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In this paper we shall define an extended form of 
semantic network which can be regarded as a syntactic 
variant of the clausal form of logic. We define top-down 
and bottom-up inference and resolution more generally 
for the extended semantic network. In particular, top- 
down inference gives us a procedural interpretation of 
reasoning in the network. 

Not only can the extended semantic network be 
regarded as a syntactic variant of logic, but it can also be 
used as an abstract data structure for the representation 
of clauses in an implementation of a predicate logic 
proof procedure. The semantic network data structure 
provides an indexing scheme and helps to guide the 
search for a solution. In particular, as a data structure 
for an interpreter of predicate logic programs, it guides 
the execution of procedure calls. The strategy suggested 
by the network gives the proof procedure a path-finding 
flavor. 

An extended form of semantic network is defined, 
which can be regarded as a syntactic variant of the 
clausal form of logic. By virtue of its relationship with 
logic, the extended semantic network is provided with a 
precise semantics, inference rules, and a procedural 
interpretation. On the other hand, by regarding 
semantic networks as an abstract data structure for the 
representation of clauses, we provide a theorem-prover 
with a potentially useful indexing scheme and path- 
following strategy for guiding the search for a proof. 
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Introduction 

Logic and semantic networks are different formal- 
isms for representing information. Several authors have 
shown that simple semantic networks can be extended 
so that they have the same expressive power of predicate 
logic [5, 15, 16]. Still more recently, deductive inference 
systems for semantic networks have been investigated [2, 
3, 17, 18]. 
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1. Simple Semantic Networks 

A semantic network is a directed graph whose nodes 
represent individuals and whose arcs represent relation- 
ships between individuals. An arc is labeled by the name 
of the relationship it represents. Several arcs can have 
the same label. However, each individual is represented 
by only a single node. The English sentences "John gives 
the book to Mary" and "John and Mary are human" are 
represented in the following semantic network: 

book Mary 
~el j >human  

give John 

Here "e l "  names an event which is an act of giving, 
whose actor is John, object is book, and recipient is 
Mary. 

Arcs are not to be confused with access pointers. 
However, given a node in the network, it is assumed that 
the network provides direct access to all the relationships 
in which the node participates, independent of the direc- 
tion of the arc. 

2. The Clausal Form of Logic 

The relationships in the network above can be ex- 
pressed in the clausal form of logic as follows: 

Obj (el, book) 
Act (el, give) ~-- 
Actor (e 1, John) ~-- 
Rec (e 1, Mary) <--- 
Isa (John, human) 
Isa (Mary, human) ~-- 

Communications March 1979 
of Volume 22 
the ACM Number 3 



Relations are named by predicate symbols (in this case, 
"Obj," "Act," "Actor," "Rec," and "Isa") and individ- 
uals are named by constants ("el ,"  "book," "give," 
"John," "Mary," and "human"). Predicate symbols cor- 
responding to labels on the arcs of semantic networks 
always have two arguments. But in general a predicate 
symbol can have n arguments, n _> 1. For example the 
sentence "John gives the book to Mary" might equally 
well be represented in logic by using a three argument 
predicate symbol: 

Give (John, book, Mary) 

In addition to simple assertions, logic can also express 
general propositions. The sentence "John gives the book 
to everyone he likes" is expressed by the clause 

Give (John, book, x) ~ Likes (John, x) 

Here the symbol "x" is a variable representing any 
individual. The arrow represents the logical connective 
"if." In general a clause can have several conditions, all 
of which must hold for the conclusion to hold. For 
example the clause 

Likes (John, x) *--- Give (John, y, x), Likes (John, y) 

expresses that if John gives away something he likes, 
then he must like the person he gives it to. (Variables in 
different clauses are unrelated even if they look the 
same.) A clause can have several alternative conclusions, 
at least one of which must hold if all the conditions hold. 
That every animate being is either an animal or a 
vegetable is expressed by the clause 

Animal (x), Vegetable (x) *--- Animate (x) 

Thus, the conclusions of a single clause are a disjunction 
of alternatives, whereas the conditions are a conjunction. 
A clause without conditions is an unconditional asser- 
tion. However, a clause without conclusions is a denial. 
The clause 

Give (x, y, John), Likes (John, y) 

denies that anyone gives John anything which John likes. 
The existence of individuals is expressed by using 

constant symbols or function symbols. "Someone likes 
John" requires a constant to name the anonymous indi- 
vidual who likes John, for example: 

Likes (A, John) ,--- 

However, "everyone is liked by someone" is ambiguous. 
It requires a constant symbol if one individual likes 
everyone 

Likes (B, x) ~-- Human (x) 

and a function symbol if different individuals like dif- 
ferent people 

Likes (f(x), x) ,--- Human (x) 

Here, for any individual x, the expressionf(x) names the 
individual who likes x. 

A more formal definition of the clausal form of logic 
is the following: 

A sentence is a collection of clauses. 
A clause is an expression of the form 

A1, ... , An ~-- B1 . . . . .  Bm 

where A1, ... , An are called the conclusions of the 
clause and B1 . . . . .  Bm are called the conditions. Both 
conclusions and conditions are expressions of the form 

P (tl . . . . .  tk) 

called atoms, where P is a k-argument predicate sym- 
bol and tx, ..., tk are terms. Terms are either constants, 
variables, or functional terms which are expressions of 
the form 

At1, ..., t~) 

where f is an/-argument function symbol and tx . . . . .  
tz are terms. 

Convention: Throughout this paper variables begin 
with one of the letters u, v, w, x, y, z, in order to 
distinguish them from constants. 

Deductive inference rules have been developed for 
the clausal form of logic. Bottom-up inference derives 
new assertions from old ones. For example by matching 
the assertions 

Give (John, book, Mary) ~-- 
Likes (John, book) *-- 

with the conditions of the general clause 

Likes (John, x) ~ Give (John, y, x), Likes (John, y) 

we obtain the new assertion 

Likes (John, Mary) *--- 

Top-down inference derives new denials from old ones. 
By matching the denial 

Likes (John, Mary) 

with the conclusion of the same general clause, we obtain 
the new denial 

Give (John, y, Mary), Likes (John, y) 

Both top-down and bottom-up reasoning are special 
cases of resolution. Resolution involves matching a con- 
dition of one clause d with a conclusion of another 
clause ~ .  The derived clause, called the resolvent, con- 
sists of the unmatched conditions and conclusions of d 
and ~ ,  instantiated by the matching substitution. The 
clauses d and ~ are called the parents of the resolvent. 
Matching two atoms amounts to finding a substitution of 
terms for variables which if applied to the atoms would 
make them identical. A more formal definition of reso- 
lution can be found in the original paper [ 12]. 

Bottom-up inference is a form of hyper-resolution 
[13], and top-down inference is a form of model elimi- 
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nation [8] and linear resolution [8, 9]. More detailed 
references can be found in [7]. 

Clauses which contain at most one conclusion (Horn 
clauses) can be given a procedural interpretation [6]. 

A clause of the form A ~-- B1 . . . . .  Bn is interpreted as 
aprocedure with head A and body B1 . . . . .  Bn. Each atom 
in the body of the procedure is interpreted as a procedure 
call. A denial is interpreted as a set of procedure calls 
and is called a goal clause. Top-down inference, which 
matches a selected procedure call in a goal clause with 
the head of a procedure, is interpreted as procedure 
invocation. The new goal consists of the old procedure 
calls, which are the instantiated copies of the unmatched 
procedure calls in the old goal clause, and the new 
procedure calls, which are the instantiated copies of the 
procedure calls in the body of the invoked procedure. It 
is useful to divide the matching substitution associated 
with procedure invocation into two parts. One part af- 
fects variables in the procedure head and transmits input 
into the body of the procedure. This is the input compo- 
nent of the substitution. The other part affects variables 
in the procedure call and transmits output to the remain- 
ing procedure calls of the goal clause. This is the output 
component. 

The restriction of semantic networks to the represen- 
tation of two-argument relationships is not a significant 
limitation. On the contrary, it has several advantages. 

Every n-argument (n-ary) relationship can be reex- 
pressed as a conjunction of two-argument (binary) rela- 
tionships. I f  n > 2, n + 1 binary relationships are needed. 
If  n = 1, then only one is necessary. For example the 3- 
ary relationship 

Give (John, book, Mary) ~-- 

can be reexpressed (as in the beginning of Section 2) as 
a set of four assertions using binary predicate symbols. 
In general, it is necessary to introduce a name for the 
original n-ary relationship, "e 1" in this example. The n- 
ary predicate symbol becomes a constant symbol. For 
each argument of the n-ary relationship, as well as for its 
predicate symbol, we express how it is related to the 
original n-ary relationship by means of a binary relation- 
ship. 

I fn  = 1, the predicate symbol also becomes a constant 
symbol, and it is only necessary to introduce a single 
binary relationship which expresses how the original 
predicate symbol is related to its argument. For example, 

Human (x) 

becomes 

Isa (x, human) 

The transformation from n-ary to binary replaces 
predicate symbols with constant symbols. In the new 
formulation the original predicate symbols can also be 
replaced by variables; this gives some of the expressive 
power of higher order logic. 

The use of binary predicate symbols also has the 
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advantage that unknown arguments of the original n-ary 
relationship can be ignored. To express that "John was 
given the book," we only need the assertions 

Act (e2, give) ,,--- 
Obj (e2, book) 
Rec (e2, John) ,--- 

whereas in the n-ary representation, it is necessary to 
name the unknown donor 

Give (C, book, John) 

In database applications the binary formulation corre- 
sponds to the use of variable-length records. Space is 
saved, and the unnecessary introduction of constant 
symbols is avoided. 

The binary representation is also at an advantage 
when additional information needs to be associated with 
the n-ary relationship. To express that "John was given 
the book in the park," it is only necessary to add the 
assertion 

Location (e2, park) ~-- 

In the n-ary representation the original 3-ary relationship 
would have to be replaced by a new 4-ary one 

Give* (C, book, John, park) 

The binary representation suggests a way of dealing 
with simple aspects of time. For example the addition of 
the assertion 

After (e 1, e2) 

can be used to express that "John gave the book to Mary 
after it was given to him in the park." 

The translation from the n-ary to binary representa- 
tion does not always result in an improvement. The 
three-place Plus-relation, for example, 

Plus (x, y, z) x plus y is z 

can be reexpressed by means of binary relations 

Isa (w, Plus) w is a Plus-fact 
Addl  (w, x) x is the first number added in w 
Add2 (w, y) y is the second number added in w 
Sum (w, z) z is the sum of the numbers added in w 

The binary formulation is more obscure and no more 
useful than the original three-place relation. 

3. Extended Semantic Networks 

Simple semantic networks can only express collec- 
tions of variable-free assertions. We define an extended 
form of semantic network which can be interpreted as a 
variant syntax for the clausal form of logic. It is an 
immediate consequence of this interpretation that the 
semantics of the extended semantic network is identical 
to that of the clausal form of logic. 

In the extended semantic network, terms are repre- 
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sented by nodes. Constant, variable, and functional terms 
are represented by constant, variable, and functional 
nodes respectively. As in the simple semantic network, 
every term is represented by a single node. The same 
conventions for distinguishing variables from constants 
are employed as in the clausal form of logic. Binary 
predicate symbols are represented by labels on arcs. An 
atom is a labeled arc together with its two end nodes. 
The direction of the arc (link) indicates the order of the 
arguments of the predicate symbol which labels the arc. 
Conclusions and conditions are represented by different 
kinds of arcs: conditions are drawn with two lines 

and conclusions are drawn with one heavy line as before. 
A clause is represented by the network representation of 
its conditions and conclusions. As in the clausal form of 
logic, different clauses have different variables. Conse- 
quently, variables in different clauses are represented by 
different nodes. 

That every animate is a vegetable or an animal is 
represented by the following network: 

animal ~ x  Isa 
, ~> animate 

vegetable ~ ~s~ 

That the actor of any act of taking is also the recipient 
of the action is expressed by the network: 

Act x, , ~, taRe 

Rec ( ~ A c t o r  

u 

Rec (x, u) ~ Act (x, take), Actor (x, u) 

The network 

Act t(x) I) take 

Act x, " "~ give 

Act (t(x), take) ~ Act (x, give) 

expresses that for every act of giving, there is an act of 
taking. 

In the extended semantic network, functional terms 
are represented by single nodes. This contrasts with 
many semantic network schemes, which require that 
everything be represented either by a node or an arc. For 
example the atom 

Act t (x) II take 

would be represented by the more complicated network 

t ~functi°no Act | take 

~LArg I 
x 
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It is worth noting that although such a representation 
might be useful for indexing purposes, it interferes with 
the semantics of the network. The new arcs no longer 
represent semantic relationships between individuals but 
syntactic relationships between the constituents of names 
of individuals. 

Given a set of clauses, if all occurrences of the same 
term are represented by a single node, then all the clauses 
should be incorporated in a single network. This gives 
rise to the problem of distinguishing which arcs belong 
to which clauses. The delimitation of clauses can be 
effected in several ways: 
(i) Clause numbers can be associated with arcs. 

(ii) The network can be "partitioned" into subnetworks, 
each of which represents a single clause. Partitions 
overlap if the clauses they represent contain the 
same fully instantiated atom. 

In this paper we delimit clauses pictorially, as in the 
following example, by partitions drawn around clauses 
which contain more than one atom. 

~ e l  ~ ~ec  c,or jphuman, 
give 

Act (t(z), take) *-- Act (z, give) 
Isa (x, vegetable), Isa (x, animal) , -  Isa (x, animate) 
Isa (y, animal) *-- Isa (y, human) 
Obj (el, book) 
Rec (e 1, Mary) .-- 
Actor (e 1, John) 
Act (el, give) 
Isa (Mary, human) 
Isa (John, human) 

The extended semantic network, being equivalent to 
the clausal form of logic, is a uniform, general-purpose 
formalism for the representation of information. The Isa 
and Part-of hierarchies, which are characteristic of many 
semantic networks, are special cases of the extended 
semantic network. 

Isa hierarchies, which in simple semantic networks 
are represented by sets of Isa or Subset assertions, e.g. 

Isa human ~ animal 

o r  
subset human II animal 

can be represented in the extended semantic network in 
two different ways. One representation expresses state- 
ments of the form "X is a Y" where both X and Y name 
sets of objects by means of clauses of the form 
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Y i l  Isa z r i s a  ~>x  

The other representation retains the simple variable-free 
assertions but adds a general law which expresses the 
semantics of the Isa and Subset predicate symbols. 

I s a  

Isa Subset  

Recently Fikes and Hendrix [3], Shapiro [17], and 
Chester and Simmons [18] have described deductive 
inference procedures for their extended semantic net- 
works. We share their interest in extending tlhe deductive 
capabilities of semantic networks. However, we are also 
concerned whether semantic networks have anything to 
contribute to improving the efficiency of proof proce- 
dures. 

The clauses in the first representation are logically 
implied by those in the second representation. They can 
be derived by means of the bottom-up inference rule 
defined in the next section. 

Part-of hierarchies can also be represented in two 
different ways, with the complication that Part-of asser- 
tions conceal a hidden existential quantifier. For example 
the assertion 

Part-of 
wing I I  bird 

means that for every bird, there is a wing which is part 
of the bird. In clauses: 

wlng ~ w ( x )  

Isa (w(x), wing) ~ Isa (x, bird) 
Part-of (w(x), x) ~ Isa (x, bird) 

Several authors [5, 15, 16] have defined extensions of 
simple semantic networks. These extensions are all based 
on the standard form of logic, rather than on the clausal 
form. Some of them, however, avoid existential quanti- 
tiers by using functional terms. A common characteristic 
of these extensions is that they use explicit nodes and 
arcs to represent the logical connectives and quantifica- 
tion. Like the use of arcs for representing the structure 
of functional terms, this introduces the complication of 
distinguishing arcs which represent semantic relation- 
ships from those which represent syntactic ones. Some 
authors [11, 18] also include in their networks explicit 
"result," "causes," or "enables" relations which, like Isa- 
and Part-of arcs, conceal implicit implication or quanti- 
fication. Hendrix [5], in addition, also uses multilevel 
partitions to indicate logical structure. 

McSkimin and Minker [10] describe a theorem-prov- 
ing system which uses semantic networks. They regard 
arbitrary clauses as part of their semantic network, but 
treat the Isa-hierarchy in a special manner which is 
essentially compiled. 

Woods in his analysis of the semantics of semantic 
network links [19] is more concerned with the semantics 
of natural language and the representation of natural 
language meanings than with the semantics of the se- 
mantic network formalism itself. 

4. Deduction in Extended Semantic Networks 

The correspondence between logic and the extended 
semantic network provides the network with not only 
semantics but also inference rules. Moreover, top-down 
inference provides the network with a procedural inter- 
pretation. 

In order to demonstrate that a set of clauses in a 
network implies a conclusion, we add the denial of the 
conclusion to the network and show that the resulting 
set of clauses is inconsistent. This is done by performing 
successive steps of resolution until an explicit contradic- 
tion is generated. 

Resolution and the special cases of top-down and 
bottom-up inference have already been defined for the 
clausal form. By virtue of the correspondence between 
extended semantic networks and clausal form, the defi- 
nition of resolution also applies to semantic networks. 

For example applied to the network 

U ~ " ' ~  R e c  

~r r" r - - i 'q~es " Likes J 

g i v e  ~ Likes _ John 
• book ~, - - , M a r y  

Likes (x, z) *-- Act (u, give), Obj (u, y), Actor (u, x), 
Rec (u, z), Likes (x, y) 

Act (e, give) *-- Rec (e, Mary) ~-- 
Obj (e, book) ~-- Likes (John, Mary) ~-- 
Actor (e, John) ~-- 

bottom-up inference derives the new assertion 

Likes 
John I I  M a r y  

Applied to the network 

Likes 

John ~=======~ v 

Dis l ikes  

Likes (x, z) ~ Act (u, give), Obj (u, y), Actor (u, x), 
Rec (u, z), Likes (x, y) 

Likes (John, v), Dislikes (v, John) 
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top-down inference derives the new denial 
u' 

give y ~ o h n  <Dislik y z~ , A ~__ ~ e~sZ, 

~-- Act (u', give), Obj (u', y'), Actor (u', John), 
Likes (John, y'), Rec (u', z'), Dislikes (z', John) 

In a computer implementation, clauses can be rep- 
resented explicitly by adding them to the network or 
implicitly by using the structure-sharing method of Boyer 
and Moore [1], in which resolvents are represented by 
pointers to their parents together with a record of the 
matching substitution. Anything explicit in the first rep- 
resentation can be computed in the second. Throughout 
the paper, without prejudicing the manner in which 
clauses are represented in a computer implementation, 
networks are drawn with resolvents added to them ex- 
plicitly. 

Independently, whether in an implementation resol- 
vents are represented explicitly or implicitly because of 
the purity principle [12], a clause can be deleted if one of 
its atoms matches no other atom in the network. In 
particular, when a resolvent is created, a parent may be 
deleted if no other match exists for the atom being 
matched in that parent. Such a situation might arise if 
either there was only one match initially, or else all other 
matches have already taken place. In practice, when 
deletion is possible, it is generally more convenient to 
construct the resolvent from the constituents of the de- 
leted parent. 

Applied to the problem of finding a fallible Greek, 
top-down inference together with the deletion rule trans- 
forms the initial network until it eventually contains only 
the empty clause. 

,o, Yoof . .  

human 

tYY 

Turing Isa ~ h u m a n ~  

human ~ 

,,%(/,- 
(d} Greek k_~, 

Socrates 

Isa~ ~lsa 

(e) Greek 

After matching the condition x = Isa ~ fallible of the 
initial goal clause in the only possible way, we add the 
resolvent to the network and delete both parents. The 
condition x m Isa ~ human matches two assertions. 

When the assertion Turing - -  Isa - ~ h u m a n  is chosen to 
match the condition, the assertion is deleted from the 
network, but the other parent remains. The new resolvent 
Turing = Isa ~ Greek matches no other atom in the 
network and is deleted. The remaining alternative match 
for the condition x "-- Isa ~ human is made, and both 
parents can now be deleted. The last two clauses in the 
network have the empty clause as their resolvent and are 
also deleted. 

Deletion of clauses potentially destroys the original 
network. If  it is desired to use the network for another 
purpose, then it is necessary to either save a copy of the 
original network or restore it to its original form. 

The preceding example also illustrates the procedural 
interpretation of top-down reasoning in the semantic 
network. In a conventional semantic network, proce- 
dures would be written in the host programming lan- 
guage. In the extended semantic network, procedures are 
integrated with the rest Of the database and are executed 
by the same general purpose mechanism which performs 
inference in the network. 

The procedural interpretation of logic can be re- 
garded as the thesis that computation is controlled de- 
duction [4, 7]. Consider for example the following prob- 
lem: "John gives the book to Mary. Who takes the 
book?" Its solution requires using the knowledge that 
every act of giving results in a corresponding act of 
taking. In a conventional procedure this knowledge 
would be mixed with information about how it is to be 
used. In the extended semantic network it is integrated, 
as it stands, with the rest of the network, and the infor- 
mation about its use is incorporated in the uniform, 
general-purpose inference system. 

e ~ J o h n  

Similarly, special-purpose inference rules are unnec- 
essary. Their effect is achieved by applying general- 
purpose inference rules to domain-specific information 
expressed in logic. In particular, it is common in semantic 
networks to employ special-purpose inference rules 
which are used to show that types lower in an Isa- 
hierarchy inherit properties of types higher in the hier- 
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archy. In the extended semantic network, to show that 
humans inherit from animates the property of having a 
parent, we assert that someone is human, deny that he 
has a parent, and use general-purpose top-down infer- 
ence. 

½.S  I an'mal ~ ani ate 

humanl~ a ~ anlrnal human~__~lsa 

(c) ~ A ~Isa (d) l ~ "  A (e) 

Note that resolution alone, as we have defined it, is 
inadequate for demonstrating the inconsistency of cer- 
tain sets of clauses. Russell's "Barber paradox," for 
example, can only be demonstrated with the aid of the 
factoring rule. 

The factoring rule applies to a single clause and 
derives an instance of the clause. The instantiating sub- 
stitution matches two atoms of the same kind in the 
clause (either both conditions or both conclusions). The 
substitution makes the two atoms identical and only one 
of them is retained in the derived clause, which is called 
a factor. The figure below illustrates the use of resolution 
together with factoring to obtain a refutation for a variant 
of the Barber's paradox. Factoring is applied to each of 
the two initial clauses. The resolvent of the two factors 
is the empty clause. 

John likes anyone who doesn't like himself. 
John likes no one who likes himself. 

John 

(a) 

Likes~ ~--~Likes 

(b) 
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5. The Use of Semantic Networks to Guide the Search 
for a Solution 

Not only can the extended semantic network be 
regarded as a syntactic variant of the clausal form of 
logic, but it can also be regarded as an abstract data 
structure for an implementation of a proof procedure. 
Regarded as an abstract data structure, the semantic 
network provides an indexing scheme which can be used 
for guiding the search for a solution. 

An indexing scheme is a method of organizing infor- 
mation for the purpose of accessing it efficiently. It is the 
characteristic feature of  semantic networks that, given a 
term, direct access is provided to all atoms (both condi- 
tions and conclusions) containing that term. We call this 
indexing on arguments. It is also possible to index on 
predicate symbols: given a predicate symbol, direct access 
is provided to all atoms containing that predicate symbol. 
Indexing on predicate symbols is employed in almost all 
predicate logic implementations. It is interesting there- 
fore, from a theorem-proving point of view, to investigate 
the consequences of using the semantic network indexing 
on arguments. 

Given two atoms which have just been matched to 
create a resolvent, the extended semantic network pro- 
vides direct access to their end nodes and consequently 
to all (adjacent) atoms which contain those nodes. The 
accessibility of adjacent atoms suggests the opportunistic 
strategy of selecting adjacent atoms for matching in the 
next resolution step. Repeatedly selecting adjacent atoms 
for resolution gives the proof procedure a path-following 
flavor. 

Without intending to restrict the application of the 
path-following strategy, we shah discuss in detail only 
its application to top-down execution of Horn clauses. 
Selection of adjacent atoms guides the execution of both 
new procedure calls and old procedure calls, as well as 
the choice of procedures. 

When the matching substitution has an input com- 
ponent which transmits input from the procedure call to 
the procedure body, the strategy of selecting adjacent 
atoms suggests selecting for execution an (adjacent) new 
procedure call which contains the input. Different pat- 
terns of input determine the selection of different pro- 
cedure calls. In the example below, the initial procedure 
call John = Likes ~ v determines the selection of one 
(or both) of the new procedure calls John = Likes =* z 
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and u = Actor ~ John (containing the input x --- John). 
The initial procedure call v = Likes =* Mary, on the 
other hand, determines the selection of u ~ Rec ~ Mary 
(containing the input y = Mary). 

John. Likes ~v 

L kes Likes gives z<~ ,x ~,i i~i l~ y 

A c t ~  u g ~'Rec 

Likes John give z ~  v 

(b) 

Likes Likes 
give z<~ ,~ Mary v 

(a) A C ~ I  /4"" Rec 
(b') 

Matching a variable in a procedure call with a vari- 
able in a procedure head can be regarded either as 
transmitting input or as transmitting output. It is advan- 
tageous, however, to treat it as transmitting input. The 
input is a variable, for which it is desired eventually to 
obtain output by means of subsequent execution of new 
procedure calls containing the variable. It is a conse- 
quence of the semantic network storage scheme that 
when the output is eventually determined (by matching 
the variable with a nonvariable), it is transmitted directly 
to all old procedure calls which contain the same varia- 
ble. The old procedure calls can use that output as input. 

Applied to the execution of new procedure calls, 
selection of adjacent atoms has two characteristics. Out- 
put is sought without delay by executing procedure calls 
containing variable input. Input is used as soon as it is 
available by executing procedure calls containing non- 
variable input. Thus selecting adjacent new procedure 
calls is bidirectional search, working both forwards from 
the input and backwards from the output. 

When the matching substitution has an output com- 
ponent, the strategy of selecting adjacent atoms suggests 
selecting for execution an (adjacent) old procedure call 
which contains the output. This can be interpreted as 
coroutining: The last executed procedure call has "pro- 
duced" output to be "consumed" by old procedure calls 
waiting to be activated. 

Suppose for example: 

John gives the book to Mary. 
John likes the book. 
Anyone who gives away anything he likes 
must like the person he gives it to. 
Mary knows everyone who does 
anything with books. 

Consider the problem: 

Does Mary know anyone 
who likes her? 
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~ A c t o r ~ ~ O b b  k 

e lit John 

Suppose we first select the procedure call Mary 
Knows ~ v and then decide to suspend the new 

procedure calls because the only adjacent one contains 
only variables. We activate the old procedure call v 

Likes ~ Mary and match it with the procedure head 
x = Likes ~ y. Input is transmitted to the procedure 
body. 

afloo k ~ Likes JoAh n 

' T.e 
We activate the new procedure call u = Rec ~ Mary 
adjacent to the input constant "Mary." This transmits 
output u = e to the three old procedure calls containing 
u. Activating the one e = Actor ~ v which contains the 
most recent variable v transmitted as input transmits 
output v = John to the previously suspended old proce- 
dure call which is now. u' = Actor ~ John. Every 
procedure call which remains to be executed now 
matches an adjacent assertion. 

The network guides not only the selection of proce- 
dure calls but also the selection of procedures (including 
assertions). Given a procedure call, the strategy of se- 
lecting adjacent atoms suggests choosing a procedure 
head which shares a node (constant or functional term) 
with the procedure call. This strategy is useful in some 
cases but can be misleading in others. It is misleading 
for example when applied to the problem, given in the 
preceding section, of determining who took the book. If  
in the initial goal clause we select the procedure call 
x = Obj ~ book and match it with the adjacent assertion, 
then we are led to a failure. The procedure head t(z) 
~ Obj ~ w l which needs to be matched with the 
procedure call contains no common node. 

In order to access procedure heads, like the one 
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needed in the last example, it is useful to supplement the 
semantic network indexing on arguments with indexing 
on predicate symbols. Indexing on predicate symbols is 
also useful when a procedure call shares a node with a 
large number of procedure heads. We can avoid inves- 
tigating all of the procedure heads, searching for one 
which matches the call, by using the predicate symbol 
index to identify the ones which have the same predicate 
symbol as the procedure call. 

6. Conclusions 

Not only are logic and semantic networks compatible 
formalisms, but each has something to contribute to the 
other. Logic extends the expressive power of simple 
semantic networks, provides them with a semantics, in- 
ference rules, and a procedural interpretation. Semantic 
networks, on the other hand, draw attention to the 
advantages of using binary rather than n-ary relations. 
They provide a predicate logic inference system, with 
both an indexing scheme and a potentially useful path- 
following strategy for guiding the search for a solution. 

12. Robinson, J.A. A machine-oriented logic based on the resolution 
principle. J, ACM 12, 1 (Jan. 1965), 23-41. 
13. Robinson, J.A. Automatic deduction with hyper-re,;olution. 
lnternat. .I. Comput. Math. 1, 1965, 227-34. 
14. Robinson, J.A. Computational logic: The unification 
computation. In Machine Intelligence 6, B. Meltzer and D. Michie, 
Eds., Edinburgh University Press, 1971, pp. 63-72. 
15. Schubert, L.K. Extending the expressive power of semantic 
networks. Proc. Fourth Int. Joint Conf. Artif. Intel., Tiblisi, Georgia, 
1975, pp. 158-164. 
16. Shapiro, S.C. A net structure for semantic information storage, 
deduction and retrieval. Proc. Sec. Int. Joint Conf. Artif. Intel., 
London, 1971, pp. 512-523. 
17. Shapiro, S.C. Representing and locating deduction rules in a 
semantic network. Proc. of the Workshop on Pattern Directed 
Inference Systems, Sigart Newsletter (ACM), 63 (June 1977), pp. 14- 
18. 
18. Simmons, R.F., and Chester, D. Inferences on quantified 
semantic networks. Proc. Fifth Int. Joint Conf. Artif. Intel., M.I.T., 
1977, pp. 267-273. 
19. Woods, W.A. What's in a link. In Representation and 
Understanding, D. Bobrow and A. Collins, Eds., Academic Press, 
New York, 1975. 

Acknowledgments. This research was supported by 
assistance from the Science Research Council. We have 
benefited from useful discussions with K. Clark about 
his call-by-need design for a logic programming inter- 
preter and B. Marsh about his indexing scheme for a 
logic database system. Helpful comments on the paper 
were given by D. Brough, F. Brown, and K. Clark. 

Received August 1977 

References 
1. Boyer, R.S., and Moore JS. The sharing of structure in theorem- 
proving programs. In Machine Intelligence 7, B. Meltzer and D. 
Michie, Eds., Edinburgh University Press, 1972, pp. 101-16. 
2. Deliyanni, A.J. A comparative study of semantic networks and 
predicate logic. M. Sc. Th., Dept. of Comptg. and Control, Imperial 
College, University of London, Sept. 1976. 
3. Fikes, R.E., and Hendrix, G.G. A network-based knowledge 
representation and its natural deduction system. Proc. Fifth Int. Joint 
Conf. Artif. Intel., M.I.T., 1977, pp. 235-246. 
4. Hayes, P.J. Computation and deduction. Proc. 2nd MFCS 
Symp., Czechoslovak Acad. Sciences, 1973, pp. 105-I 18. 
5. Hendrix, G.G. Expanding the utility of semantic networks 
through partitioning. Proc. Fourth Int. Joint Conf. Artif. Intel., 
Tiblisi, Georgia, 1975, pp. 115-121. 
6. Kowalski, R.A. Predicate logic as programming language. 
Information Processing 74, North Holland Pub. Co., Amsterdam, 
1974, pp. 569-574. 
7. Kowalski, R.A. Algorithm = logic + control. Res. Rep. 77/3, 
Dept. of Comptg. and Control, Imperial College, University of 
London, Nov. 1976; to appear in Comm. ACM. 
8. Loveland, D.W. A unifying view of some linear Herbrand 
procedures. £ ACM 19, 2 (April 1972), 366-84. 
9. Luckham, D. Refinement theorems in resolution theory. Proc. 
IRIA Symp. on Automatic Demonstration, Versailles, France, 1970, 
pp. 162-90 (available from Springer-Verlag). 
10. McSkim!n, J.R., and Minker, J. A predicate calculus based 
semantic network for question-answering systems. Tech. Rep. TR- 
509, Dept. Cornptr. Sci., U. of Maryland, March 1977. 
11. Mylopoulos, J., Cohen, P., Borgida, A., and Sugar, L. Semantic 
networks and the generation of context. Proc. Fourth Int. Joint Conf. 
Artif. Intel., Tiblisi, Georgia, 1975, pp. 134-142. 

192 Communications March 1979 
of Volume 22 
the ACM Number 3 


