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ABSTRACT 

Linear resolution with selection function (SL.resolution) is a restricted form of  linear resolution. 
The main restriction is e~ected by a selection function which chooses fro:~ each clause a sit, gle 
literal to be resolved upon in that clause. This and other restrictions are adapted to linear 
resolution from Loveland's model elimination. 

We show that SL-resolution achieves a substantial reduction in the generation of  redundant 
and irrelevant derivations and does so without significantly increasing the complexity o f  
simplest proofs. We base our argument for the increased efficiency of SL-resolution upon 
precise calculation of  these quantities. 

A more far reaching advantage of  SL-resolution is its suitability fo .~. ristic search. In 
particular, classification trees, subgoals, lemmas, and and/~./ search tret n all be used to 
increase the efficiency of  flndino refutations. These considerations alone sug. r. :t the superiority 
of  SL-resolution to theorem-proving procedures constructed solely for their I1euristie attraction. 

From comparison with other theorem-proving methods, we conjectur~ that best proof 
procedures for first order logic will be obtained by further elaboration of  ~ ~.-resolution. 

1. Introduction 

Inference Systems and Efficiency 

A good inference system for mechanising deduction should satisfy the follow- 
ing criteria: 

(1) It should admit few redundant derivations and limit those which are 
irrelevant to a proof. 

(2) It should admit simple proofs. 
(3) It should determine a search space which is amenable to a variety of 

methods for heuristic search. 

We shall argue that, on the basis of these three criteria, linear resolution 
with selection function (SL-resolution) is a good inference system and is 
better than other systetr.s which have been investigated for first order logic. 
We shall calculate precise bounds on the number of redundant derivations 
eliminated and on the complexity of simplest proofs admitted by SL-resolu- 
tion. Finally, we describe some of the use~l heuristics that can be applied 
for searching the SL-resolution derivation space. 
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228 ROBERT KOWALSKI AND DONALD KUEHNER 

We shall assume that the reader is familiar with the basic terminology of 
resolution theory. For this purpose, the review paper [20] by Robinson is a 
more than adequate prelimina~,. We regard a proof procedure as consisting 
of an inference system supplemented by a search strategy. The inference 
system of a proof procedure consists of axioms and rules of inference which 
determine for a given theorem the search space of all derivations obtainable 
from the axioms by means of the inference rules. One inft:rence system is 
a refinement of another, if the search space of the first is contained in the 
search space of the second. A search strategy for a given inference system is 
an algorithm for consecutively generating derivations in the search space 
until a first proof is found. In general, every proof procedure generates a 
number of unnecessary derivations in additien to the ~,st proof of the 
theorem it tries to prove. 

We propose that the number of derivations generated by a sear.~h strategy 
before the generation of a first proof be treated ~s a measure of the di~iculty 
of proving the theorem by means of the given proof procedure. We shall 
use this ~neasure of difficulty as a means of comparing the effiziency of 
different proof procedures. 

It is important to distinguish the difficulty of proving a theorem from the 
complexity of a proof of that theorem. Let the size of a resolution derivation 
be the number of distinct occurrences of resolvents in the derivation. We 
shall treat size as a first approximation to the complexity of a derivation. 
(More sophisticated measures will be considered in a later section.) The 
difficulty of proving a theorem depends upon the proof procedure and there- 
fore upon both the inference system and the search strategy employed. The 
complexity of a derivation depends only on the inference system which 
admits the derivation, but not upon any search strategy. 

The efficiency of a proof procedure is related to the complexity of the 
simplest proofs its inference system allows. In general, the simpler the proofs 
admitted by an inference system, the easier it is~or a search strategy to generate 
a first proof. The fewer unnecessary derivations admitted by the inference 
system, the fewer are generated by the search strategy. The more amenable 
the search space to the application of intelligent heuristic methods, the more 
intelligent is the resulting proof procedure. 

Outline of the Paper 

"Ihe paper is divided into three main parts. The first defines linear, t-linear 
and SL-derivations and search spaces. Th~ discussion of t-linear resolution 
is included primarily to clarify the definition of SL-resolution and to simplify 

• the comparison with other linear resolution systems. The formal definition 
of SL-resoh~tion uses the chain format employed by Loveland for model 
elimination. 
Artificial Intelligence 2 (1971), 227-260 
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Where the first part of the paper compares the successive reduction of 
branching rates at nodes of the search trees for refinements of linear resolution, 
the second part uses minimal derivations to compare the complexities of the sim- 
plest refutations obtainable by these refinements. Proofs that no system admits 
simpler refutations than minimal and s-linear resolution and that there exist 
SL-refutations as simple as minimal refutations are included in the appendix. 

The last main part of the paper deals with the application of heuristics 
to the determination of search spaces and search strategies for SL-resolution. 
The search spaces can take the form either of search trees labelled by deriva- 
tions or of and/or trees labelled by goals and subgoals. Efficient search 
strategies which search for simplest proofs can be constructed, employing heu- 
ristic functions and diagonal search. Further improvements can be obtained 
by using lemmas and by employing deletion rules for subsumed chains. 

More detailed investigation of search strategies for SL-resolution is 
contained in Kuehner's thesis [10]. The theory of efficiency which underlies 
our arguments for SL-resolution is investigated in Kowalski's thesis [8] 
and outlined further in Meltzer's lectures [17]. 

This paper is a revised and shortened version of an earlier one [11]. It differs 
from the original primarily by the incorporation of more examples, by the 
substitution of proof outlines in the appendix for detailed proofs in the 
text, and by an altered emphasis which reflects the results of further investiga- 
tions. Certain shortcomings in the earlier treatment of t-linear resolution and 
lemma generation were called to our attention by Michael Gordon and 
Donald Loveland respectively. These faults have now been corrected. 

Since the completion of the original paper, we have learned of the related 
investigations of Donald Loveland [14] and Raymond Reiter [19]. Loveland 
investigates in detail the relationship between model elimination and linear 
resolution, and includes an interesting comparison of these systems with the 
Prawitz matrix reduction method [18]. Reiter investigates two ordering 
restrictions and establishes their compatibility with linear resolution and the 
merging restriction [2]. Reiter'~ second ordering restriction coincides with 
the selection function restriction for ground derivations. 

In SL-resolution, we have attempted to construct the best inference system 
possible and have borrowed freely from what seems, to us, the best in other 
systems. The resulting system can be regarded as a form of either model 
elimination or linear resolution. When compared with the systems investigated 
by Loveland and Reiter, it bears the greatest resemblance to model 
elimination. 

2. Linear Resolution 

Linear resolution was independently discovered by Loveland [13], 
Luckham [15] and Zamov and Sharonov [23]. It is a refinement of unrestricted 
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resolution which significantly reduces the number of redundancies derivable. 
For certain measures of complexity (rm-size, Section 5), linear resolution is as 
powerful as unrestricted resolution, in the sense that no resolution system 
admits refutations which are simpler than the simplest derivable by linear 
resolution. This latter property is shared by other refinements (notably 
minimal resolution, Section 5). Among the most powerful refinements of 
unrestricted resolution, linear resolution offers exceptional opportunities 
for the application of heuristic search by virtue of the relative uncomplicated 
structure of its search spaces. 

Linear Derivations 

A linear derivation D, from a set of clauses S, is a sequence of clauses 
(Ca, ..., C,) such that C~ 6 S and each Ct+t is a resolvent of C~ (the near 
parent of C~+1) and B, where either 

(1) B is in S (the input parent of C~+t), or 

(2) B is some ancestor Cj of Cl, j < i, (the far parent of Cj+l). 

Ct is the top clause of D and C, is the clause derived by D. In case (1), CI+1 
is obtained by input resolution and, in case (2), by ancestor resolution. If D 
derives the null clause from S, then D is a linear refutation of S. 

The sequence D = (PQ, Q, R, S, i~T, T, P, D) is a linear refutation of 
S - {PQ, P, ~R, RS, RST, PT}. (For examples, we omit the set theoretical 
brackets and commas employed in the representation of clauses as sets of 

' literals.) Notice that only near parents of resolvents are displayed in linear 
derivations. The other parent of a resolvent can be regarded as an operator. 
Notice, too, that, in the preceding example, C6 is obtained by resolving the 
near parent Cs with its ancestor Ca. All other resolYents are obtained by 
input resolution. An example of a general-level linear derivation is the 
refutation 

(P(x)P(a), R(a), Q(y), .~(y), I'1) of 

{ P(x)P(a), P(x)R(a), R(x)Q(y), Q.(y)R(.v)}. 

Search Trees 

For linear derivations from S with a common top clause Ct, it is useful to 
organise the search space as a search tree T = T(C~): 

(1) The linear derivation (C1) is the root ofT. 

(2) If D = (C~,..., C~) belongs to T then all linear derivations (C~, ..., C,, 
C,+~) from S belong to T and are immediate descendants of D. 

The complete linear resolution search space for S consists of all the search 
Artificial Intelligence 2 ( 1971), 227-260 
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232 ROBERT KOWALSK! AND DONALD KUEHNER 

trees T(Cx) for each clause C1 in the input set $. For the purpose of displaying 
a search tree T, each node is labelled by the clause derived by that node. 

The search tree shown in Fig. 1 illustrates the great number of redundant 
derivations admitted by linear resolution. In general, the efficiency of proof 
procedures is improved by eliminating redundancies from the search space 
and by not significantly increasing the complexity of simplest proofs. It is 
to this end that we investigate refinements of linear resolution. 

Refmements of Linear Resolution 

It is possible to impose on linear resolution the restricticns that no resolvent 
is a tautology and that the top clause belongs to a given support set of the 
input set S. (A subset T of S is a support set of S if $ - T is satisfiable, 
Wos et al. [21].) Both restrictions eliminate unnecessary derivations without 
decreasing the power of linear resolution. 

The support set ~ ~striction is especially useful because it limits the number 
of search trees which need to be investigated in the course of searching for a 
refutation. The easily recognisable support subsets of S include the set of all 
positive clauses, the set of all negative clauses, and the set of all clauses which 
come from the r~gation of the conclusion of the theorem (when the axioms 
and special hypothe~s in S are satisfiable). For the example of Fig. 1, the 
top clause is the only clause in the support set of positive clauses. All of the 
refinements of linear resolution discussed in this paper are compatible with 
both the support set and no-tautologies restrictions. 

Other restrictions which have been investigated for linear resolution include 
the s-linear restriction (Loveland [13] and Zamov and Sharanov [23]) and 
merging restrictions (Anderson and Bledsoe [1], Yates et. al. [22], and Kie- 
burtz and Luckham [6]). The t-linear and SL-resolution systems investigated 
in this paper are both refinements of s-linear resolution with the support set 
and no-tautologies restrictions. The merging restriction does not seem to be a 
useful one and we have not investigated it in connection with SL-resolution. 
The following table compares, for various refinements, the size of a simplest 
proof and the number of derivations of the same or smaller size for the input 
set and top clause of the example of Fig. 1. The combination of linear 
resolution and the merging restriction defined in [1] is denoted by "m-linear"; 

i i i i 

linear s-linear m-linear ms-linear t-linear SL(I) SL(2) 

Size n of simplest 
refutation 6 6 

Number of derivations 
of size ~n  193 171 

i 
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LINEAR RESOLUTION WITH SELECTION FUNCTION 233 

and the combination of m-linear resolution and the s-linear restriction, by 
"ms-linear." "SL(I)" and "SLy2)" denote SL-resolution with different 
selection functions. (The selection function chooses and resolves upon the 
alphabetically least atom for SL(I) and the alphabetically greatest atom for 
SL(2).) The selection function for SL-resolution acts in much the same way 
as the support set for set-of-support resolution: each specification of a 
selection function determines a complete SDsearch space. 

3. t-Linear Derivations 
Definition 

The three new restrictions incorporated in t-linear resolution are defined only 
for ground derivations from input sets of ground clauses. 

Let D = (C~,..., en) be a ground linear derivation from S. A literal L in 
C~ descends from L in an ancestor Cj iffL occurs in every intermediate clause 
Ck, j ~< k ~< i. An ancestor C~ of Cl is an A-ancestor of Cl iff C~+t has an 
input parent and all literals in C~, except for the literal K resolved upon in 
obtaining Cj+I, have descendants in C~. The literal K is called the A-literal 
of C~ from the A-ancestor Cj. 

In the derivation (PQ, Q, R, S, ~T, T) from the input set {PQ, P, O.R, ~S, 
R,~T}, the derived clause, Cs, has A-ancestors Cz, C3 and C4 and A-literals 
Q from Cz, R from C~ and S from C,. Cs is not an A-ancestor of Co, because 
C6 is not obtained by input resolution. 

FR 

B 

Fro. 2. Search tree for t-linear resolution (134 ~lodes). 

A linear derivation D is t-linear if it satisfies the following three restrictions: 
(1) If C~+1 is obtained by ancestor resolution3, then it is obtained by 

resolution with an A-ancestor of C~. 
Art~c[o~ Intelligence 2 (1971), 227-260 
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234 ROBERT KOWALSKI AND DONALD KUEHNER 

(2) If C~ contains a literal complementary to one of its A-literals, then 
C~+1 is obtained by ancestor resolution. 

(3) A-literals of C~ from distinct A-ancestors have distinct atoms. 

We have already remarked that the no-tautologies and support set restrictions 
are compatible with t-linear resolution. Fig. 2 illustrates part of the t-linear 
search space for the example of Fig. 1. 

Renumrks 

(1) Notice that the first condition implies that if C~ resolves with an A-ancestor 
Cj then the literal resolved upon in Cj is the A-literal of Ci from Cj (for 
otherwise C~ would be a tautology). Thus the resolvent C~+t is contained in 
its near parent. (This last property is Loveland's s-Hnear restriction [13] and 
Zamov and Sharonov's absorption restriction[23].) The second condition 
states that ancestor resolution is compulsory in the sense that it must be 
performed as soon as it can be performed. 

(2) Clearly, for an efficient implementation of the t-linear restrictions, it 
would seem desirable to find an efficient way of associating with each clause 
Ct a list of its A-ancestors and A-literals. In fact, it is only necessary to 
associate A-literals, since all the other literals in A-ancestors are already 
contained in C~. Restrictions (1) and (2) can then be implemented by simply 
deleting any literal in C~ which is complementary to an associated A-literal. 
The implementation of (3) is equally simplified. In the next section, we shall 
define a chain format for SL-derivations which provides just such a way of 
associating A-literals with c~uses. 

(3) It is instructive to compare ancestor resolution in t-linear derivations 
with the implicit merging operation. A single merging operation occurs when 
a literal in a resolvent occurs in both its parents. Thus the resolvent QR of 
PQR and PQR is obtained from its parents.by resolution and two merging 
operations. The merging operation is implicit in the representation of clauses 
as sets of literals. If clauses were replace.d by sequences ofliterals, the merging 
operation would need to be performed explicitly. So far, for t-linear resolution, 
ancestor resolution resembles the merging operation in that both remove 
a single literal from a clause and both are compulsory. For SL-resolution, 
the resemblance is more marked and both operations are treated as special 
cases of a single rule. For SL-derivations from sets of general clauses, ancestor 
resolution resembles factoring. 

4. SL-Derivafions 

Informal Definition 

SL-resolution is t-linear resolution with an additional restriction which calls 
for a single literal to be selected from each clause C~ in an SL-derivation. The 
Artificial Intelligence 2 (1971), 227-260 



LINEAR RESOLUTION WITH SELECTION FUNCTION 235 

selected literal is the only literal in C, which is ever resolved upon when C, 
is used as near parent for input resolution. The choice of selected literal is 
constrained by the condition that it be a literal most recently introduced into 
the derivation of C~. Thus, in the derivation (PQ, PR) only R maybe selected 
in C2, and therefore (PQ, PR, R) corresponds to no SL-derivation for any 
legitimate way of selecting literals. 

For each derivation D in an SL-search tree, there is only one literal in the 
derived clause C, which is resolved upon in obtaining all immediate descend- 
ants by input resolution. If  the same derivation occurs in a t-linear search 
tree then there are additional immediate descendants obtained by resolving 
on all other literals in C. Thus, if C contains m-literals, then there are, on the 
average, m times as many immediate descendants of D in the t-linear search 
tree as there are in the SL-search tree. If m is the average number of 
literals in clauses derived by t-linear derivations of size ~< n, then there are, 
on the average, m n more t-linear derivations of size n than there are SL- 
derivations of the same size. 

Fig. 3 illustrates, for the example of Fig. 1 and 2, the entire search tree 
for SL-resolution with the selection function which chooses the literal 
having alphabetically greatest atom. 

m 

FI~T 

.PT 

O 
Flo. 3. Search tree for SL-reso;ution (12 nodes). 

e 

N 

n I'R 

£3 

Notice ~hat when a clause is used as near parent for ancestor resolution, 
the literal resolved upon is already constrained by the compulsory ancestor 
resolution restriction on t-linear derivations. Thus, in the clause PI~T in 
Fig. 3, only the literal ~ may be resolved upon, even though bo th / ]  and T 
are most recently introduced and T is alphabetically greater than R. 
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In the formal definition of SL-derivations, clauses are replaced by sequences 
of literals, called chains. When a near parent resolves with an input parent, 
the resolvent is obtained by concatenating literals from the near parent to 
the left of literals from the input parent. Between these two subsequences of 
literals we insert the selected literal resolved upon in the near parent. This 
literal is *.he A-literal of the resolvent from its near parent. More generally, 
each resolvent chain contains all of  its A-literals. A-literals are deleted when 
they no longer belong to A-ancestors. Those literals in a chain which are not 
A-literals are called B-literals. 

Fig. 4 illustrates in chain format the SL-search tree of Fig. 3. A-literals 
are enclosed in boxes. Merging operations are displayed explicitly. Of two 
idemical literais in a chain, the rightmost is deleted. We underline literals 
resolved upon and also literals removed by the merging operation. The 
operation of deleting A-literals is not displayed, although defined explicitly 
in the formal definition. 

@g 

_P 

r3 

F!o. 4. Search tree for SL-resolution in chain format. 
Q 

For the efficient.implementation of the general resolution rule, it is useful 
to treat this single operation as a sequence of two suboperations: factoring 
of clauses and resolution of factors. If C is a clause and E a unifiable partition 
of the literals in C, having most general unifier (mgu) 0, then CO is a factor 
Artificial Intelligence 2 ~1971), 227-260 
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of C. If exactly one component of E contains two literals and every other 
component exactly one, then C is a basic focwr. If ~L} O/~ and {K} O B 
are factors and the literals L and K are unifiable with mgu 0, then (d u B)O 
is a resolvent. (~., denotes the union of disjoint sets.) 

The definition of SL-resolution treats chains in the same way that separate 
and explicit rules for factoring and  resolution of factors treat clauses. 
Altogether there are three operations which can be applied in order to obtain 
chains in SL-derivations. The extension operation is input resolution of 
factored chains. The reduction operation incorporates, as special cases, 
both basic factoring and ancestor resolution of factored chains. The trunca- 
tion operation is a bookkeeping device for eliminating A-literals. 

Formal Definition 

Let $ be a given input set of clauses. For each factor C of a clause in S and 
for each literal L in C, choose exactly one sequence C* consisting of all 
literals in C, with L leftmost in C*. C* is an input chain. (Only the leftmost 
literal in C* is resolved upon when C* is input parent for an extension 
operation.) For the input set of clauses 

{ P(x)P(a), e(x)R(a),  (x)QCv), O.Cv) Cv) }, 
there is only one corresponding set of 9 input chains. For 

$ - {PQ, P, O~R, RS, RST, PT}, 

each corresponding set of input chains contains exactly 12 members. Each 
such set contains exactly one of .~ST and .~T~, one of SRT and ,~T~, and 
one of T/~,~ and TSR. For the purposes of SL-resolution, it is of no import- 
ance which one of these sets is chosen to specify the set of input chains. 

In general, a chain is any sequence of !iterals, each of which is assigned 
the status of either A- or B-literal. All literals in input chains arc B-literals. 
Two B-literals in a chain belong to the same cell if they are not separated by 
an A-literaL Thus the chain P ~ S T  has two cells: one containing only the 
B-literal P and the other, the rightmost cell, containing the B-literals S and 
T. The literal T is the rightmost fiteral in the chain. 

Let ~ be a function defined on non-empty chains, having chains as values. 
is a selection function iff O(C*) is C* or can be obtained ~'rom C* by i,ter- 

changing the rightmost B-literal in C* with another B-fiteral in the rightmost 
celL Thus if C* is P~_[~STthen O(C*)is P ~ i ~ T ~  or C* itself. The rightmost 
fiteral in O(C*) is the selected literal in C*. (The extension operation applied 
to C* resolves O(C*) on its rightmost B-literal with an input chain on its 
leftmost literal.) We require further that equivalent chains have the same 
selected literais. 

ArtiJicial Intelligence 2 (1971), 22/-260 
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For a given set of clauses S, support set So and selection function ~, an SL- 
derivation from S is a sequence of chains D* - (C~, ..., C~) satisfying (1)-(3). 

(1) C~ is an input chain from So. 
(2) Each C~j+I is obtained from C~i by one of extension, reduction or 

truncation. 
(3) Unless C*+ 1 is obtained from C* by reduction, then no two literals 

occurring at distinct positions in C~ have the same atom (admissibility 
restriction). 

C*+ I is obtained from Cf by truncation iff (a) and (b): 
(a) The rightmost literal in C~ is an A-literal. 
(b) C~'+ 1 is the longest initial subsequence of C~ whose rightmost literal 

is a B-literal. The status of a literal in C~'+ t is the same as its status in Cf. 
C*÷ 1 is obtained from C~' by reduction iff (a)--(e); 

(a) The rightmost literal in C~' is a B-literal. 
(b) C~' is not obtained from C*_ l by truncation. 
(c) The rightmost cell of Cf contains a B-literal L and either 

(i) C~ contains a B-literal K, which is not in the rightmost cell of Cr, 
(basic factoring) or 

(ii) C* contains an A-literal I~, which is not the rightmost A-literal o f  
C~', (ancestor resolution). 

(d) L ~nd K are unifiable with mgu 0. 
(e) Let C~* be obtainedL by deleting the given occurrence of L in CTi. 

Then C*+ ~ - C~'* 0. The status of a literal in C]'~+ i is the same as 
the status of the literal from which it descends in CT~. 

C*+ ~ is obtained from C* by extension with an input chain B* iff(a)--(d): 
(a) The rightmost literal in Cf is a B-literal. 
(b) Cf and B* share no variables. 
(c) The selected literal L in C~' and the complement K of the leftmost 

literal/~ in B* are unifiable with mgu 0. 
(d) Let B** be obtained by deleting the leftmost literal K from B*. Then 

C~+ 1 is the chain (O(Cf)B**)O obtained by applying 0 to the result o f  
concatenating O(C~) and B** in that order. The literal L 0 in C~+ 1, 
descending from the rightmost literal in O(C*) is axt A-literal in C~+ l- 
Every other literal in C~'+ 1 has the same status as t!le literal from which 
it descends in C* or B**. 

Remar~ 

(1) It is not difficult to verify that the admissibility restriction, together with. 
(b) in the definition of reduction, incorporates the three restrictions on 
t-linear derivations as well as the compulsory merging and no-tautologies 
restriction. The effect of (b) is to guarantee that if a literal can be removed 
by reduction, then this is done before any extension operations are performed.. 
Artiftcial Intelligence 2 (1971), 227-260 
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(2) The restrictions (c) (i) and (c) (ii) on reduction are both concerned with 
restrictions on the factoring operation. If reduction is performed with a 
B-literal K in the rightmost cell, then the effect of this factoring operation is 
to generate a chain already derivable by choosing a different factor for the 
input chain of the last extension operation. Similarly, if reduction is per- 
formed with the rightmost A-literal K, then a variant chain can be derived 
without this reduction operation by using a different factor for the most 
recent input chain. 

The factoring restrictions incorporated in the reduction operation corre- 
spond to restrictions which can be imposed on arbitrary resolution systems. 
The factoring method involved (called m-factoring [8]) imposes no con- 
straints on the generation of factors of input clauses but allows only those 
factors of resolvents which do not involve the merging of literals which 
descend from the same parent. It is easy to show that m-factoring is the 
least redundaet factoring method which generates short clauses as soon as 
possible and does not increase the corrplexity of derivations. 

(3) The truncation operation can be eliminated and incorporated into 
more complicated definitions of extension and reduction. Nevertheless there 
is a good reason for treating it as a separate operation: The admissibility 
restriction applies to the parents of chains obtained by truncation. 

(4) Case (ii) of the reduction operation does not, in fact, completely corre- 
spond to ancestor resolution in linear resolution systems. It corresponds, 
rather, to resolution with an instance of an ancestor. In linear resolution a 
clause C~ resolves with an ancestor Cj which is standardised apart to share no 
variables. The corresponding case of reduction in SL-resolution can be 
interpreted as resolving C~' with C* 0 where 0 is the result of composing all 
mgu's generated in obtaining the sequence of chains C~'+ t to C*. Moreover, 
the resolvent C~'+ t is obtained without renaming the variables which occur in 
its parents. This way of defining ancestor resolution can be applied to linear 
resolution systems in general and can be justified by resolution theoretic 
arguments. In the context of SL-resolution, it has several noteworthy 
advantages: it provides the most efficient and restrictive way of implementing 
ancestor resolution in SL-derivations, without in any way complicating 
simplest refutations. Moreover, it reflects on the general level the relation- 
ship between ancestor resolution and factoring which is the analogue of the 
relationship between ancestor resolution and n'lerging for SL-derivation 
from sets of ground clauses. 

Model Eiimhtation 

SL-resolution is more closely related to Loveland's model elimination 
.system [12] than it is to other resolution systems. In particular, chain format, 

Arti~cial Intelligence 2 (1971), 227-260 



240 ROBERT KGWALSKI AND DONALD KUEHNER 

A- and B-literals, extension, ancestor resolution reduction, and truncation 
all derive from model elimination. (We have used Loveland's terminology, 
except for "contraction" which we have renamed "truncation" in order to 
distinguish it more easily from "reduztion".) 

SL-resolution differs from model elimination primarily in that, for ground 
derivations, model elimination has no merging operw:ion. At the general 
level, a limited amount of factoring is obtained in model elimination by 
allowing ancestor resolution with rightmost A-literals. For these reasons, 
only a weakened version of the admissibility restriction holds for model 
elimination. 

Although not explicitly incorporated in Loveland's original definition, 
it is ea.~y to verify that compulsory ancestor resolution is compatible with 
model elimination. For certain restricted selection functions, resolution with 
selected literals is already incorporated in model elimination. (The selected 
literal is the rightmost literal in a chain and is determined, therefore, by the 
initial choice of input chains.) The compatibility of the more liberal employ- 
ment of selection functions can be established for model elimination by the 
same method used for SL-resolution. 

It is not difficult to show that, in most cases, SL-resolution yields simpler 
refutations and fewer unnecessary derivations than model elimination. (The 
anomalous case arises when a simplest SL-refutation involves no basic 
factoring reduction operations and these operations are performed in 
unnecessarily generated SL-derivations.) 

In the next section, we compare the power of SL--esolution with that of  
other resolution systems. Comparison of these systems with model elimination 
will not be investigated beyond that which is implied by the preceding 
comparison of SL-resolution with model elimin=tion. The preliminary 
investigations reported in this paper suggest that the study and implementa- 
tion of model elimination procedures have been unprofitably neglected in 
favour of less efficient resolution procedures. 

5. Complexity 

In order to investigate the complexity of linear and SL-refutations, we 
shall compare them with minimal refutations. Minimal refutations include 
the simplest obtainable by any resolution system. Moreover, every minimal 
refutation (whether simplest or not) can be regarded as reasonably simple 
for the theorem it proves. We show that for every minimal refutation there 
exists an s-linear refutation of the same complexity for the same set of clauses; 
and for every unsatisfiable set of clauses there exists an SL-refutation a~ 
simple as some minimal refutation. Proof outlines for'the t~ee  theorems~ 
which establish these results, are included in the appendix. 
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Minimal Derivations 

A non-linear derivation is a tree of nodes labelled by clauses, which are said 
to be at the nodes. Clauses from the input set are at the tips and the derived 
clause is at the root. Every node which is not a tip is labelled by a resolvent 
of the clauses at the immediate predecessor nodes. A literal is resolved upon 
at a node if it occurs in the clause at that node and is removed when obtaining 
the resolvent at the immediate descendant node. ' .  

A branch of a non-linear derivation is a set of nodes consisting of a single 
tip and the immediate descendant of every node, except the root, which is 
contained in the set. The number of nodes in a derivation, which are not 
tips, is the size of the derivation. Its level is the number of non-tip nodes 
contained in a largest branch. 

A ground non-linear refutation is minimal if, for every branch, the literals 
resolved upon at distinc~ nodes have distinct atoms. A ground non-refutation 
is minimal if it can occur as a subderivation of a minimal ground refutation; 
i.e., if it derives a non-tautology and, for every literal resolved upon at a 
node, its atom does not occur in any clauses at a descendant node. A general 
derivation is minimal if it lifts a minimal ground derivation; i.e. is tree- 
isomorphic, the clause at any node has as an instance the clause at the 
corresponding node, etc. 

elm m I 

[3 13 

ao~-aaXaLmal 

Fro. 5. Non-linear refutations of {PQ, P'Q, PQ, P-Q}. - - 

~n£ma3. 

Fig. 5 illustrates minimal and non-minimal refutations of the same input 
set. The minimal refutation has 4 branches, size 3 and level 2; the non- 
minimal refutations, 5 branches, size 4 and level 3. The literal Q is resolved 
upon twice in the leftmost branch of the non-minimal derivation. 

If  a ground set S of clauses contains exactly n distinct atoms, then there 
are only finitely many m;nimal derivations from S, none of which has level 
greater than n or size greater than 2n-1. Under quite general conditions on 
S (which apply, in particular to the example of Fig. 5) there are infinitely 
many non-minimal derivations and refutations of unbounded level and size. 
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(The conditions are that some minimally unsatisfiable subset of $ contains 
at least two clauses containing a literal L and two other clauses containing E.) 

The notion of minimal derivations was introduced by Loveland [13] and 
investigated independently by Kowalski [8] in conjunction with Pat Hayes. 
Minimal derivations are just those derivations which can be obtained by the 
construction of semantic trees (Hayes and Kowalski [4]). Loveland defines a 
ground derivation to be minimal if it cannot be "pruned". The two definitions 
are not equivalent. Every unprunable derivation is minimal in our s~ese, 
but not conversely. It follows from Loveland's Corollary 2 that there ex~t 
minimal refutations as simple as the simplest obtainable by any resolution 
system (Theorem 1 below). 

tin-size 

Ancestor resolution in linear derivations resembles the factoring (and merg- 
ing) operation more closely than it does the resolution operation. For this 
reason, the size of derivations is not entirely appropriate for comparing the 
complexities of linear with non-linear derivations. 

We define the tin-size of a non-linear derivation to be the pair (r,m) where 
m is the number of basic factoring (and merging) operations performed in the 
derivation and r the number of resolution (of factors) operations, t For a 
linear derivation, the rm-size is (r, rn) where r is the number of input resolution 
operations and m the number of both ancestor resolution and basic factoring 
(and merging) operations. (For an SL-derivation, r is just the number of 
extension operations and m the number of reduction operations.) In Fig. 5, 
the minimal derivation has tin-size (3,2) aitd the non-minimal derivation 
tin-size (4,2). In Fig. 4, both SL-refutations have rrn-size (5,2) 

For both linear and non-linear derivations, we do not include in m the 
number of initial factoring operations applied to input clauses. For linear 
(but not SL-) derivations, the definition of tin-size is deliberately ambiguous 
when a near parent resolves with a top clause, which can be treated as either 
an input or far parent. 

Simplest Refutations 
If complexity is defined as any function of r and m then two derivations 
(linear and (or) non-linear) have the same complexity if they have the same 
tin-size. In order to compare the complexities of derivations having different 
tin-sizes, we shall assume only that complexity is non-decreasing with increas- 
ing r and m and that an increase in m does not increase complexity more than 
the same increase in r. More precisely, if (r~,ml) <~ (r2,mz) means that no 
derivation of tin-size (rt,ml) is more complex than one of tin-size (rz,m2) 
then the assumptions are that 

I i.e., the number of non-tip nodes in the derivation. 
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rl ~< re and m~ ~< m2 imply (rl,ml) <~ (r,,m,), and 
(r,m) <~ (r + n, m -  n). 

h ~ we were to assume that (r,m) < (r+n, m - n )  then Theorem 1 could be 
strengthened to assert that every simplest non-linear refutation is minimal. 

THEOnEM I. For every unsatisfiable set of  clauses there exists a simplest 
refutation which is also minimal. 

TH~OR~ 2. For any unsatisfiable set S and support subset So there exists 
an s-linear refutation of  $ with top clause in So such that no non-linear refuta- 
tion of  $ is simpler. 

(To prove Theorem 2, it is necessary to verify that any ground s-linear 
refutation can be lifted to a general s-linear refutation of the same rm-size. 
This verification fails unless ancestor resolution is defined for linear deriva- 
tions in a manner similar to that for SL-derivations and mentioned in 
Remark (4) of the preceding section. The effect of such a definition is to 
yield a lower value for m in the calculation of rm-size.) 

Complexity of SL-Refutations 

The simplest SL-refutation of a set of clauses may be more complex than 
a refutation obtainable in some other resolution system. Theorem 3 establishes 
that the complexity of a most complex minimal refutation is a bound on the 
complexity of a simplest SL-refutation. 

THV.OIt~ 3. For every unsatisfiable set S, support subset So and selection 
function ~, there exists an SL-refutation of S which has the same rm-size as 
some minimal refutation of  $. 

Better bounds can be obtained for special cases. We conjecture that an 
improved bound can also be established for the general case. It is easy to 
verify that, for every unsatisfiable set of two-literal ground clauses 8, no 
SL-refutation has tin-size worse than (2n -  1,2) where n is the number of 
distinct atoms occurring in 5'. On the other hand, for each n there exists an 
unsatisfiable set of two literal clauses $ and a minimal refutation of S with 
tin-size (2"- 1,2). 

We have only found one example of a set $ such that to  selection function 
or support set yields an SL-refutat;on as simple as can be obtained by un- 
restricted, minimal or s-linear resolution" For 

$ = {LM, EP, LQ, Ei~, NMQ, NPR, NT, T} 

a simplest refutation has rm-size (7,3). The simplest SL-refutation obtainable 
has rm-size (9,2), (10,4), (11,3), (12,3), (14,2) or (15,1) depending on the 
specification of selection function and support set. 
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We have not found any examples where SL-resolution significantly increases 
the complexity of a simplest proof. For a number of other systems it is 
easy to construct refutations which are the simplest obtainable by those 
systems and which exceed in complexity the bound established for SL- 
refutations. In particular, for S = {PQ, P~,  PQ, P~},  PI - deduction 
yields as simplest proof no refutation of rm-size better than (4,2). All minimal 
and SL-refutations of S have tin-size 0,2). For the same set of clauses, 
resolution with any singleton set of support also yields simplest proofs 
more complex than minimal refutations. It is an open question whether the 
complexity of simplest proofs obtainable by m-linear resolution exceed the 
bound of the complexity of minimal refutations. Our analysis of the complete- 
ness proofs for m-linear resolution yields bounds on complexity which are 
worse than have been established for SL-resolution. 

Proof Procedures for SU.Resolution 

Heuristic considerations can be used for the construction of the search 
spaces and search strategies involved in SL-resolution proof procedures. 
Heuristics for choosing selection functions and support sets apply both to 
the determination of SL-search trees and to the and/or tree search spaces 
obtained by the generation of goals and subgoals. For both representations 
of search spaces, efficient search strategies can be constructed by employing 
length-of-chain as a;heuristic, by employing strategies for the deletion of 
subsumed chains and by generating lemmas. 

The Specification of Support Sets n d  Selection Functions 

For a given input set, the search space for SL-resolution is determined I=y the 
specification of a support subset and a selection function. Heuristic criteria 
can be applied in both these cases with the goal of reducing the branching 
rate at nodes of the SL-search trees. Since the choice of support set and 
selection function does not affect the bound on the complexity of simplest 
SL-refutations, consistent reduction of branching rates results in an overall 
reduction of the size of the subspace which needs to be generated before 
finding a first refutation. (This assumes that the search strategy itself favours 
the generation of simplest refutations in preference to more complex ones. 
The same assumption is necessary for proofs of increased effgiency in other 
cases which have been investigated ([8]).) 

In general, support sets containing a small number of clauses are pre- 
ferable to those containing more. The choice of small support sets improves 
efficiency by reducing the number of search trees which have to be examined 
by the search strategy. 

The choice of selected literals (and therefore of selection function) need 
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not be fixed in advance of the generation of chains by the search strategy. 
This choice can be made dynamically and be deferred until the search strategy 
first considers using a chain as near parent for application of the extension 
operation. At that time, the heuristic selects a literal in the chain which can 
be resolved upon with the least number of input chains. Good estimates of 
this number can be calculated quickly for each B-literal in the rightmost cell 
of the chain by employing a classification of input chains, arranged in th~ 
form of a classification tree. 

Classification Trees 

For each literal which can be encountered in a chain, there corresponds 
exactly one branch of a classification tree. With the tip of this branch is 
associated all those input chains which might resolve with a literal corre- 
sponding to the branch. 

P 

,, " , , ,<  

1 1 2  1 1 2  1 1  4 4 5  4 4 5  4 4 5  

2 2  2 2  5 6 7  5 6  5 6 7  

3 ~  5 ~  6 7  6 6 7  

7 7 
Fro. 6. An operator classification tree. 

The classification tree of Fig. 6 classifies input chains for the unsatisfiable 
set of clauses 

S - {P(x,a)P(a,x) ,  P (x ,a )P(x , f ( x ) ) ,  P (x ,a )P( f ( x ) , x ) } .  

The corresponding set of input chains has 7 mem~rs 
BT - P(x ,a)P(a,x) ,  B'~ - P(a,x)P(x,a) ,  B'~ - P(a,a), 

- p ( x , a ) e ( x , f ( x ) ) ,  n ' ;  - p ( x , f ( x ) ) l " ( x , a ) ,  

- e ( x , a ) e O ' ( x ) , x ) ,  - -  e f f ( x ) , x ) e ( x , a ) .  

The two arcs branching from the root test, from left to right, whether a 
literal is positive or ~egative. The three arcs branching from the nodes 
irranediately below the root test whether the first argument place contains 
a variable, the constant a, or a term beginning with the function symbol f. 
The three arcs branck;ng from the nodes just above the tips test whether the 
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second argument place contains a variable, the constant a, or a term beginning 
wi thf  The column of numbers at the tip of a branch contains the subscripts 
of just those input chains which can resolve (on their leftmost literal) with 
some literal which passes the tests for all arcs along the branch. Thus, for 
instance, only the input chains B~s and B~ could possibly be used for extension 
with a selected literal of the form POr(s),f(t)). No input chain resolves with a 
literal of the form P(f(s),f(t)). 

The complete SL-search tree, with the top chain ~ and for the selection 
function determined by the classification tree of Fig. 6, is shown in Fig. 7. 
Above each B-literal in a rightmost cell is written the number of input chains 
associated in the classification tree with the branch corresponding to the 
literal. The selected literal is the one having the smallest number written 
above it, and is underlined. If the other literal were selected in the top clause 
then the corresponding complete SL-search tree would contain 17 nodes 
instead of 9. 

~. ~B • 

P(-,,O 

P(a,8) IK-a.~(a))| R ~  aL,O_ 

13 

o 

• . .  0 

_ 

Flo. 7. Selecting literals, using Fig. 6. 

The notion of classification tree can be usefully extended in a number of 
directions. Our experience with these trees encourages us to believe that they 
will become an essential and increasingly important part of SL-resolution 
proof procedures. 

Search Strategi~ 

All of the search strategies which have been investigated for resolution 
systems can be regarded as based on a merit ordering of derivations in the 
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search space. At any given step, the search strategy generates from among all 
derivations, which are candidates for generation, a derivation of best merit. 
A derivation is a candidate for generation if it has not been generated but its 
immediate subderivations have. Two search strategies based on the same merit 
ordering differ only with respect to tie-breaking rules, which choose a single 
derivation for generation out of a number of equally meritorious candidates. 
For a given ordering to be a merit ordering, we insist only that, for any two 
derivations, it can be decided whether they have equal merit or whether one 
has better merit than the other. 

A search strategy is exhaustive if it potentially (if left to continue without 
termination) generates all derivations in the search space. A merit ordering 
is 6-finite if, for every derivation in the search space, only finitely many 
derivations have better or equal merit. Any search strategy based on a 
6-finite merit ordering is exhaustive [7]. 

If, fo~ a given measure of complexity, merit is defined so that one derivatio, 
has better merit than another iff it is simpler, than a search strategy basea 
on such a merit ordering is called a complexity saturation strategy. Most 
measures of complexity determine 6-finite merit orderings and therefore 
determine complexity saturation strategies which are exhaustive. Provided 
only that no derivation is simpler than any of its subderivations, then every 
such complexity saturation ~trategy always generates a first refutation which 
is simplest in the search space. 

It is interesting to note that the three basic proof procedures, outlined by 
Loveland[12], for model elimination, all employ some form of J-finite 
complexity saturation search. The first procedure is saturation for the com- 
plexity of a derivation measured by the number of extension operations 
performed in it; the second, for complexity measured by the largest number 
of A-literals occurring in any chain in the derivation; the third is identical 
to the second, except that lemmas can be constructed and used as input 
chains for extension. The use of lemmas with SL-resolution will be discussed 
briefly at the end of this section. 

The efficiency of complexity saturation can be significantly improved by 
diagonal search, which is an extension of the Hart-Nilsson-Raphael algorithm 
for path-finding in graphs ([3] and [7]). For a given complexity measure g 
and heuristic function h (both non-negative real-valued functions defined on 
derivations), a diagonal search strategy (called upwards diagonal in [7]) is 
any search strategy based on the merit ordering: 

D has better merit than D' iff 
g(D) + h(D) < g(D') + h(D'), or 
g(D)+h(D)  - g(D')+h(D') and h(D)<h(D'). 

The value h(D) of the heuristic function is intended to be an estimate of the 
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additional complexity On addition to g(D)) of a simplest refutation containing 
D as a sub-derivation. 

Suppose that the complexity of an Sl.,derivation D* of tin-size (r,m) is 
defined as a weighted sum ar+bm, where a~b. Suppose that the derived 
chain has 11 +/2 B-literals, lz of which belong to the rightmost cell. Let 
hOD*) = all + bl2. Then h(D*) is a lower bound on the additional complexity 
(in addition to g(D*)) of a simplest SL-refutation containing D*. (Thus, for 
example, if D* has rm-size (r,m) and derives PQ~[S~]UV, then no SL- 
refutation which extends D* can have rm-size less than (r+ 3, m + 2).) It can 
easily be shown (as in [7]) that diagonal search is easily implemented, that it 
always generates a first refutation which is simplest in the search space, and 
that it does so by generating significantly fewer unnecessary derivations 
than are generated by complexity saturation. The following table compares 
the numbers of derivations generated by complexity saturation and diagonal 
search, for the example and refinements in the table of section 2. For both 
strategies, complexity is defined by r + m. 

linear s-linear m-linear ms-linear t-linear SL(I) SL(2) 

Complexity Saturation 282 224 357 357 95 13 14 
Diagonal Search 42 42 171 171 40 11 12 

A useful rule, for helping to decide between the generation of candidate 
derivations of equal best merit, can be applied in diagonal search following a 
suggestion of Loveland for model elimination: Generate a derivation of 
best merit whose derived chain contains the greatest number of A-literals. 
Such a derivation offers the greatest possibilities for eliminating B-literals 
by reduction and therefore for eliminating B-literals in the course of genera- 
ting an empty chain. 

Deletion of Subsumed Chains 

Among the me~hods most often used in resolution proof procedures are 
strategies for the deletion of subsumed clauses. Corresponding methods can 
be applied in SL-resolution for the deletion of subsumed chains. Deletion 
strategies need to be defined carefully in order to preserve completeness and 
even then cannot always be guaranteed to increase efficiency. 

Two chains are said to be equivalent if either can be obtained from the 
other by permuting the order of B-literals in cells. (Thus PQ~SF~UV is 
equivalent to a total of four distinct chains which include, for instance, both 
itself and QP~S~IVU. It is not equivalent to PSIR__IQJ~UV.) A chain C* 
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subsumes another C'* if some instance C*~ is an initial subchain of a chain 
equivalent to C'*. (Thus IP(x)ifd(x) subsumes both [P(a)[Q(a)R(a) and 

i~(a)iR(a)Q(a) but not Q(a)Ip(a![R(a). ) 
Let E by any search strategy for SL-resolution, 2; can be modified to obtain 

a new strategy 27 which step by step generates the same derivations as 2~, 
in the same order, but deletes derivations of subsumed chains and does not 
generate derivations which extend previously deleted derivations: 

(1) Both search strategies generate the same first SL-derivation. 
(2) If 2; generates a derivation, then 27 generates the same derivation 

provided that its immediate subderivation has been generated by g' 
and has not been previously deleted. 

(3) If ~' generates a derivation D* of a chain C* then 
(a) D* is deleted if C* is subsumed by the chain derived by some 

previously generated and undeleted derivation, 
(b) otherwise every previously generated and undeleted derivation 

of a chain, subsumed by C*, is deleted. 
The search strategy g '  is complete, relative to g, i.e., 2;' eventually generates 
a refutation if g does. 

Deletion of subsumed clauses can be defined for other resolution systems 
in a manner analogous to the preceding definition for SL-resolution. In the 
case of Pl-deduction, for instance, an incomplete deletion strategy is obtained 
by interchanging the analogues of steps (3a) and (3b). In general, if step (3b), 
or its analogue, is omitted, then increased efficiency can be guaranteed for 
any search strategy 2; wh:¢h generates a first refutation which is simplest for 
its search space. The inclusion of(3b) is a possible source of decreased e~ciency. 
Although deletion of subsumed chains and clauses seems to be a desirable 
addition to proof procedures, we have not found good modifications of (3b) 
or restrictions on I~ which always guarantee the increased efficiency of 
incorporating such deletion rules. A more thorough investigation of these 
problems for non-linear resolution systems is contained in [8]. 

Generation of Subgoab and Lemmas 

Possibilities for the generation of subgoals and for the processing of their 
solutions in the form of lemmas are unique to SL-resolution and model 
elimination. To avoid various complications, we shaJl discuss in detail only 
• the case of ground SL-resolution. 

Suppose that a derivation of a chain C* has been generated and that no 
truncation or reduction operation can be applied to C*. It is easy to verify 
that if ~(C*)= C*L then C* must ocxur as a descendant of C* in any 
SL-refutation containing C*. Thus the goal (C*--,I-]) of deriving the null 
chain from C* can be decomposed into the immediate subgoal (C~L-~C~)of 
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deriving C~ from C* and the further goal (C~-,l'-i) of deriving the null 
chain from C~. The solution of the immediate subgoal determines a lemma 
which can be reused to solve analogous immediate subgoals of the form 
(C~*L-,C~*). 

For example, the goal (Ni~[QR-,[:]) can be completely decomposed to 

obtain the immediate subgoals (N!~QR-,NIP[Q), (N~_IQ-,N~_[) and 
(N--,I-1). The derivation 

is a solution to the immediate subgoal (NI~[QR-~N~[Q). Having solved such 
a subgoal, the fact can be recorded and applied later for solving analogous 
immediate subgoals such as S~_[R-, S~[). In particular, we may generate the 
lemma ~ which can be used as input chain for extension. If the solution to 
(NIP[QR~N~IQ) were 

then the corresponding lemma would be .~P and could be restricted in 
application to those analogous subgoals (C~R~C~) where C~o contains P as 
A-literal or P as B-literal. 

The preceding examples of lemma construction are easy to generalize (see, 
for instance, Loveland [12]). The restricted use of such lemmas can be shown 
to increase efficiency by always leading to the generation of fewer unnecessary 
derivations before the generation of a first refutation. 

And/or Tree Search Space 

The consistent application of subgoal generation leads to an and/or tree 
representation of the search space for SL-resolution. 

(1) The top chain C* at the root of an SL-search tree is replaced by the 
goal (C*--,I-i) at the and-node which is the root of the corresponding 
and/or tree. 

(2) Each and-node, labelled by a goal of the form (C*-,C'*) has as many 
immediate descendant or-nodes as there are B-literals in C*-C'*. 
These or-nodes are labelled by the immediate subgoals obtained by 
complete decomposition of (C*--,C'*). 

(3) Each or-node, labelled by an immediate subgoal (C~L-~C~), has as 
many immediate descendant and-nodes as there are ways of applying 
extension to C~L with input chains of the form EBb. Each such and- 
node is labelled by the corresponding goal (C~[Mo-~C~). 

The precise details for dealing with truncation and reduction can be form- 
ulated without great difficulty. 
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Problems arise with the implementation of and/or trees for general sets of 
input clauses, because the solution of subgoals cannot be accomplished 
independently. This complication can be dealt with and search strategies can 
be designed for searching and/or trees. Such strategies can synthesise the use 
of heuristics for estimating branching rates at and-nodes and or-nodes. In 
addition, the use of lemmas and classification trees can be incorporated with 
other methods in order to obtain search strategies which employ look-ahead 
and learning to estimate the difficulty of solving goals and subgoals. Such 
estimates can be improved by straightforward methods for comparing 
estimated with actual difficulty. 

Search strategies sugge.~ted by the and]or tree representation can be 
translated to SL-search trees. The general topic of synthesising the advantages 
of the several methods remarked upon in this section is a promising area 
for further improving the efficiency of S[:-resolution. 

Conclusions 

In this paper, we have attempted to support our belief that SL-resolution 
offers a substantial contribution to the more efficient mechanisation of first 
order logic. We have argued that SL-resolution achieves a significant reduc- 
tion in the generation of unnecessary derivations without intolerably compli- 
cating simplest proofs. Moreover, the amenability of SL-resolution to the 
application of heuristic methods suggests that, on these grounds alone, it is 
at least competitive with theorem-proving procedures designed solely from 
heuristic considerations. 

Arguments for SL-resolution can be extracted from a broader basis. 
Regarded as either a model elimination or linear resolution system, it seeks 
to incorporate the best features of both systems in a way which improves 
upon the original. Still other proof procedures, such as the inverse method 
(Maslov [16]) can be compared with resolution (Kuehner [9]) to obtain a 
further comparison in the favour of SL-resolution. Other argmnents for 
resolution systems in general (Kowalski [8]) apply to SL-resolution in 
particular. 

It is interesting to note that none of the preceding arguments for SL- 
resolution appeal direct!y to its completeness and that some of the more 
convincing ones rely upon its heuristic attraction. 

We do not pretend that SL-resolution solves the problems of automatic 
theorem-proving. The intelligent performance of deductive activity involves 
numerous sub-activities. These sub-activities include learning theorems and 
proofs, formulating worthwhile conjectures, searching for proofs and counter- 
examples, correcting faulty theorems, proofs and counter-examples, and 
improving successful ones. These sub-activities so depend upon one another 
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that we do not expect efficient theorem-proving to be realised in isolatio,,~ 
from the remainder of intelligent activity. 

Despite its present shortcomings, we remain optimistic for the continuing 
progress of theorem-proving based upon SL, resolution. The applicability 
of classification trees and of subgoai and lemma generation were largely 
unanticipated in our early investigations and have not yet beer, fully exploited. 
Our continuing optimism seems to be justified by past experience and by 
more recent developments which have not yet been formulated in enough 
detail to include in this paper. 
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Appendix 

All of the Lemmas and Theorems proved in this appendix are stated for 
refutations of unsatisfiable sets of clauses. Most of these propositions can be 
stated in a more gener~,l form which applies to derivations from arbitrary 
sets of  clauses. In each case, we have chosen the simplest formulation which 
is adequate for establishing the main theorem stated in section 5. 

LE.,~A 1. Let D" be a non-linear ground refutation of a set of ground instances 
of clauses in S. Then there exists a refutation D of S which lifts D' and has the 
same rm-size. 

The proof is not difficult and is similar to that of Theorem 4.7.1 in [8]. 

LEMMA 2. For any unsatisfiable set of clauses, there exists a simplest non- 
linear refutation which lifts, and has the same rm-size as, a simplest ground 
refutation of a set of ground instances of clauses in S. 

Proof Outline. Let D be a simplest non-linear refutation of S and assume 
it lifts a ground refutation D'. Note that D cannot be simpler than D'. By 
using l,emma I and the Pact that D is simplest and lifts D', it is easy to verify 
that D and D' have the same rm-siz¢. It follows from a second application 
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of Lemma 1 that D' is a simplest ground refutation of a set of instances of 
clauses in S. 

If D is a simplest non-linear refutation which lifts no ground refutation, 
then it is necessary to show that there exists axiother simplest refutation which 
does. This can be done by first constructing a ground "pseudo-derivation" 
isomorphic to and having same rm-size as D. (The pseudo-derivation fails 
to be a derivation because certain compulsory merging operations are not 
performed.) The pseudo-derivation, in turn, can be "' contracted" to obtain 
a ground derivation from instances of clauses in $. The contracted derivation 
has fewer resolution operations and, at worst, has no more merging operations 
than it has fewer resolution operations. Therefore it is at least as simple as 
the pseudo-derivation. By Lemma 1, the contracted derivation can be lifted 
to a refutation of S which has the same -:,~-size This derivation is obviously 
at least as simple as D and is therefore a simplest refutation of 5. 

(The definition of pseudo.derivation is given in [5] and' the contraction 
Operation for pseudo-derivations is the analo~,ue of the contraction operat:'on 
for derivations studied in [5] and [8].) 

LEMMA 3. For every unsatisfiable set of  ground clauses, there exists a simplest 
ground refutation which is also minimal. 

Proof Outline. Let D be a simplest ground refutation of the set, S. By 
Loveland's Corollary 2 [13], if D is not minimal then it can be "pruned" 
to obtain a minimal refutation D' of $. The pruning operation removes 
resolution operations and introduces no more merging operations than the 
resolution operations it removes. Therefore D' is a simplest refutation of S. 

THEOREM 1. For every unsatisfiable set of  clauses, there exists a simplest 
refiltation which is also minimal. 

ProoJ. By Lemma 2, there is a simplest refutation of the set S which lifts 
and has the same rm-size as a simplest refutation D' of a set S' of instances 
of clauses in S. By Lemma 3, there is a minimal refutation D" of S' which is 
as simple as D'. By Lemma 1, there is a refutation D of S, which lifts D" and 
has the saint, rm-size as D'.  Therefore D is a minimal and simplest refutation 
of S. 

LEMMA 4. Let D be a minimal ground refutation of a set S of ground clauses. 
For any clause C~ at a tip of D, there is an s-linear refutation of S with top 
clause C~ and having the same rm-size as D. 

Proof Outline (illustrated in Fig. 8). The proof is by induction on the size 
n of D. If n = 0, then the desired refutation is just the one clause s-linear 
derivation of I-l. Suppose n > 0. 

Let the two immediate subderivations of D derive the unit clauses {L} 
and {E}. Because D is minimal, if we delete from all clauses at nodes of D 
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the literals L and E, we obtain minimal refutations D, of S,, and D 2 o f  $2,  
tree-isomorphic respectively to the subderivations of {L} and {E}. Suppose 
that C,- {L}  occurs at a tip of D~ and B - { L }  (where [ ,e  B and B s S) 
at a tip of D2. 
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FIG. 8. Outline of the proof of 1.emma 4. (A broken line, here and in Fig. 9, connects a 
resolvent with its input or far parent.) 

By the induction hypothesis, there exists s-linear refutations D~ of S, with 
top clause C , - { L } ,  and D[ of $2 with top clause B - { L } .  DI and Dr have 
the same rm-size. 
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Let D'~ be the s-linear derivation of {L} from S, isomorphic to D~, with 
top clause C~, obtained by replacing L in all input parents from which L was 
deleted i~ obtaining $1. (L is inserted into all resolvents of such parents and 
into all descendants of such resolvents.) 

Let D~ be obtained from D~ by first inserting {L} as new top clause 
before B -  { E~ and by next inserting immediately before any resolvent C~ with 
input parent of the form C -  (E}, where C ¢ S and E e C, the clause C~ u {E}. 
It is easy to check that D'~ is an s-linear refutation of $ u ({L} } where {L) 
occurs only as top clause. ((L} is treated as far parent for resolvents Ci in 
D~ with near parents C~ u {E}.) 

The desired s-linear refutation D' of S is obtained by appending D~ to 
D~ and deleting the duplicated occurrence of (L}. It is straightforward to 
verify that D and D' can be constructed so that they have the same tin.size. 

LEMMA 5. Let D be an s-linear ground refutation of a set of  ground instances 
of clauses in $. Then there exists an s-linear refutation of $ which lifts D and 
has the same tin-size. 

The proof of l.emma 5 is similar to, but much simpler than, the proof of 
Lemma 7. 

THEOREM 2. For any unsatisfiable set S and support subset So, there exists 
an s-linear refutation of S with top clause in So such that no non-linear re- 
futation of S is simpler. 

Proof. As in the proof of Theorem 1, there is a simplest non-linear refutation 
D of S which lifts and. has the same tin-size, as a simplest minimal refutation 
D' of a set of ground instances S" of clauses in S. Some tip of D' is labelled 
by a clause C~ which is an instance of some clause in So. By Lemma 4, there 
is an s-linear refutation D r of S' with top clause C~ and having the same 
tin-size as D'. By Lemma 5, there exists an s-linear refutation of $, with top 
clause C1 in So, which has the same tin-size as D r and therefore is as simple 
as a simplest non-linear refutation of S. 

LEMMA 6. For every unsatisfiable set S of ground clauses, support set 
So and selection function 0, there exists an SL-refutation of S which has the 
same tin-size as some minimal ground refutation of $. 

Proof Outline (illustrated in figure 9). The proof is by induction on the 
number n of distinct atoms in S. If n - 0 then the desired SL-refutation 
contains just the null chain and has tin-size (0,0). Suppose n>0. 

It suffices to consider the case where S is minimally unsatisfiable and So 
contains just one c|ause C~. Choose as top chain any input chain C~ formed 
from this clause. The selection function ~ determines a unique order in which 
literals descending from those in C* are resolved upon in any SL-derivation 
with top chain C~. In particular, ~ determines a literal L ~n C* whose 
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descendants are the last to be resolved upon, among all descendants of literals 
in C*. 

It is easy to verify that the set of clauses obtained from S by deleting all 
occurrences of L and ignoring clauses containing E is unsatisfiable and con- 
tains therefore a minimally uns~tisfiable subset S:. Obtain the corresponding 
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FIG. 9. Outline of the proof of Lemma 6. 

set of chains S~ from the input chains S* by deleting L, ignoring chains 
containing E and, of the remaining chains, choosing those which correspond 
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to clauses in St. It is easy to check that the chain C * - L ,  obtained by deleting 
L from C*, belongs to S~. 

Similarly, there exists a minimally unsatisfiable set of clauses Sz and a 
corresponding set of chains S], obtained by deleting E from clauses in S and 
chains in S* ignoring clauses and chains containing L. S* contains a chain 
B * -  E, obtained by deleting E from some chain B* ¢ S* which contains/:. 

We shall apply the induction hypothesis to the sets of clauses St and $2 
with respective support sets {Ct - {L}} and {B - {E}}. For this purpose, 
we define selection functions Ot for St and ~2 for $2. Suppose that C* is 
any chain obtainable by an SL-deriv~io= from S with top chain C* for the 
selection function ~. Let C** be C* with all occurrences of L and E deleted. 
If L occurs in C* only as a B-literal in the leftmost cell then Or(C**) ffi O(C*). 
If L occurs in C* only as the leftmost A-literal, then ~2(C**) ffi O(C*). The 
values of 0t  and 0 ,  for other chains may be defined arbitrarily. 

By the induction hypothesis, there exist minimal refutations Dt of St 
and D2 of $2 and SL-refutations D* of St for O t with top chain C* - L and 
D~ of Sz for 02 with top chain B* - E. D~ and DI' have the same rm-size. 

The de::ited SL-refutation D* of S can now be obtained from D~t and D* 
as in the similar construction of the s-linear refutation of 1.emma 4: Intro- 
duce L as new B-literal in the leftmost cell of all chains in D~. Introduce L as 
new top chain and as a new A-literal to the left of all literals in chains of 
D~ and insert C~E immediately before any chain C* obtained by extension 
in D~ with a chain C* - I_, ¢ S~ where E ¢ C* a~d C* ¢ S*. D* isthen obtained 
by appending the second derivation to the first, deleting the duplicated 
occurrence of the chain L. It is not difficult to verify that D* is an SL- 
refutation of S* for the selection function ~ with top chain C*. 

The minimal refutation D of S, with sarae tin-size as D*, is obtained from 
Dt and D 2 : To each clause C - {L} at a tip of Dr, where L ¢ C and C ¢ S, 
add the literal L. Also add L to the clauses at all nodes in Dt which descend 
from such tips. The resulting derivation is a minimal derivation of {L} from 
S. In a similar manner obtain from D2 a minimal derivation of {L,} from 
S. D is then the minimal refutation of S, having these two minimal derivations 
as immediate subderivations. It is quite straightforward to check that D* 
and D can be constructed so that they have the same tin-size. 

LEMMA 7. For every unsatisfiable set S, support set So and selection function 
~, there exists a set of  ground instances S' of cla~es in S, support subset S~ 
of S' and selection function Jp'; such that, for every ground SL-refutation of 
S', for S~ and ~', there exists an SL-refutation of S, for So and ~, which has 
the same rm-size. 

Proof Outline. For simplicity, we may assume that S is minimally un- 
satisfiable and that So consists of a single clause Ct. Let S' be any minimally 
Artificial Intelligence 2 (I971), 227-260 
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unsatisfiable set of ground instances of clauses in S. S' contains some instance 
Ci of C1. Let S* be a set of  input chains corresponding to S, let S'* be the 
corresponding set of input chains for S' and let CT by any chain (in S*) 
corresponding to C1 and C~* be any chain (in S'*) corresponding to Ci. 

We construct a tree T, each node of which is labelled both by an SL- 
derivation D* from S* for ~ with top chain C~ and by a ground SL-derivation 
D'* from S'* with top chain C~*. Both derivations have the same tin-size 
and D'* derives an instance of the chain derived by D*. The root of T is 
labelled by the SL-derivations (C*)and (C~*). Suppose that a node N and 
the SL-derivations D *  - (C~, ..., C*) and D'* - (C~*, ..., C~*) at N have 
been constructed and verified to have the desired properties. We need to 
specify the immediate descendant nodes and the SL-derivations labelling 
them. 

If D'* violates the admissibility restriction then N has no immediate 
descendants. If truncation can be performed on C~* then it can be performed 
on C* and N has one immediat.e descendant obtained by adding to D* and 
D'* the chains which result from truncation. 

If  reduction needs to be performed on Cfi* then one way of doing reduction 
is chosen and performed in order to obtain the single node which is the 
immediate descendant of N. The new node is labelled by adding to D'* the 
chain which results from reduction. A similar reduction operation can be 
performed on C* and the result is added to D* and also labels the new node. 

Let L be the selected literal in C* and let L' in C~* be the corresponding 
instance of L. Treat L' as the selected literal in C~*. If.the preceding cases do 
not apply and no extension operation with a chain B'* from S'* can be 
performed on Cfi* then N has no immediate descendants. Otherwise, N has 
immediate descendants for each such B'*. Each new node is labelled by 
adding to D'* the chain which results from extension. A similar extension 
operation can be performed on C* with a chain B* from S*. The SL-derivation 
which results from the performance of this extension operation also labels 
the new node. 

In each of the preceding cases, it is straightforward to verify that all new 
nodes have the desired properties. 

T labelled by its ground derivations may fail to be an SL-search tree for 
some selection function ~'. There may be distinct nodes N and N' labelled 
by ground derivations of the same ground chain C'*, but by general deriva- 
tions of distinct general chains. The selected literals in the general chains 
correspond to differen t. literals in C'*. In such a case, a single such node N 
can be selected and all subtrees of Trooted at nodes N' can be replaced by the 
subtree rooted at N. It can now be verified that the modified tree, together 
with the ground SL-derivations labelling its nodes, constitutes an SL-search 
tree T for some selection function ~', for the top chain C'* and for the 
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input set S'. It follows that, for every ground SL-refutation D'* of $' for ~', 
there is an SL-refutation of S for ~ with top chain C~, having same tin-size 
as D'*. 

THr.OaEM 3. For every unsatisfiable set $, support set So and selection 
function dp, there exist~ an SL-refutation o f  S which has the same rm-size as 
some minimal refutation o f  S. 

Proof Let S', $~ and ~'  be as stated in Lemma 7. By Lemma 6, there exist~ 
an SL-refutation D'* of S' for ~' with top chain in $6", and D'* has the same 
tin-size as some minimal refutation D' of $'. But, by I.emma 2, there is a 
minimal refutation D of S which has the same rm-size as D' and, by Lemma 7, 
there is an SL-refutation D* of $ for ~ with top chain in ~oo which has the same 
rm-size as D'*. Therefore, the SL-refutation D* has the same rm-size as the 
minimal refutation D. 
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