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We describe the theory and implementation of a general 
theorem-proving technique for checking integrity of 
deductive databases recently proposed by Sadri and 
Kowalski. The method uses an extension of the SLDNF 
proof procedure and achieves the effect of the simplification 
algorithms of Nicolas, Lloyd, Topor et al, and Decker by 
reasoning forwards from the update and thus focusing on 
the relevant parts of the database and the relevant 
constraints. 

Formalisation of the procedure using logic as meta- 
language forms the basis of our implementation in Prolog. 
It is further shown that in the absence of implicit deletions 
a transformation of the database clauses and constraints 
allows the method to be implemented with efficiencies 
comparable to implementations of Prolog. 

(1) Introduction 

This paper continues the development of the Consistency 

Method for checking integrity in deductive databases 
recently proposed by Sadri and Kowalski [ll]. The 
method is designed to exploit the assumption that the 
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database satisfies its constraints before the transaction, and 
thus any violation afterwards must involve at least one of 
the updates in the transaction. It does this by using a proof 
procedure that allows reasoning forwards from the updates, 
which has the effect of focusing attention only on the parts 
of the database and the constraints that are affected by the 
updates. 

This approach contrasts with Prolog-based implementations 
of deductive databases which rely on the purely backward 
reasoning strategy of SLDNF [6]. Backward reasoning is 
well-suited for evaluating queries to a fixed database but not 
for checking the integrity of a changing database. The 
simple approach of evaluating all the integrity constraints 
as queries after each transaction can suffer from 
unacceptable inefficiencies, because it fails to exploit the 
assumption that the database satisfies its constraints prior 
to the transaction, and may redundantly recheck constraints 
which are unaffected by the transaction. 

Methods for avoiding this redundancy have been proposed 
by Lloyd, Topor et al (called L4T from now on) [7,8, 131 
and Decker [3]. Their simplification algorithms extend 
Nicolas’ algorithm for relational databases [lo] and consist 
primarily of two stages. The first stage derives from the 
transaction a simplified set of constraints, which is 
possibly smaller and more highly instantiated than the 
original set, and whose satisfaction ensures the validity of 
the updated database. The second stage evaluates the 
simplified constraints using the SLDNF proof procedure. 
The Consistency Method achieves the effect of such 
simplification algorithms while remaining within a 
uniform theorem-proving framework 
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The proof procedure adopted for this method extends 
SLDNF by 

0 allowing forward reasoning as well as backward 
reasoning, 

0 incorporating additional inference rules for reasoning 
about implicit deletions caused by changes to the 

-ase,and 
0 incorporating a general&d resolution step, which is 

needed for reasoning forwards from negation as 
failure. 

The procedure is identical to SLDNF whenever the top 
clause is a denial. When the top clause comes from the 
transaction, the proof procedure can approximate the 
simplification algorithms of UT and Decker, by employing 
different literal selection and search strategies. These 
strategies are discussed in detail in [ 111. 

Our implementation in Prolog is based on a me&level 
formalisation of the new proof procedure in Horn clause 
logic augmented by negation as failure. The formalisation 

functions as a meta-interpreter and is consequently less 
efficient than an implementation that runs directly in 
Prolog. We show that in special cases a simple 
transformation of the database and the integrity constraints 
allows us to dispose of the meta-interpreter and to run the 
integrity checking method directly in Prolog. 

The paper is organised as follows. The Consistency 
Method is described informally in Section 2. Section 3 
presents a formalisation of the method, which forms the 
basis of our implementation described in Section 4. 
Finally, in Section 5 we propose a more efficient 
implementation for a special case. 

(2) The Consistency Method 

The Consistency Method is a method for checking integrity 

in range-restricted deductive databases. 

A deductive dutubuse D is a finite set of deductive rules of 

the form 

A c-- Ll and . . . and Ln, n20, 

where the conclusion A is an atomic formula (atom), each 
condition Li is a literal, i.e. an atom (a positive condition) 

or a negated atom (a negative condition), and all variables 
are assumed to be universally quantified over the whole of 
the rule. When n=O the deductive rule is also called a fact. 
When n > 0 the rule is said to be non-atomic. 

D is range-restricted if for each rule c every variable of c 
occurs in a positive condition of c. This is a standard 
restriction to ensure that negative conditions can be fully 
instantiated before evaluation. This restriction corresponds 
exactly to Decker’s “range-restriction” [2] and Lloyd and 
Topor’s “allowed” [9] conditions. 

Integrity constraints are closed first-order formulae that D 
is required to satisfy. The set of constraints I specified for 
D is assumed to be consistent. The Consistency Method 
deals directly with constraints that have the form of a 
denial 

<-- L1 and . . . and L,, 

where the Li are literals and variables are assumed to be 

universally quantified over the whole formula. More 
general constraints (including those with conclusions 
having existentially quantified variables) can be 
transformed into this form as described in [ 111. From now 
on in this paper, without loss of generality, we assume that 
integrity constraints are in the form of denials. 

The Consistency Method appeals to the consistency view 
of constraint satisfaction, according to which D satisfies I 
if and only if the set Comp(D)uI is consistent. u denotes 
the set union operation. Camp(D), the completion of the 
database, is essentially D together with the only-if version 
of the rules in D and an appropriate equality theory [1,6]. 
The relationship between this view of constraint 
satisfaction and the more usual view which insists that the 
constraints be theorems of Camp(D) is discussed in [ 111. 

By taking the integrity constraints in I as top clauses the 
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SLDNF proof procedure can be used to check if 
Comp(D)uI is consistent. This, however, fails to exploit 

the assumption that D satisfies its constraints prior to the 
transaction. The Consistency Method takes advantage of 
this assumption by taking each update as a top clause in a 
proof procedure which extends SLDNF. 

Suppose a transaction T is performed on D and I to give an 
updated database DT and an updated set of constraints IT. 
The Consistency Method takes DTuIT as input set and 
each update in T as a candidate top clause. If an update is 
the insertion of a rule or constraint, the update stands as top 
clause as it is. If it is the deletion of a fact A the top clause 
associated with it is NOT(A), provided that A is not 
implicit (i.e. derivable) in DT. If A is implicit in DT the 
update does not alter the logical content of the database. 
(We assume that an update of deleting a fact only deletes 
the explicit occurrence of that fact). Updates that are 
deletions of constraints cannot cause inconsistency and are 
not considered as top clauses. Finally, if an update is the 
deletion of a non-atomic rule then, following Decker, we 
determine which instances of the conclusion of the rule are 
deleted as a result of deleting the rule. The negations of 
these deleted atoms are then candidate top clauses. 

In SLDNF the top clause can only be a denial. All 
subsequent formulae in a derivation are either denials or the 
empty clause. To reason forwards from updates, the proof 
procedure underlying the Consistency Method allows as top 
clause any deductive rule, denial or negated atom. 
Subsequent formulae in the derivation may be any of these, 
the empty clause, or a formula of the form 

(*) NOT(A) <-- Ll and . . . and Ln, n 2 1, 

where A is an atom and the Li are literals. This last type 

of formula can be obtained by an application of the 
inference rules for implicit deletions, which are &scribed in 
the next section. For convenience, in the sequel, we use 

the term clause to refer to any deductive rule, denial, 

negated atom or formula of the form (*). 

A derivation according to the new proof procedure is a 

sequence of clauses 

such that Co is a top clause and Ci+l is obtained from Ci 

as follows. If the selected literal Of Ci is a condition Of Ci 

then Ci+ 1 is obtained exactly as in SLDNP. If the selected 

literal is a conclusion then Ci+l is either the resolvent of 
Ci and an input clause (using the standard or a generalised 

resolution step), or it is a clause &rived by an application 
of an inference rule for implicit deletions. The examples 
below help illustrate the proof procedure further. A formal 
definition is given in the next section. 

A detailed description of the Consistency Method is given 
in [ll] where it is proved correct in general and complete 
when the database contains no negative conditions and the 
transaction contains no deletions. Correctness of the 
method means that if we obtain a refutation with an update 
as top clause then the updated database violates its 
constraints. In cases where the method is complete we can 
conclude that Comp(DT)uIT is consistent if all top clauses 
associated with the updates in T lead to fmitely failed search 
spaces. 

Example 1: Suppose we have the following database, 
constraint and transaction. Here “Dependent(x y)” means x 
is a dependent of y. In this paper all constant and predicate 
symbols start in the upper case, and all variables and 
function symbols are in the lower case. 

D: Right-residence(x) <-- 
Registered-alien(x) and 
NOT(Criminal-record(x)) (RI) 

Right-residence(x) <-- Citizen(x) 032) 

Citizen(Tom) (R3) 
Dependent(Jo Tom) (R4) 
Departed (RR 
Deported(Jack) (W 

I: <-- Right-residence(x) and Deported(x) (w) 

T: Add the rule 
Right-residence(x) c-- 

Citizen(y) and Dependent(x y) 
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D satisfies I. To check if the updated database DT satisfies 
the constraint we use the update as top clause, with DTuI 
as input set. We obtain the following search space, where 
the selected literals are underlined and [ ] denotes the empty 
clause: 

Right-residence(x) c-- Q&&y) and Dependent(x y) 

I (R3) 
Right-residence(x) e-- DeDendent(x 

The search space consists of one refutation illustrating that 
the updated database violates the integrity constraint. 

Example 2: 
D: As for Example 1 plus the following facts: 

criminal-mrd(Frimk) (R7) 
Registered-alien(Frank) (RQ 
-d) (R9) 

I: Same as Example 1 

T: Delete Criminal-record(Frank) 

D satisfies I. By taking NOT(Criminal-record(Frank)) as 
top clause we show that DT violates I. The first step is a 
generalised resolution step, which allows negated atoms to 
be resolved upon. 

I (RI) 
m <-- Registered-alien( - 

0 
<-- 

& . ) andDeported(Frank) 

I t-W 
<--v 

I (R9) 
[I 

Example 3: 
D: Same as Example 2 plus the following facts: 

Employed(Alan) (RlO) 
Registered-alien(Alan) CR111 

I: <-- Employed(x) and 
NOT(Right-residence(x)) 09 

T: Add Criminal-record(Alan) 

D satisfies I. To check if DT still satisfies the constraint, 
we use the update as top clause, as before, but now there is 
no input clause with which it can resolve. However, 
intuitively, the addition of the fact “Criminal-record(Alan) 
implicitly deletes the fact “Right-residence(Alan)” , which 
was provable in the database before the update. Thus 
“NOT(Right-residence(Alan))” is provable in the updated 
database as a consequence of the update. Since 
“Employed(Alan)” is also provable in this database, the 
constraint is violated. We need to reason as follows: 

(R) because in DT 
Criminal-mrd(Alan) holds and we have 
Right-residence(x) <-- Registered-alien(x) and 

NOT(Criminal-record(x)) 
and we have no other way of proving 
Right-residence(Alan) and 
Right-residence(Alan) was provable in D 
then Right-residence(Alan) is deleted 
Thus NOT(Right-residence(Alan)) is provable in DT. 

Assuming that we have an inference rule that allows us to 
reason in this way, we obtain the following search space 
illustrating the violation of the constraint in the updated 
database. 

There is another symmetric way in which implicit deletion 
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can occur: when the deletion of a fact implicitly deletes 
another. For example the deletion of the fact A in the 
database {A, B<--A} implicitly deletes B. In the next 
section we show how inference rules for implicit deletions 
can be general&d and forma&d. 

(3) Formalisation of the Proof Procedure 

The proof procedure is defined using logic as meta-language 
where the object language is that of the database and the 
integrity constraints. 

To formalise the proof procedure we define a relation 
Refute(s c) which means that there is a refutation with s as 
input set and c as top clause. If c is a denial and s a set of 
deductive rules then Refute(s c) is equivalent to the usual 
SLDNF provability. 

The resolution (standard and generalised) and negation by 
failure inference rules are formalised by R2 and R3, 
respectively, together with the base case Rl: 

(Rl) Refute(s [ 1) 
(R2) Refute(s c) <-- Select(1 c) and 

In(d s) and 
Resolve(d c 1 r) and 
Refute(s r) 

(R3) Refute(s c) <-- Select(+not@) c) and 
NOT(Refute(s c-p)) and 
Remove(c <-not(p) r) and 
Refute(s r) 

Select(1 c) means literal 1 is selected from clause c via a safe 
literal selection strategy. A literal selection strategy is safe 
if it does not select negative conditions unless they contain 
no variables. In “Select” and “Remove” the term 
“<-not(p)” denotes an occurrence of the literal “NOT(p)” in 
the conditions of a clause. Later we use the notation 

“1~-” to denote an occurrence of a literal 1 in the conclusion 
of a clause. 
Remove(c 1 r) means r is the clause c from which an 
occurrence of literal 1 is removed. 
Resolve(d c 1 r) means r is the resolvent of clauses d and c 

on literal 1. 

In(d s) means d is a clause in s. 
“<-” and “not” are names for I’<--‘I and “NOT”. 

In (R2) and (R3) an implicit, Prolog-like, unification has 
been assumed. An alternative approach would be to treat 
unification explicitly as in the definition of provability 
given in [5]. 

Let DT and IT name the updated database and the updated 
set of integrity constraints obtained after performing the 
transaction T on database D and constraints I. Then rules 
(R4) and (R5) cater for the cases of implicit deletions 
resulting from additions and deletions, respectively. R4 
generalises rule R of Example 3 and R5 deals with’the 
symmetric case. 

(R4) Refute@TuIT xc-c) <-- 
Select(x<- xc-c) and 
In(ae-b DT) and 
On(not(x) b) and 
Deleted(DT D a) and 
Refute(DTuIT not(a)<-c) 

(RS) Refute@TuIT not(x)<-c) <-- 
Select(not(x)<- not(x)<-c) and 
In(a<-b DT) and 
On(x b) and 
Deleted(DT D a) and 
Refute@TuIT not(a)<-@ 

On(l b) means literal 1 occurs in the conjunction of literals 
b. In (R4) and (R5) the variable c stands for a (possibly 
empty) conjunction of literals. 
Deleted(DT D a) means fact a is provable in database D but 
not in the updated database DT, i.e. 

(R6) Deleted(DT D a) <-- Refute(D <-a) and 
NOT(Refute(DT <-a)) 

We now have all the rules we need for defining the relation 
“Refute” (apart from rules for the subsidiary relations “In”, 
“On”, etc.). Let “transact(al dl)” represent the transaction T 
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which consists of a set of additions al and a set of deletions 
dl. The following rules, which should be considered as part 
of the database management system rather than the proof 
procedure, automatically generate all the updates in T as 
candidate top clauses. 

(Il) IC-Violated(DTuIT transact@ dI)) <-- 
On(a al) and 
Refute(DTuIT a) 

(I2) IC-Violated(DTuIT transact(al dl)) <-- 
On(a+b dl) and 
Deleted(DT D a) and 
Refute(DTuIT not(a)) 

Note that (12) also deals with the case where “a<-b” is a 
fact, i.e. when b is empty. Sadri and Kowalski’s 
formalisation does not cater for updates that modify the 
integrity constraints. We have changed their formalisation 
slightly to deal with such updates. Newly ad&d constraints 
are generated as top clauses by (Il), and deleted constraints 
are correctly ignored by (I2). 

To check if DT satisfies constraints IT, we have to 
determine whether “IC-Violated@TuIT transact@ dl))” is 
a logical consequence of our formalisation. If we can prove 
that it is a theorem then the constraints are violated in DT. 

(4) Implementation 

The Consistency Method for integrity checking has been 
implemented in Sigma-Prolog running under Unix on the 
Sun III (see 1121 for a detailed account).The interesting 
features of this implementation are: 

0 the representation of the object level clauses, 
0 the implementation of reasoning with the two 

databases D and DT which is required for rule R6, 
0 the use of indexing information about input clauses 

to guide selection of candidate clauses for resolution, 
thus providing a reasonably efficient search control. 

We discuss each of these features, in turn. 

The theorem-prover consists essentially of the clauses for 
“Refute” and the necessary subsidiary definitions. These are 
represented directly using Sigma-Prolog notation, that is as 
lists of the form (Ml...M,), n 1 1, where each Mi has the 
form (predicatelarguments) and MI is the conclusion of the 
clause. 

Object level clauses are represented by terms in the meta- 
language. They are represented as lists of the form 
(Ll...I&, n2 1, where each Li has the form 
(side sign predicatelarguments). “side” is either “Cone” 
indicating that the literal is the conclusion of the clause or 
it is “Cond” indicating that the literal is in the conditions. 
“sign” is either “Pas” for atoms or “Neg” for negated 
atoms. 

The integrity checking method requires reasoning with the 
initial database D and the updated input set DTuIT. These 
sets are represented by clauses of the form 

((Member set clause-name clause)) 

signifying that “clause” belongs to the set named “set” and 
is given the name “clause-name”. These clauses are 
maintained automatically by preprocessing the initial 
database and the transaction T. The reason for introducing 
“clause-name” will become clear shortly when we discuss 
selection of candidate clauses for resolution. In the 
implementation “set” is either “OLD”, “NEW” or a 
variable. Clauses identified by the term “OLD” belong to 
D-DT, where “-” denotes set difference. Those identified by 
“NEW” belong to (DT-D)uIT, and those identified by a 
variable belong to both databases D and DT. Thus to 
access clauses in DTulT we use the identifier “NEW”, and 
to access those in D we use “OLD”. 

With this convention the top-level Sigma-Prolog goal for 
integrity checking, for example, is 

?((IC-Violated NEW (transact al dl))) 

One potential source of inefficiency in the proof procedure 
is the search involved in rule (R2) for an input clause that 
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can be resolved with a clause in the derivation on its 

selected literal. In SLDNF all selected literals are condition 
literals and therefore SLDNF only needs to search the 
input set to fmd conclusions which unify with the selected 
literal. In the new proof procedure, however, selected 
literals can come from the conclusion as well as from the 
conditions of clauses. This requires a larger search over the 
totality of literals in the input set, looking for unifying 
conditions as well as conclusions. To reduce this search, 
for each predicate occurrence “predicate” in each clause in 
the input sets we include an assertion of the form 

(Possible-Resolve input-set clause-name i (side sign 

predicate)) 

in the meta-level database. This assertion means that the 
input clause identified by “input-set clause-name” can 
potentially resolve (apart from unification of arguments) on 
its i-th literal with a clause whose selected literal is 
represented by (side sign predicatelarguments). These 
assertions are generated automatically, given the two 
databases and the constraints. Them are as many “Possible- 
Resolve” assertions as there are literal occurrences in the 
databases and the constraints. Rule (R2) is rewritten to use 
this set of assertions: 

((Refute input-set clause) 
(Select (side sign predicatehirguments) 

clause) 
(Possible-Resolve input-set clause-name i 

(side sign predicate)) 
(Member input-set clause-name input-clause) 
(Resolve-i inputclause i clause 

(side sign predicatelarguments) 
resolvent) 

(Refute input-set resolvent)) 

Note that “Resolve-i”, as compared to “Resolve” in (R2), 
has an extra argument i which allows fast retrieval of the 
unifying literal in the input clause. Rules (R4) and (R5) 
can also be rewritten to exploit the relation “Possible- 
Resolve”. 

(5) An Alternative Implementation 

Without the inference rules for implicit deletions the proof 
procedure relies entirely on negation as failure and input 
resolution. In this form it might be viewed as a fairly 
minor extension of Prolog’s SLDNP proof procedure, and 
one which, intuitively, should be implementable with 
comparable efficiency. In this section we show how in this 
case the need for a meta-interpreter, which is the major 
overhead of our system, can be avoided by transforming the 
input clauses. 

The “Possible-Resolve” assertions described earlier record 
for each input clause the literals by which that clause can 
be entered (i.e. any literal of the clause). Instead of 
allowing arbitrary literals of input clauses to be resolved 
upon, we can restrict resolution to the conclusion literal 
only, if we replace each input clause by as many copies as 
there are literal occurrences in the clause, with each literal 
as the conclusion of one of the copies. We add an extra 
argument to each literal in these copies to indicate whether 
it comes from the conclusion or the conditions of the 
original clause c . A “+” argument signifies that the literal 
is on the same side of “<--” as in c; a “-” argument 
signifies that it has changed side. This transformation 
allows us to use Prolog’s backwards search to reason 
forwards as well as backwards. 

Example: Input clause 
M(x y) c-- N(x y) and NOT(K(y)) 
is replaced by 
M(+ x y) <-- N(+ x y) and NOT(K(+ y)) 
N(- x y) <-- M(- x y) and NOT(K(+ y)) 
NOT(K(- y)) <-- M(- x y) and N(+ x y). 

We must also transform all top clauses into denials. For 
example, if an update is the addition of a rule P(x)<--Q(x) 
then the transformed top clause is “c--P(- x) and Q(+ x),,. 

If an update is the deletion of an atom P(A) then the 
transformed top clause is <--NOT(P(- A)). 
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Example: 

D: 

I: 

T: 

R(x Y) <-- PO0 and Q(Y) 
Q(A) 
Q(B) 
T(A) 

<-- NOT(T(y)) and R(x y) 

Aa P(A) 

(RI) 
WI 

(R3) 
(R4) 

(11) 

This is transformed to: 

D’: R(+ x y) <-- P(+ x) and Q(+ y) (R1.l) 
P(- x) <-- R(- x y) and Q(+ y) (R1.2) 
Q(- y) <-- P(+ x) and R(- x y) (R1.3) 

Q(+ A) W.1) 
Q(+ W (R3.1) 

T(+ A) (R4.1) 

I. 1. NOT(T(- y)) <-- R(+ x y) (11.1) 
R(- x y) <-- NOT (T(+ y)) (11.2) 

T’: Add P(+ A) 

Using <--P(- A) as top clause with Prolog’s backward 
reasoning strategy and left to right literal selection strategy 
(with a safety condition on the literal selection), we obtain 
the following search space. 

which it does not [‘I which it does 

Note that a condition of the form NOT(P(+ args)) can be 
eliminated only if it is solved by the negation as failure 
rule, whereas one of the form NOT(P(- args)) can be 

eliminated only through resolution with an input clause. 

Using the same literal selection strategy but reasoning 
forwards from T with DTuIT as input set we obtain a 
search space that has a similar structure to the one above. 
In general, backward reasoning from the transformed 
version of the updates using the transformed version of the 
input set simulates forward reasoning from the original 
updates using the original input set. 

This discussion shows that in the absence of implicit 
deletions our integrity checking method can be 
implemented directly in Prolog. If we accept Prolog’s 
literal selection and search strategies we have no need for a 
special interpreter and can expect efficiencies comparable to 
implementations of Prolog. We are currently investigating 
transformations that would also allow us to dispose of the 
meta-interpreter in the general case where implicit deletions 
are possible. 

(6) Conclusion 

We have described a method for checking integrity in 
deductive databases which achieves the effect of the 
simplification algorithms of VI’ and Decker and which is 
based on a unified theorem-proving framework. The 
method uses a proof procedure that is an extension of 
SLDNF and which allows forward as well as backward 
reasoning. 

We have also described an implementation of this method 
which shows its feasibility but which also exposes 
potential inefficiencies. A major overhead is that our 

system requires a meta-interpreter. We have seen, however, 
that in the absence of implicit deletions this interpreter can 
be disposed of. Further work is needed to investigate the 
possibility of implementing the method directly in Prolog 
for the general case. 

The use of a linear resolution proof procedure as the basis 
for the Consistency Method makes it easy to compare the 
method with other simplification algorithms, but is not 
essential in our approach. This linear proof procedure has 
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the well-known inefficiencies of SL-resolution which are 
avoided in the connection graph procedure [4], for example. 
It would be interesting to investigate how a connection 
graph proof procedure might be extended to form the basis 
of the integrity checking method. 

PI 

131 

In this paper we have discussed only the basic ingredients 
of the method and it can be improved in many ways. 
Because it is imbedded within a general-purpose proof 
procedure, it can, for example, exploit well-researched 
domain independent heuristics for literal selection and 
search [S] to enhance efficiency. 

141 

151 

[61 

We believe that the Consistency Method proof procedure 
can be useful for a wider range of applications in addition to 
integrity checking. Forward reasoning is essential for 
knowledge assimilation as a whole, only one component of 
which is integrity checking. On adding new data to a 
knowledge base (kb) we may not only want to check the 
integrity of the updated kb, but we may want to determine 
to what extent the new data interacts deductively with the 
rest of the kb, if it is totally independent of the kb, 
redundantly implied by the kb, or implies part of the kb. 

171 

P31 

191 

The ability to mix forward and backward reasoning is also 
useful for many expert system applications, which often 
require a flexible mixture of different modes of reasoning. 
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