inputclause i clause

(side sign predicatelarguments)
resolvent)

(Refute input-set resolvent))

Note that “Resolve-i”, as compared to “Resolve” in (R2),
has an extra argument i which allows fast retrieval of the
unifying literal in the input clause. Rules (R4) and (R5)
can also be rewritten to exploit the relation “Possible-
Resolve”.

(5) An Alternative Implementation

Without the inference rules for implicit deletions the proof
procedure relies entirely on negation as failure and input
resolution. In this form it might be viewed as a fairly
minor extension of Prolog’s SLDNP proof procedure, and
one which, intuitively, should be implementable with
comparable efficiency. In this section we show how in this
case the need for a meta-interpreter, which is the major
overhead of our system, can be avoided by transforming the
input clauses.

The “Possible-Resolve” assertions described earlier record
for each input clause the literals by which that clause can
be entered (i.e. any literal of the clause). Instead of
allowing arbitrary literals of input clauses to be resolved
upon, we can restrict resolution to the conclusion literal
only, if we replace each input clause by as many copies as
there are literal occurrences in the clause, with each literal
as the conclusion of one of the copies. We add an extra
argument to each literal in these copies to indicate whether
it comes from the conclusion or the conditions of the
original clause c . A “+” argument signifies that the literal
is on the same side of “<--” as in c; a “-” argument
signifies that it has changed side. This transformation
allows us to use Prolog’s backwards search to reason
forwards as well as backwards.

Example: Input clause
M(x y) c-- N(x y) and NOT(K(y))
is replaced by
M(+ x y) <-- N(+ x y) and NOT(K(+ y))
N(- x y) <-- M(- x y) and NOT(K(+ y))
NOT(K(- y)) <-- M(- x y) and N(+ x y).

We must also transform all top clauses into denials. For
example, if an update is the addition of a rule P(x)<--Q(x)
then the transformed top clause is “c--P(- x) and Q(+ x),,.

If an update is the deletion of an atom P(A) then the
transformed top clause is <--NOT(P(- A)).

Proce&mgs of the 13th VLDB Conference, Brighton 1987 67

Example:

D:

I:

T:

R(x Y) <-- PO0 and Q(Y)
Q(A)
Q(B)
T(A)

<-- NOT(T(y)) and R(x y)

Aa P(A)

(RI)
WI

(R3)
(R4)

(11)

This is transformed to:

D’: R(+ x y) <-- P(+ x) and Q(+ y) (R1.l)
P(- x) <-- R(- x y) and Q(+ y) (R1.2)
Q(- y) <-- P(+ x) and R(- x y) (R1.3)

Q(+ A) W.1)
Q(+ W (R3.1)

T(+ A) (R4.1)

I. 1. NOT(T(- y)) <-- R(+ x y) (11.1)
R(- x y) <-- NOT (T(+ y)) (11.2)

T’: Add P(+ A)

Using <--P(- A) as top clause with Prolog’s backward
reasoning strategy and left to right literal selection strategy
(with a safety condition on the literal selection), we obtain
the following search space.

which it does not [‘I which it does

Note that a condition of the form NOT(P(+ args)) can be
eliminated only if it is solved by the negation as failure
rule, whereas one of the form NOT(P(- args)) can be

eliminated only through resolution with an input clause.

Using the same literal selection strategy but reasoning
forwards from T with DTuIT as input set we obtain a
search space that has a similar structure to the one above.
In general, backward reasoning from the transformed
version of the updates using the transformed version of the
input set simulates forward reasoning from the original
updates using the original input set.

This discussion shows that in the absence of implicit
deletions our integrity checking method can be
implemented directly in Prolog. If we accept Prolog’s
literal selection and search strategies we have no need for a
special interpreter and can expect efficiencies comparable to
implementations of Prolog. We are currently investigating
transformations that would also allow us to dispose of the
meta-interpreter in the general case where implicit deletions
are possible.

(6) Conclusion

We have described a method for checking integrity in
deductive databases which achieves the effect of the
simplification algorithms of VI’ and Decker and which is
based on a unified theorem-proving framework. The
method uses a proof procedure that is an extension of
SLDNF and which allows forward as well as backward
reasoning.

We have also described an implementation of this method
which shows its feasibility but which also exposes
potential inefficiencies. A major overhead is that our

system requires a meta-interpreter. We have seen, however,
that in the absence of implicit deletions this interpreter can
be disposed of. Further work is needed to investigate the
possibility of implementing the method directly in Prolog
for the general case.

The use of a linear resolution proof procedure as the basis
for the Consistency Method makes it easy to compare the
method with other simplification algorithms, but is not
essential in our approach. This linear proof procedure has

68 Proceedings of the 13th VLDB Conference, Brighton 1987

the well-known inefficiencies of SL-resolution which are
avoided in the connection graph procedure [4], for example.
It would be interesting to investigate how a connection
graph proof procedure might be extended to form the basis
of the integrity checking method.

PI

131

In this paper we have discussed only the basic ingredients
of the method and it can be improved in many ways.
Because it is imbedded within a general-purpose proof
procedure, it can, for example, exploit well-researched
domain independent heuristics for literal selection and
search [S] to enhance efficiency.

141

151

[61

We believe that the Consistency Method proof procedure
can be useful for a wider range of applications in addition to
integrity checking. Forward reasoning is essential for
knowledge assimilation as a whole, only one component of
which is integrity checking. On adding new data to a
knowledge base (kb) we may not only want to check the
integrity of the updated kb, but we may want to determine
to what extent the new data interacts deductively with the
rest of the kb, if it is totally independent of the kb,
redundantly implied by the kb, or implies part of the kb.

171

P31

191

The ability to mix forward and backward reasoning is also
useful for many expert system applications, which often
require a flexible mixture of different modes of reasoning.

DOI

Acknowledgements
1111

We would like to thank Hendrik Decker, Kave Eshghi,
Jean-Marie Nicolas and Rodney Topor for many helpful
discussions. We are grateful to Kave Eshghi for his
assistance in implementing the theorem-prover. WI

This work was supported by the Science and Engineering
Research Council.

References

[l] Clark, K. L. “Negation as failure”, in Gallaire, H.
and Minker, J. (eds): “Logic and Data Bases”,
Plenum, 1978,293-322.

[I31

Decker, H. “The Range Form or How to Avoid
Floundering”, Internal Report KB-26, May 1987,
ECRC, Munich.
Decker, H. “Integrity Enforcement on Deductive
Databases”, Proc. EDS 86, Charleston, South
Carolina, USA, 1986.
Kowalski, R. A. “A Proof Procedure Using
Connection Graphs”, JACM vol 22, number 4,
1974,572-595.
Kowalski, R. A. “Logic for Problem Solving”,
Elsevier North Holland, 1979.
Lloyd, J. W. “Foundations of Logic Programming”,
Springer Verlag, Symbolic Computation Series,
1984.
Lloyd, J. W., Sonenberg, E. A. and Topor, R. W.
“Integrity Constraint Checking In Stratified
Databases”, Technical Report 86/5, Department of
Computer Science, University of Melbourne, 1986.
Lloyd, J. W. and Topor, R. W. “A Basis for
Deductive Database Systems”, J. Logic
Programming, ~012, number 2, 1985,93-X)9.
Lloyd, J. W. and Topor, R. W. “A Basis for
Deductive Database Systems II”, J. Logic
Programming, ~013, number 1, 1986,55-67.
Nicolas, J. M. “Logic for Improving Integrity
Checking in Relational Data Bases”, Acta
Inform&a, vol 18, number 3, 1982,227-253.
Sadri, F. and Kowalski R. “An Application of
General Purpose Theorem-Proving to Database
Integrity”, to appear ‘in Minker, J. (ed): “Proceedings
of the Weorkshop on Foundations of Deductive
Databases and Logic Programming”, Morgan
Kaufmann, Los Altos, Ca, 1987.
Soper, P. J. R. “Integrity Checking In Deductive
Databases”, M.Sc. Thesis, September 1986,
Department of Computing, Imperial College,
University of London.
Topor, R. W., Keddis, T. and Wright, D. W.
“Deductive Database Tools”, Technical Report 8417,
Revised August 23,1985, Department of Computer

Science, University of Melbourne.

Proceedings of the 13th VLDB Conference, Brighton 1987 69

